WO2019167469A1 - Al-mg-si system aluminum alloy material - Google Patents

Al-mg-si system aluminum alloy material Download PDF

Info

Publication number
WO2019167469A1
WO2019167469A1 PCT/JP2019/001614 JP2019001614W WO2019167469A1 WO 2019167469 A1 WO2019167469 A1 WO 2019167469A1 JP 2019001614 W JP2019001614 W JP 2019001614W WO 2019167469 A1 WO2019167469 A1 WO 2019167469A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
less
alloy material
amount
Prior art date
Application number
PCT/JP2019/001614
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 塩月
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020502856A priority Critical patent/JP7044863B2/en
Publication of WO2019167469A1 publication Critical patent/WO2019167469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an Al—Mg—Si based aluminum alloy material containing Cu and Ni.
  • Structural materials such as vehicle body panels and undercarriages are generally manufactured by aging treatment of materials formed by press molding, forging, etc., and Al-Mg-Si based materials used as materials for structural materials Aluminum alloys are required to have high elongation for forming in addition to strength. Therefore, various studies including chemical composition have been made in order to develop an Al—Mg—Si aluminum alloy having both high strength and elongation.
  • Patent Document 1 discloses an aluminum alloy material suitable for manufacturing an automobile body panel, and Si: 0.6 to 1.2 wt%, Mg: 0.7 to 1 based on the total weight of the aluminum alloy material. .3 wt%, Zn: 0.25 to 0.8 wt%, Cu: 0.02 to 0.20 wt%, Mn: 0.01 to 0.25 wt%, Zr: 0.01 to 0.20 wt%, and the rest
  • An aluminum alloy material that contains Al and ancillary elements and satisfies the inequality of 2.30 wt% ⁇ (Si + Mg + Zn + 2Cu) ⁇ 3.20 wt% is described.
  • Al-Mg-Si-based aluminum alloy materials used as vehicle structural materials and the like are required to have higher strength from the viewpoint of achieving both vehicle weight reduction and collision safety.
  • the Al—Mg—Si based aluminum alloy there is a relatively large amount of Cu added, and in addition to the 6111 alloy that improves the bake hardness while securing elongation, the 6061 alloy that suppresses the amount of Cu added, etc. is there.
  • any alloy when strengthening is performed by increasing the amount of Cu or the like, corrosion resistance deteriorates, and thread corrosion, stress corrosion cracking, and the like are liable to occur, so that the durability of the structural material is impaired.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an Al—Mg—Si based aluminum alloy material having both high strength and good corrosion resistance.
  • the Al—Mg—Si-based aluminum alloy material according to the present invention includes Si: 0.1% by mass to 2.0% by mass, Mg: 0.3% by mass to 1.5% by mass. %: Cu: 0.05% by mass or more and 3.0% by mass or less, Ni: more than 0.05% by mass and 2.3% by mass or less, and Fe, Mn, Cr, Zn and Ti One or more selected elements are optionally contained in an amount of 1.0% by mass or less, and the balance consists of Al and inevitable impurities.
  • 2 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy.
  • 3 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy with Ni added.
  • Al—Mg—Si based aluminum alloy material According to an embodiment of the present invention will be described.
  • the Al—Mg—Si based aluminum alloy material according to the present embodiment may be simply referred to as “aluminum alloy material”.
  • the Al—Mg—Si-based aluminum alloy material according to this embodiment has a chemical composition in which Cu and Ni are further added to an aluminum-based alloy to which Mg and Si are added. That is, this aluminum alloy material corresponds to an Al—Mg—Si—Cu-based aluminum alloy to which Ni is added.
  • Ni By adding Ni, it is possible to increase the strength without increasing the amount of Cu that lowers the corrosion resistance of the parent phase. Therefore, an aluminum alloy material having both high strength and good corrosion resistance can be obtained.
  • the details of the chemical composition of the aluminum alloy material will be described.
  • Si 0.1 to 2.0% by mass
  • the amount of Si in the aluminum alloy material is 0.1% by mass or more and 2.0% by mass or less.
  • Si contributes to precipitation strengthening by forming an Mg 2 Si-based ⁇ ′′ phase or ⁇ ′ phase or an AlMgSiCu-based Q ′ phase.
  • the addition of Si improves the flow of molten metal during casting. If the amount of Si is less than 0.1% by mass, the molten metal flow may deteriorate and sufficient strength may not be obtained due to precipitation strengthening. If the amount exceeds 0% by mass, elongation and formability may be deteriorated, whereas if the amount of Si is within the above range, both high strength and good elongation can be achieved.
  • the amount of Si may be 0.2% by mass or more, 0.4% by mass or more, or 0.6% by mass or more from the viewpoint of increasing strength and the like.
  • the amount of Si may be 1.8% by mass or less, 1.6% by mass or less, or 1.4% by mass or less from the viewpoint of increasing elongation.
  • Si can be positively added to the aluminum alloy material, and may be included in advance in the waste or the like used as a raw material for the aluminum alloy material.
  • Mg 0.3 to 1.5% by mass
  • the amount of Mg in the aluminum alloy material is 0.3 mass% or more and 1.5 mass% or less.
  • Mg contributes to precipitation strengthening by forming Mg 2 Si-based ⁇ ′′ phase or ⁇ ′ phase or AlMgSiCu-based Q ′ phase. If the amount of Mg is less than 0.3% by mass, On the other hand, if the amount of Mg exceeds 1.5% by mass, hot workability may be deteriorated, whereas the amount of Mg is within the above range. Thus, both high strength and good hot workability can be achieved.
  • the amount of Mg may be 0.4% by mass or more, 0.5% by mass or more, 0.6% by mass or more from the viewpoint of increasing strength and the like. It is good also as 8 mass% or more, and good also as 1.0 mass% or more.
  • the amount of Mg may be 1.3% by mass or less, 1.1% by mass or less, or 0.9% by mass or less from the viewpoint of improving hot workability. .
  • the amount of Cu in the aluminum alloy material is 0.05 mass% or more and 3.0 mass% or less.
  • Cu strengthens the Al phase by solid solution, and mainly contributes to precipitation strengthening by forming an AlMgSiCu-based Q ′ phase. If the amount of Cu is less than 0.05% by mass, there is a possibility that sufficient strength cannot be obtained by addition of Cu. On the other hand, when the amount of Cu exceeds 3.0% by mass, the corrosion resistance deteriorates. On the other hand, if the amount of Cu is within the above range, it is possible to increase the strength within a range that does not significantly impair the corrosion resistance of the aluminum alloy material.
  • the amount of Cu may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more from the viewpoint of increasing the strength. Further, the amount of Cu may be 2.0% by mass or less, 1.0% by mass or less, or 0.5% by mass or less from the viewpoint of increasing the corrosion resistance.
  • Ni 0.05 to 2.3% by mass
  • the amount of Ni in the aluminum alloy material exceeds 0.05% by mass and is 2.3% by mass or less.
  • Ni mainly contributes to precipitation strengthening by forming Mg 2 Si-based ⁇ ′′ phase or ⁇ ′ phase or AlMgSiCu-based Q ′ phase.
  • Al—Mg—Si—Cu-based aluminum alloys these The intermediate phase of Mg is formed of Mg, Si, and Cu.
  • Ni becomes ⁇ ′′ phase.
  • ⁇ ′ phase and Q ′ phase are formed, and high strength can be achieved without increasing the amount of Cu.
  • the amount of Ni when the amount of Ni is 0.05% by mass or less, there is a high possibility that the effect of adding Ni cannot be significantly obtained.
  • the amount of Ni exceeds 2.3% by mass, the elongation decreases due to excessive increase of crystallized materials, and the tensile breaking elongation of the aluminum alloy material may be less than 10% required for various applications. high.
  • the amount of Ni if the amount of Ni is within the above range, precipitation strengthening can be achieved without depending on the amount of Cu, and both high strength and good elongation can be achieved without impairing the corrosion resistance of the aluminum alloy material. Can be made.
  • the amount of Ni may be 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more from the viewpoint of increasing the strength. Further, the amount of Ni may be 2.0% by mass or less, 1.8% by mass or less, or 1.6% by mass or less from the viewpoint of increasing elongation.
  • the aluminum alloy material may optionally contain one or more elements selected from the group consisting of Fe, Mn, Cr, Zn, and Ti in an amount of 1.0% by mass or less. That is, Fe, Mn, Cr, Zn, and Ti may be included as inevitable impurities due to raw materials, manufacturing processes, and the like, and are actively added as long as the content is 1.0% by mass or less. It may be.
  • Fe contributes to suppression of seizure at the time of casting, improvement of strength, and the like, but it can deteriorate elongation when a coarse or large amount of crystallized matter is formed.
  • the amount of Fe is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.3% by mass or less. It is particularly preferable that Fe is not added actively but is in the range of 0.1 to 0.2% by mass or less which may be included as an inevitable impurity.
  • Mn is allowed to be added because it contributes to the refinement of crystal grains and the suppression of stress corrosion cracking.
  • the amount of Mn is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.3% by mass or less, still more preferably 0.15% by mass or less, and still more preferably 0.05% by mass. It is not more than mass%, particularly preferably not more than 0.03% by mass.
  • the amount of Cr is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.35% by mass or less, still more preferably 0.25% by mass or less, and further preferably 0.15%. It is not more than mass%, more preferably not more than 0.05 mass%, particularly preferably not more than 0.03% by mass.
  • Zn can be added for various purposes, but it is preferable not to add Zn actively.
  • the amount of Zn is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.25% by mass or less, still more preferably 0.20% by mass or less, and further preferably 0.10%. It is not more than mass%, more preferably not more than 0.05 mass%, particularly preferably not more than 0.03% by mass.
  • Ti is allowed to be added because it refines crystal grains and contributes to prevention of casting cracks.
  • the amount of Ti is preferably 0.20% by mass or less, more preferably 0.10% by mass or less.
  • the aluminum alloy material may contain other elements as inevitable impurities caused by raw materials, manufacturing processes, and the like.
  • inevitable impurities include Ga, V, B, Zr, Co, Ag, Bi, Pb, and Sn.
  • the amount allowed as an inevitable impurity is 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less for each element. Further, the amount allowed for the total of the elements is preferably 0.15% by mass or less, more preferably 0.10% by mass or less.
  • the Al—Mg—Si-based aluminum alloy material according to the present embodiment can be obtained by forming into an appropriate shape according to the application.
  • the mechanical properties required for each application can be obtained by artificial aging treatment, natural aging, and age hardening by paint baking.
  • the method for producing an Al—Mg—Si based aluminum alloy material according to the present embodiment includes a molding step of molding a molded body made of an aluminum alloy adjusted to the chemical composition, and a solution of the molded body. It includes at least a solution treatment step to be processed and an aging treatment step for aging the solution-treated molded body.
  • the aluminum alloy adjusted to the chemical composition is formed into a shape according to the intended use of the aluminum alloy material.
  • the forming may be performed using any one of a rolling process, a press process, an extrusion process, a forging process, and a casting process using a mold.
  • the shape of the molded body depends on the use of the aluminum alloy material, it may be a general wrought material shape such as a plate, a net shape, or a near net shape. May be. Before or after the aging treatment step, it is possible to add a process for obtaining a net shape and other processes required for each application.
  • aluminum alloy materials used as materials for automobile body panels, etc. are manufactured by forming the material into a plate shape and subjecting the plate material to a solution treatment process, a press working process, and an aging treatment process in this order. can do.
  • the plate material is made of, for example, Al ingot, Al-containing waste, etc., and an alloy containing an additive element such as Ni, to cast an ingot, and the cast ingot is subjected to homogenization heat treatment to be homogenized. It can be obtained by rolling the heat-treated ingot.
  • the molten metal in which the metal is melted is cast using various general casting methods such as semi-continuous casting method (direct chill casting method), horizontal continuous casting method, hot top casting method, electromagnetic field casting method, etc. It is possible.
  • the homogenization heat treatment can be performed at a general holding temperature and holding time. The homogenization heat treatment may be omitted when the concentration of the additive element is low.
  • the rolling process for forming the plate material may be performed using any one of hot rolling, cold rolling, and a combination thereof, but after hot rolling the ingot to several mm in thickness.
  • the hot-rolled rolled sheet is preferably cold-rolled at a sufficient cold rolling rate, for example, 50% or more.
  • a sufficient cold rolling rate for example, 50% or more.
  • alloy components such as Ni are easily dissolved in the solution treatment, so that the effect of aging precipitation can be obtained more reliably.
  • intermediate annealing may be performed between hot rolling and cold rolling, or rolling may be performed continuously without performing intermediate annealing.
  • the plastic working performed to obtain the plate material can be performed with an appropriate working degree according to mechanical properties finally required for the aluminum alloy material, tempering conditions by heat treatment, and the like.
  • a direct casting and rolling method such as a roll type or a belt type may be used.
  • a plate material can be obtained directly from the molten metal.
  • the plate material formed by rolling in the forming step is heated and held at a temperature above the temperature at which the precipitated phase is dissolved in the solid solution and below the temperature of the solidus.
  • the holding temperature of the solution treatment is usually 450 ° C. or higher and 590 ° C. or lower, but is not particularly limited.
  • the retention time of the solution treatment can be, for example, from 10 minutes to 24 hours, but is not particularly limited.
  • the solution treated plate material is preferably cooled by water quenching from the viewpoint of suppressing precipitation of precipitates at the grain boundaries. After cooling, the plate material may be subjected to a stabilization treatment, for example, by holding at 80 ° C. or higher and 120 ° C. or lower.
  • the plate material is pressed to obtain a net-shaped or near-net-shaped plate-shaped compact.
  • the press working may be performed using any one of a warm press, a cold press, and a combination thereof.
  • the warm pressing can be performed, for example, at 230 ° C. or higher and 300 ° C. or lower.
  • plate material with which it uses for a press work process may be pre-aged at the appropriate holding temperature previously, and may be naturally aged at room temperature. That is, a T4 material prepared in advance may be used as a plate material to be pressed.
  • the solution after the solution treatment is maintained at a temperature equal to or higher than the temperature at which the precipitation phase is generated.
  • the aging treatment either natural aging treatment for natural aging hardening at room temperature or artificial aging treatment for artificial aging hardening by heat treatment may be performed.
  • any of peak aging treatment for obtaining the maximum strength, sub-aging treatment for obtaining the strength before the peak aging, and overaging treatment for obtaining the strength after the peak aging may be performed.
  • two-stage aging may be performed in the aging treatment process, two-stage aging may be performed by aging the T4 material, etc. in the aging treatment process, or after natural aging is performed as the aging treatment process, aluminum
  • the surface of the alloy material may be baked and cured in a paint baking process in which a resin paint is applied and baked.
  • the holding temperature in the artificial aging treatment is not particularly limited, but can be, for example, 100 ° C. or higher, preferably 140 ° C. or higher, more preferably 160 ° C. or higher.
  • the holding temperature can be, for example, 250 ° C. or lower, preferably 220 ° C. or lower, more preferably 200 ° C. or lower.
  • a precipitated phase is formed in a state in which solute atoms are easily diffused, so that it is possible to obtain better mechanical properties with higher uniformity.
  • the artificial aging treatment can be performed with an appropriate holding time using an appropriate heat treatment furnace such as a batch furnace or a continuous furnace.
  • an aluminum alloy material used as a material for an automobile suspension arm or the like is manufactured, for example, by forming a net shape or near net shape molded body and subjecting the molded body to a solution treatment step and an aging treatment step in this order.
  • the molded body is, for example, Al ingot, Al-containing waste, etc. and an alloy containing an additive element such as Ni are cast into an ingot, and the cast ingot or extrusion into the ingot It can obtain by performing the forging process after performing the homogenization heat processing to the extrusion material which gave, and performing a homogenization heat processing.
  • the casting and the homogenization heat treatment can be performed in the same manner as in the case of obtaining the plate material.
  • an irregular continuous casting method may be used.
  • the forging process for forming the formed body may be performed using any of hot forging, warm forging, cold forging, and combinations thereof, but the ingot is at a temperature below the melting point. Hot forging is preferred. When plastic working is performed at a sufficient working rate, an alloy component such as Ni is easily dissolved in the solution treatment, so that the effect of aging precipitation can be obtained more reliably.
  • Forging may be performed, for example, by die forging using a hydraulic press, vertical press, horizontal press, screw press, or the like, or may be performed by free forging.
  • the number of forgings, presence or absence of preforming or reheating, presence or absence of closed forging or deburring forging are not particularly limited.
  • the molded body may be obtained by casting in the case of a chemical composition that can ensure hot water flowability, resistance to casting cracking, and the like.
  • a chemical composition that can ensure hot water flowability, resistance to casting cracking, and the like.
  • Al ingots, Al-containing wastes, and alloys containing additive elements such as Ni are melted to form a molten metal, and a molded body can be obtained using a die casting method, a sand mold casting method, or the like.
  • a low pressure casting method in which a low pressure of about 0.05 MPa or less is applied
  • a high pressure casting method in which a high pressure of about several tens of MPa is applied
  • a gravity casting method, or the like may be used.
  • the compact formed in the molding step is heated and held at a temperature equal to or higher than the temperature at which the precipitated phase dissolves in the solid solution and equal to or lower than the solidus temperature. Thereafter, in the aging treatment step, the compact after the solution treatment is maintained at a temperature equal to or higher than the temperature at which the precipitated phase is generated.
  • the solution treatment and aging treatment of the molded body can be performed under the same conditions as in the case of the plate material or plate-shaped molded body, and the degree of plastic working, the progress of recrystallization, and the required mechanical properties Depending on the conditions, etc., appropriate conditions can be set.
  • the aluminum alloy material obtained by being subjected to the aging treatment process can be subjected to other processing and surface treatment depending on the application.
  • Aluminum alloy materials include, for example, processing to form a joint for joining a structural material and another member, diffusion joining for joining to another member, processing such as welding, polishing to smooth the surface, etc. Processing may be given.
  • the surface may be subjected to a surface treatment such as a chemical conversion treatment, an anodizing treatment, or a plating treatment, or a paint baking treatment.
  • an Al—Mg—Si aluminum alloy material that has been subjected to an aging treatment can be obtained.
  • the obtained aluminum alloy material has an aging structure in which a precipitated phase containing Ni exists, and has high strength and good corrosion resistance.
  • the dispersion of the crystallized product makes it easy to sever the chips generated during cutting and makes it difficult for the chips to wrap around the cutting tool or the like, so that an aluminum alloy material with improved machinability is obtained.
  • the production method of the Al—Mg—Si-based aluminum alloy material is not limited to the production methods exemplified above, and other appropriate forming, processing, heat treatment, etc. as long as the chemical composition satisfies the above range. It is possible to produce an Al—Mg—Si-based aluminum alloy material in an appropriate form.
  • the Al—Mg—Si-based aluminum alloy material according to the present embodiment has a Cu content after age-hardening due to the addition of Ni, compared to a general Al—Mg—Si—Cu-based aluminum alloy. Higher maximum strength and hardness can be obtained without dependence. By adding Ni, the effect of improving the mechanical properties of an arbitrary part can be obtained without significantly impairing the corrosion resistance.
  • the aluminum alloy material can have a tensile strength measured for an arbitrary part after the aging treatment, for example, 350 MPa or more by controlling the amount of components such as Ni and the crystal structure, and is 360 MPa or more. It can be.
  • parts after an aging treatment can be 330 Mpa or more, for example by control of the amount of components, such as Ni, and crystal structure, and can be 350 Mpa or more.
  • the tensile strength is in the range of about 360 to 370 MPa, a tensile breaking elongation of 10% to 13% can be obtained.
  • the tensile strength, 0.2% proof stress and tensile elongation at break in Al-Mg-Si-based aluminum alloy materials are determined according to the test piece, tester and test conditions specified in JIS Z 2241: 2011 after age hardening. It can obtain
  • the Al—Mg—Si based aluminum alloy material according to the present embodiment can be used as a structural material for vehicles such as automobiles and motorcycles.
  • structural materials for vehicles include exterior structural materials such as door inner panels, door outer panels, roof panels, bonnets, trunks, fenders, various beams, and suspension structural materials such as suspension arms. Is mentioned.
  • an Al-Mg-Si-Cu-based aluminum alloy with Ni added is used as the structural material, the strength can be increased without significantly damaging the corrosion resistance. Thus, it is possible to obtain a highly durable structural material that combines good corrosion resistance.
  • the Al—Mg—Si-based aluminum alloy material according to the present embodiment was prepared by changing the amount of nickel added, and for each of the prepared test materials, the influence of the amount of nickel added, age hardenability, and mechanical properties was evaluated.
  • an Al—Mg—Si—Cu-based aluminum alloy indicated as “no additive” in Table 1 is used as a basic composition, and the target value of the atomic concentration of nickel is changed within a range of 0.025 to 1.0 at%.
  • a wrought material (sample Nos. 1 to 5) was prepared and used. Table 1 shows the basic composition of the test material (“no addition”) and the measured values of the components.
  • age hardening of each specimen was evaluated based on the peak hardness during T6 treatment.
  • the solution treatment was performed at 575 ° C. for 1 hour.
  • the artificial aging treatment was performed by water quenching the solution-treated specimen and holding it at 200 ° C.
  • the micro Vickers hardness (HV0.1) by the test force 0.98N of the test material which carried out artificial aging treatment for every different holding time was measured. Table 2 shows the measurement results of the peak hardness.
  • FIG. 1 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy.
  • FIG. 2 is a transmission electron microscope image of a specimen made of an Al—Mg—Si—Cu-based aluminum alloy to which Ni is added.
  • FIG. 1 is a result of observing an aging structure of a cross section of a specimen having a basic composition to which Ni is not added (“no addition”) with a transmission electron microscope. Further, FIG. 2 shows the test material No. 1 in which the target value of nickel is 0.2 at%. It is the result of having observed the aging structure
  • the solution treatment was performed at 575 ° C. for 1 hour.
  • the artificial aging treatment was performed by water quenching the solution-treated specimen and holding it at 200 ° C. for 100 minutes.
  • the test material after the artificial aging treatment was subjected to a tensile test according to JIS Z 2241: 2011, and the tensile strength, 0.2% proof stress, and tensile breaking elongation were measured.
  • the results are shown in Table 3.
  • the “reference value” is a value based on the standard values specified in JIS H 4000, 4040, 4080, 4100, 4140, etc., and the lower limit value set based on the overall standard values of the 6061-T6 material. Show.
  • the target value of nickel is 0.025 at% to 1.0 at%
  • the strength generally increases as the amount of Ni increases.
  • the tensile elongation at break is the test material No. 1 in which the target value of nickel is 1.0 at%. 5 was below the reference value.
  • the amount of Ni in the aluminum alloy material according to the present invention is suitably 0.025 to 1.0 at% (about 0.05 to 2.3 mass%), and the nickel solid solubility limit (about 0.3 at%) is satisfied. In consideration, it has been confirmed that it is effective to set the amount to 0.025 to 0.3 at% or 0.3 at% or more depending on the required mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

The present invention provides an Al-Mg-Si system aluminum alloy material which has both high strength and good corrosion resistance at the same time. This Al-Mg-Si system aluminum alloy material contains from 0.1% by mass to 2.0% by mass (inclusive) of Si, from 0.3% by mass to 1.5% by mass (inclusive) of Mg, from 0.05% by mass to 3.0% by mass (inclusive) of Cu, and more than 0.05% by mass but 2.3% by mass or less of Ni, while optionally containing one or more elements that are selected from the group consisting of Fe, Mn, Cr, Zn and Ti in an amount of 1.0% by mass or less, with the balance being made up of Al and unavoidable impurities.

Description

Al-Mg-Si系アルミニウム合金材Al-Mg-Si aluminum alloy material
 本発明は、Cu及びNiを含有するAl-Mg-Si系アルミニウム合金材に関する。 The present invention relates to an Al—Mg—Si based aluminum alloy material containing Cu and Ni.
 近年、自動車等の車両について、更なる軽量化が求められており、車両の構造材の材料としてアルミニウム合金が採用されるようになっている。ボディパネルや足回り等の材料としては、強度や耐食性に優れ、塗装焼き付けによって硬化するべークハード性を備えた熱処理型の6000系アルミニウム合金(Al-Mg-Si系アルミニウム合金)が用いられるようになっており、強度や成形性を向上させるためにCuを添加した合金が開発されている。 In recent years, there has been a demand for further weight reduction of vehicles such as automobiles, and aluminum alloys have been adopted as materials for vehicle structural materials. As materials for body panels and undercarriages, heat-treatment type 6000 series aluminum alloys (Al-Mg-Si series aluminum alloys) that have excellent strength and corrosion resistance and have bake hardness that hardens when painted and baked are used. In order to improve the strength and formability, alloys to which Cu is added have been developed.
 車両のボディパネルや足回り等の構造材は、一般に、プレス成形、鍛造等によって成形された素材が時効処理されることによって製造されており、構造材の材料として用いられるAl-Mg-Si系アルミニウム合金には、強度に加え、成形のための高い伸びも要求される。そのため、高強度と伸びとを兼ね備えるAl-Mg-Si系アルミニウム合金を開発すべく、化学組成をはじめとする種々の検討がなされている。 Structural materials such as vehicle body panels and undercarriages are generally manufactured by aging treatment of materials formed by press molding, forging, etc., and Al-Mg-Si based materials used as materials for structural materials Aluminum alloys are required to have high elongation for forming in addition to strength. Therefore, various studies including chemical composition have been made in order to develop an Al—Mg—Si aluminum alloy having both high strength and elongation.
 例えば、特許文献1には、自動車車体パネルの製造に好適なアルミニウム合金材料であって、アルミニウム合金材料の総重量に基づき、Si:0.6~1.2wt%、Mg:0.7~1.3wt%、Zn:0.25~0.8wt%、Cu:0.02~0.20wt%、Mn:0.01~0.25wt%、Zr:0.01~0.20wt%、ならびに残り:Alおよび付帯元素、を含み、アルミニウム合金材料は、2.30wt%≦(Si+Mg+Zn+2Cu)≦3.20wt%という不等式を満たす、アルミニウム合金材料が記載されている。 For example, Patent Document 1 discloses an aluminum alloy material suitable for manufacturing an automobile body panel, and Si: 0.6 to 1.2 wt%, Mg: 0.7 to 1 based on the total weight of the aluminum alloy material. .3 wt%, Zn: 0.25 to 0.8 wt%, Cu: 0.02 to 0.20 wt%, Mn: 0.01 to 0.25 wt%, Zr: 0.01 to 0.20 wt%, and the rest An aluminum alloy material that contains Al and ancillary elements and satisfies the inequality of 2.30 wt% ≦ (Si + Mg + Zn + 2Cu) ≦ 3.20 wt% is described.
特表2016-522320号公報Special table 2016-522320 gazette
 車両の構造材等として用いられるAl-Mg-Si系アルミニウム合金材は、車両の軽量化と衝突安全性とを両立させる観点等から、より高い強度が求められている。Al-Mg-Si系アルミニウム合金としては、Cuの添加量が比較的多く、伸びを確保しつつベークハード性を向上させた6111合金等の他に、Cuの添加量を抑えた6061合金等もある。しかし、いずれの合金についても、Cuの増量等によって強化を図ると、耐食性が悪化して、糸状腐食、応力腐食割れ等を生じ易くなるため、構造材の耐久性が損なわれる問題がある。 Al-Mg-Si-based aluminum alloy materials used as vehicle structural materials and the like are required to have higher strength from the viewpoint of achieving both vehicle weight reduction and collision safety. As the Al—Mg—Si based aluminum alloy, there is a relatively large amount of Cu added, and in addition to the 6111 alloy that improves the bake hardness while securing elongation, the 6061 alloy that suppresses the amount of Cu added, etc. is there. However, in any alloy, when strengthening is performed by increasing the amount of Cu or the like, corrosion resistance deteriorates, and thread corrosion, stress corrosion cracking, and the like are liable to occur, so that the durability of the structural material is impaired.
 本発明は、前記問題に鑑みてなされたものであり、高い強度と良好な耐食性を兼ね備えるAl-Mg-Si系アルミニウム合金材を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an Al—Mg—Si based aluminum alloy material having both high strength and good corrosion resistance.
 前記課題を解決するために、本発明に係るAl-Mg-Si系アルミニウム合金材は、Si:0.1質量%以上2.0質量%以下、Mg:0.3質量%以上1.5質量%以下、Cu:0.05質量%以上3.0質量%以下、Ni:0.05質量%を超え2.3質量%以下を含有し、Fe、Mn、Cr、Zn及びTiからなる群より選択される1種以上の元素を1.0質量%以下で任意に含有し、残部がAl及び不可避的不純物からなる。 In order to solve the above-mentioned problems, the Al—Mg—Si-based aluminum alloy material according to the present invention includes Si: 0.1% by mass to 2.0% by mass, Mg: 0.3% by mass to 1.5% by mass. %: Cu: 0.05% by mass or more and 3.0% by mass or less, Ni: more than 0.05% by mass and 2.3% by mass or less, and Fe, Mn, Cr, Zn and Ti One or more selected elements are optionally contained in an amount of 1.0% by mass or less, and the balance consists of Al and inevitable impurities.
 本発明によれば、高い強度と良好な耐食性を兼ね備えるAl-Mg-Si系アルミニウム合金材を提供することができる。 According to the present invention, it is possible to provide an Al—Mg—Si aluminum alloy material having both high strength and good corrosion resistance.
Al-Mg-Si-Cu系アルミニウム合金からなる供試材の透過電子顕微鏡像である。2 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy. Niを添加したAl-Mg-Si-Cu系アルミニウム合金からなる供試材の透過電子顕微鏡像である。3 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy with Ni added.
 以下、本発明の一実施形態に係るAl-Mg-Si系アルミニウム合金材について説明する。なお、以下の説明においては、本実施形態に係るAl-Mg-Si系アルミニウム合金材を、単に「アルミニウム合金材」ということがある。 Hereinafter, an Al—Mg—Si based aluminum alloy material according to an embodiment of the present invention will be described. In the following description, the Al—Mg—Si based aluminum alloy material according to the present embodiment may be simply referred to as “aluminum alloy material”.
<Al-Mg-Si系アルミニウム合金材>
 本実施形態に係るAl-Mg-Si系アルミニウム合金材は、Mg及びSiが添加されたアルミニウム基合金に、Cu及びNiが更に添加された化学組成を有する。すなわち、このアルミニウム合金材は、Niを添加したAl-Mg-Si-Cu系アルミニウム合金に相当する。Niを添加することによって、母相の耐食性を低下させるCuを増量することなく、高強度化を図ることができるため、高い強度と良好な耐食性を兼ね備えるアルミニウム合金材を得ることができる。ここで、アルミニウム合金材の化学組成の詳細について説明する。
<Al-Mg-Si-based aluminum alloy material>
The Al—Mg—Si-based aluminum alloy material according to this embodiment has a chemical composition in which Cu and Ni are further added to an aluminum-based alloy to which Mg and Si are added. That is, this aluminum alloy material corresponds to an Al—Mg—Si—Cu-based aluminum alloy to which Ni is added. By adding Ni, it is possible to increase the strength without increasing the amount of Cu that lowers the corrosion resistance of the parent phase. Therefore, an aluminum alloy material having both high strength and good corrosion resistance can be obtained. Here, the details of the chemical composition of the aluminum alloy material will be described.
[Si:0.1~2.0質量%]
 アルミニウム合金材におけるSiの量は、0.1質量%以上2.0質量%以下とする。Siは、MgSi系のβ”相ないしβ’相や、AlMgSiCu系のQ’相を形成して析出強化に寄与する。また、Siの添加によって、鋳造時の溶湯の湯流れが改善する効果が得られる。Siの量が0.1質量%未満であると、溶湯の湯流れが悪くなるし、析出強化により十分な強度が得られない虞がある。一方、Siの量が2.0質量%を超えると、伸びや成形性が悪くなる虞がある。これに対し、Siの量が前記の範囲であれば、高い強度と良好な伸びとを両立させることができる。
[Si: 0.1 to 2.0% by mass]
The amount of Si in the aluminum alloy material is 0.1% by mass or more and 2.0% by mass or less. Si contributes to precipitation strengthening by forming an Mg 2 Si-based β ″ phase or β ′ phase or an AlMgSiCu-based Q ′ phase. Also, the addition of Si improves the flow of molten metal during casting. If the amount of Si is less than 0.1% by mass, the molten metal flow may deteriorate and sufficient strength may not be obtained due to precipitation strengthening. If the amount exceeds 0% by mass, elongation and formability may be deteriorated, whereas if the amount of Si is within the above range, both high strength and good elongation can be achieved.
 Siの量は、強度等を高くする観点等からは、0.2質量%以上としてもよいし、0.4質量%以上としてもよいし、0.6質量%以上としてもよい。また、Siの量は、伸びを大きくする観点等からは、1.8質量%以下としてもよいし、1.6質量%以下としてもよいし、1.4質量%以下としてもよい。なお、Siは、アルミニウム合金材に積極的に添加することが可能であるし、アルミニウム合金材の原料として用いる廃棄物等に予め含まれていてもよい。 The amount of Si may be 0.2% by mass or more, 0.4% by mass or more, or 0.6% by mass or more from the viewpoint of increasing strength and the like. The amount of Si may be 1.8% by mass or less, 1.6% by mass or less, or 1.4% by mass or less from the viewpoint of increasing elongation. Note that Si can be positively added to the aluminum alloy material, and may be included in advance in the waste or the like used as a raw material for the aluminum alloy material.
[Mg:0.3~1.5質量%]
 アルミニウム合金材におけるMgの量は、0.3質量%以上1.5質量%以下とする。Mgは、MgSi系のβ”相ないしβ’相や、AlMgSiCu系のQ’相を形成して析出強化に寄与する。Mgの量が0.3質量%未満であると、析出強化により十分な強度が得られない虞がある。一方、Mgの量が1.5質量%を超えると、熱間加工性が悪くなる虞がある。これに対し、Mgの量が前記の範囲であれば、高い強度と良好な熱間加工性とを両立させることができる。
[Mg: 0.3 to 1.5% by mass]
The amount of Mg in the aluminum alloy material is 0.3 mass% or more and 1.5 mass% or less. Mg contributes to precipitation strengthening by forming Mg 2 Si-based β ″ phase or β ′ phase or AlMgSiCu-based Q ′ phase. If the amount of Mg is less than 0.3% by mass, On the other hand, if the amount of Mg exceeds 1.5% by mass, hot workability may be deteriorated, whereas the amount of Mg is within the above range. Thus, both high strength and good hot workability can be achieved.
 Mgの量は、強度等を高くする観点等からは、0.4質量%以上としてもよいし、0.5質量%以上としてもよいし、0.6質量%以上としてもよいし、0.8質量%以上としてもよいし、1.0質量%以上としてもよい。また、Mgの量は、熱間加工性を向上させる観点等からは、1.3質量%以下としてもよいし、1.1質量%以下としてもよいし、0.9質量%以下としてもよい。 The amount of Mg may be 0.4% by mass or more, 0.5% by mass or more, 0.6% by mass or more from the viewpoint of increasing strength and the like. It is good also as 8 mass% or more, and good also as 1.0 mass% or more. The amount of Mg may be 1.3% by mass or less, 1.1% by mass or less, or 0.9% by mass or less from the viewpoint of improving hot workability. .
[Cu:0.05~3.0質量%]
 アルミニウム合金材におけるCuの量は、0.05質量%以上3.0質量%以下とする。Cuは、Al相を固溶強化すると共に、主にAlMgSiCu系のQ’相を形成して析出強化に寄与する。Cuの量が0.05質量%未満であると、Cuの添加により十分な強度が得られない虞がある。一方、Cuの量が3.0質量%を超えると、耐食性が悪くなる。これに対し、Cuの量が前記の範囲であれば、アルミニウム合金材の耐食性を大きく損なわない範囲で高強度化を図ることができる。
[Cu: 0.05 to 3.0% by mass]
The amount of Cu in the aluminum alloy material is 0.05 mass% or more and 3.0 mass% or less. Cu strengthens the Al phase by solid solution, and mainly contributes to precipitation strengthening by forming an AlMgSiCu-based Q ′ phase. If the amount of Cu is less than 0.05% by mass, there is a possibility that sufficient strength cannot be obtained by addition of Cu. On the other hand, when the amount of Cu exceeds 3.0% by mass, the corrosion resistance deteriorates. On the other hand, if the amount of Cu is within the above range, it is possible to increase the strength within a range that does not significantly impair the corrosion resistance of the aluminum alloy material.
 Cuの量は、強度を高くする観点等からは、0.1質量%以上としてもよいし、0.2質量%以上としてもよいし、0.3質量%以上としてもよい。また、Cuの量は、耐食性を高くする観点等からは、2.0質量%以下としてもよいし、1.0質量%以下としてもよいし、0.5質量%以下としてもよい。 The amount of Cu may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more from the viewpoint of increasing the strength. Further, the amount of Cu may be 2.0% by mass or less, 1.0% by mass or less, or 0.5% by mass or less from the viewpoint of increasing the corrosion resistance.
[Ni:0.05~2.3質量%]
 アルミニウム合金材におけるNiの量は、0.05質量%を超え2.3質量%以下とする。Niは、主としてMgSi系のβ”相ないしβ’相や、AlMgSiCu系のQ’相を形成して析出強化に寄与する。一般的なAl-Mg-Si-Cu系アルミニウム合金において、これらの中間相は、Mg、Si、Cuによって形成されるが、0.025~1.0at%(約0.05~2.3質量%)の有効量のNiを添加すると、Niがβ”相ないしβ’相やQ’相を形成するようになり、Cu量を高くしなくとも高強度化を図ることができる。但し、Niの量が0.05質量%以下であると、Niの添加による効果を有意に得ることができない虞が高い。一方、Niの量が2.3質量%を超えると、晶出物が増え過ぎることによって伸びが小さくなり、アルミニウム合金材の引張破断伸びが、各種の用途に要求される10%を下回る虞が高い。これに対し、Niの量が前記の範囲であれば、Cu量に依存することなく析出強化を図ることが可能であり、アルミニウム合金材の耐食性を損なわず、高い強度と良好な伸びとを両立させることができる。
[Ni: 0.05 to 2.3% by mass]
The amount of Ni in the aluminum alloy material exceeds 0.05% by mass and is 2.3% by mass or less. Ni mainly contributes to precipitation strengthening by forming Mg 2 Si-based β ″ phase or β ′ phase or AlMgSiCu-based Q ′ phase. In general Al—Mg—Si—Cu-based aluminum alloys, these The intermediate phase of Mg is formed of Mg, Si, and Cu. When an effective amount of Ni of 0.025 to 1.0 at% (about 0.05 to 2.3 mass%) is added, Ni becomes β ″ phase. In addition, β ′ phase and Q ′ phase are formed, and high strength can be achieved without increasing the amount of Cu. However, when the amount of Ni is 0.05% by mass or less, there is a high possibility that the effect of adding Ni cannot be significantly obtained. On the other hand, when the amount of Ni exceeds 2.3% by mass, the elongation decreases due to excessive increase of crystallized materials, and the tensile breaking elongation of the aluminum alloy material may be less than 10% required for various applications. high. On the other hand, if the amount of Ni is within the above range, precipitation strengthening can be achieved without depending on the amount of Cu, and both high strength and good elongation can be achieved without impairing the corrosion resistance of the aluminum alloy material. Can be made.
 Niの量は、強度を高くする観点等からは、0.1質量%以上としてもよいし、0.3質量%以上としてもよいし、0.5質量%以上としてもよい。また、Niの量は、伸びを高くする観点等からは、2.0質量%以下としてもよいし、1.8質量%以下としてもよいし、1.6質量%以下としてもよい。 The amount of Ni may be 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more from the viewpoint of increasing the strength. Further, the amount of Ni may be 2.0% by mass or less, 1.8% by mass or less, or 1.6% by mass or less from the viewpoint of increasing elongation.
[Fe,Mn,Cr,Zn,Ti]
 アルミニウム合金材は、Fe、Mn、Cr、Zn及びTiからなる群より選択される1種以上の元素を、1.0質量%以下の量で任意に含有してもよい。すなわち、Fe、Mn、Cr、Zn及びTiは、原料や製造工程等に起因する不可避的不純物として含まれていてもよいし、1.0質量%以下の含有量であれば積極的に添加されていてもよい。
[Fe, Mn, Cr, Zn, Ti]
The aluminum alloy material may optionally contain one or more elements selected from the group consisting of Fe, Mn, Cr, Zn, and Ti in an amount of 1.0% by mass or less. That is, Fe, Mn, Cr, Zn, and Ti may be included as inevitable impurities due to raw materials, manufacturing processes, and the like, and are actively added as long as the content is 1.0% by mass or less. It may be.
 Feは、鋳造時の焼き付きの抑制や強度の向上等に寄与するが、粗大ないし多量の晶出物を生じた場合に伸びを悪化させ得る。Feの量は、好ましくは0.7質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下である。Feは、積極的に添加せず、不可避的不純物として含まれる可能性がある0.1~0.2質量%の範囲以下であることが特に好ましい。 Fe contributes to suppression of seizure at the time of casting, improvement of strength, and the like, but it can deteriorate elongation when a coarse or large amount of crystallized matter is formed. The amount of Fe is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.3% by mass or less. It is particularly preferable that Fe is not added actively but is in the range of 0.1 to 0.2% by mass or less which may be included as an inevitable impurity.
 Mnは、結晶粒の微細化や応力腐食割れの抑制等に寄与するため、添加が許容される。Mnの量は、好ましくは0.7質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下、更に好ましくは0.15質量%以下、更に好ましくは0.05質量%以下、特に好ましくは0.03質量%以下である。 Mn is allowed to be added because it contributes to the refinement of crystal grains and the suppression of stress corrosion cracking. The amount of Mn is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.3% by mass or less, still more preferably 0.15% by mass or less, and still more preferably 0.05% by mass. It is not more than mass%, particularly preferably not more than 0.03% by mass.
 Crは、結晶粒の微細化や応力腐食割れの抑制等に寄与するため、添加が許容される。Crの量は、好ましくは0.7質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.35質量%以下、更に好ましくは0.25質量%以下、更に好ましくは0.15質量%以下、更に好ましくは0.05質量%以下、特に好ましくは0.03質量%以下である。 Since Cr contributes to refinement of crystal grains and suppression of stress corrosion cracking, addition thereof is allowed. The amount of Cr is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.35% by mass or less, still more preferably 0.25% by mass or less, and further preferably 0.15%. It is not more than mass%, more preferably not more than 0.05 mass%, particularly preferably not more than 0.03% by mass.
 Znは、各種の目的で添加が許容されるが、積極的に添加しないことが好ましい。Znの量は、好ましくは0.7質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.25質量%以下、更に好ましくは0.20質量%以下、更に好ましくは0.10質量%以下、更に好ましくは0.05質量%以下、特に好ましくは0.03質量%以下である。 Zn can be added for various purposes, but it is preferable not to add Zn actively. The amount of Zn is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.25% by mass or less, still more preferably 0.20% by mass or less, and further preferably 0.10%. It is not more than mass%, more preferably not more than 0.05 mass%, particularly preferably not more than 0.03% by mass.
 Tiは、結晶粒を微細化し、鋳造割れの防止等に寄与するため、添加が許容される。Tiの量は、好ましくは0.20質量%以下、より好ましくは0.10質量%以下である。 Ti is allowed to be added because it refines crystal grains and contributes to prevention of casting cracks. The amount of Ti is preferably 0.20% by mass or less, more preferably 0.10% by mass or less.
[不可避的不純物]
 アルミニウム合金材は、原料や製造工程等に起因する不可避的不純物として、他の元素を含有してもよい。不可避的不純物としては、例えば、Ga、V、B、Zr、Co、Ag、Bi、Pb、Sn等が挙げられる。不可避的不純物として許容される量は、個々の元素について、0.05質量%以下、好ましくは0.01質量%以下、より好ましくは0.005質量%以下である。また、元素の合計について許容される量は、好ましくは0.15質量%以下、より好ましくは0.10質量%以下である。
[Inevitable impurities]
The aluminum alloy material may contain other elements as inevitable impurities caused by raw materials, manufacturing processes, and the like. Examples of inevitable impurities include Ga, V, B, Zr, Co, Ag, Bi, Pb, and Sn. The amount allowed as an inevitable impurity is 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less for each element. Further, the amount allowed for the total of the elements is preferably 0.15% by mass or less, more preferably 0.10% by mass or less.
<Al-Mg-Si系アルミニウム合金材の製造方法>
 本実施形態に係るAl-Mg-Si系アルミニウム合金材は、用途に応じた適宜の形状に成形して得ることが可能である。用途毎に要求される機械的特性は、人工時効処理、自然時効、塗装焼き付けによる時効硬化によって得られる。具体的には、本実施形態に係るAl-Mg-Si系アルミニウム合金材の製造方法は、前記の化学組成に調整されたアルミニウム合金からなる成形体を成形する成形工程と、成形体を溶体化処理する溶体化処理工程と、溶体化処理した成形体を時効処理する時効処理工程と、を少なくとも含む。
<Method for producing Al-Mg-Si aluminum alloy material>
The Al—Mg—Si-based aluminum alloy material according to the present embodiment can be obtained by forming into an appropriate shape according to the application. The mechanical properties required for each application can be obtained by artificial aging treatment, natural aging, and age hardening by paint baking. Specifically, the method for producing an Al—Mg—Si based aluminum alloy material according to the present embodiment includes a molding step of molding a molded body made of an aluminum alloy adjusted to the chemical composition, and a solution of the molded body. It includes at least a solution treatment step to be processed and an aging treatment step for aging the solution-treated molded body.
 成形工程では、前記の化学組成に調整されたアルミニウム合金を、アルミニウム合金材の用途に応じた形状に成形する。成形は、例えば、圧延加工、プレス加工、押出加工、鍛造加工等の展伸加工、及び、成形型を用いた鋳造のうち、いずれを利用して行ってもよい。成形体の形状は、アルミニウム合金材の用途にもよるが、板等のような一般的な展伸材の形状であってもよいし、ネットシェイプであってもよいし、ニアネットシェイプであってもよい。時効処理工程の前又は後には、ネットシェイプとするための加工や、用途毎に必要となるその他の加工を加えることが可能である。 In the forming step, the aluminum alloy adjusted to the chemical composition is formed into a shape according to the intended use of the aluminum alloy material. For example, the forming may be performed using any one of a rolling process, a press process, an extrusion process, a forging process, and a casting process using a mold. Although the shape of the molded body depends on the use of the aluminum alloy material, it may be a general wrought material shape such as a plate, a net shape, or a near net shape. May be. Before or after the aging treatment step, it is possible to add a process for obtaining a net shape and other processes required for each application.
 例えば、自動車のボディパネル等の材料となるアルミニウム合金材は、以下に示すように、材料を板状に成形し、板材を溶体化処理工程、プレス加工工程、時効処理工程に順に供することによって製造することができる。板材は、例えば、Alの地金、Alを含む廃棄物等と、Ni等の添加元素を含む合金とを溶解させて鋳塊を鋳造し、鋳造した鋳塊に均質化熱処理を施し、均質化熱処理した鋳塊に圧延加工を施すことによって得ることができる。地金等を溶解させた溶湯は、各種の一般的な鋳造法、例えば、半連続鋳造法(ダイレクトチル鋳造法)、水平連続鋳造法、ホットトップ鋳造法、電磁場鋳造法等を用いて鋳造することが可能である。また、均質化熱処理は、一般的な保持温度、保持時間で行うことができる。均質化熱処理は、添加元素の濃度が低い場合等には実施を省略してもよい。 For example, as shown below, aluminum alloy materials used as materials for automobile body panels, etc., are manufactured by forming the material into a plate shape and subjecting the plate material to a solution treatment process, a press working process, and an aging treatment process in this order. can do. The plate material is made of, for example, Al ingot, Al-containing waste, etc., and an alloy containing an additive element such as Ni, to cast an ingot, and the cast ingot is subjected to homogenization heat treatment to be homogenized. It can be obtained by rolling the heat-treated ingot. The molten metal in which the metal is melted is cast using various general casting methods such as semi-continuous casting method (direct chill casting method), horizontal continuous casting method, hot top casting method, electromagnetic field casting method, etc. It is possible. The homogenization heat treatment can be performed at a general holding temperature and holding time. The homogenization heat treatment may be omitted when the concentration of the additive element is low.
 板材を成形するための圧延加工は、熱間圧延、冷間圧延、及び、これらの組み合わせのうち、いずれを利用して行ってもよいが、鋳塊を厚さ数mmまで熱間圧延した後、熱間圧延した圧延板を、十分な冷間圧延率、例えば、50%以上で冷間圧延することが好ましい。十分な冷間圧延率で冷間圧延すると、溶体化処理において、Ni等の合金成分が固溶し易くなるため、時効析出による効果をより確実に得ることができる。なお、熱間圧延と冷間圧延との間には、中間焼鈍を施してもよいし、中間焼鈍を施さず連続的に圧延を行ってもよい。 The rolling process for forming the plate material may be performed using any one of hot rolling, cold rolling, and a combination thereof, but after hot rolling the ingot to several mm in thickness. The hot-rolled rolled sheet is preferably cold-rolled at a sufficient cold rolling rate, for example, 50% or more. When cold rolling is performed at a sufficient cold rolling rate, alloy components such as Ni are easily dissolved in the solution treatment, so that the effect of aging precipitation can be obtained more reliably. Note that intermediate annealing may be performed between hot rolling and cold rolling, or rolling may be performed continuously without performing intermediate annealing.
 なお、板材を得るために施す塑性加工は、アルミニウム合金材に最終的に要求される機械的特性や、熱処理による調質の条件等に応じて適宜の加工度として行うことができる。また、以上の鋳造、均質化熱処理、及び、圧延加工に代えて、ロール式、ベルト式等の直接鋳造圧延法を利用してもよい。直接鋳造圧延法を利用すると、溶湯から直接的に板材を得ることができる。 In addition, the plastic working performed to obtain the plate material can be performed with an appropriate working degree according to mechanical properties finally required for the aluminum alloy material, tempering conditions by heat treatment, and the like. Further, instead of the above casting, homogenization heat treatment, and rolling, a direct casting and rolling method such as a roll type or a belt type may be used. When the direct casting and rolling method is used, a plate material can be obtained directly from the molten metal.
 溶体化処理工程では、成形工程で圧延加工によって成形した板材を、析出相が固溶体に溶解する温度以上、且つ、固相線の温度以下に加熱して保持する。溶体化処理を行うと、溶質原子の母相への固溶量が高くなるため、時効析出による効果を高くすることができる。溶体化処理の保持温度は、通常、450℃以上590℃以下とするが、特に制限されるものではない。また、溶体化処理の保持時間は、例えば、10分以上24時間以下とすることができるが、特に制限されるものではない。溶体化処理した板材は、粒界に析出物が析出するのを抑制する観点等から、水焼入れによって冷却することが好ましい。板材は、冷却後に、例えば、80℃以上120℃以下に保持することによって安定化処理を施してもよい。 In the solution treatment step, the plate material formed by rolling in the forming step is heated and held at a temperature above the temperature at which the precipitated phase is dissolved in the solid solution and below the temperature of the solidus. When the solution treatment is performed, the amount of solute atoms in the matrix is increased, so that the effect of aging precipitation can be increased. The holding temperature of the solution treatment is usually 450 ° C. or higher and 590 ° C. or lower, but is not particularly limited. Moreover, the retention time of the solution treatment can be, for example, from 10 minutes to 24 hours, but is not particularly limited. The solution treated plate material is preferably cooled by water quenching from the viewpoint of suppressing precipitation of precipitates at the grain boundaries. After cooling, the plate material may be subjected to a stabilization treatment, for example, by holding at 80 ° C. or higher and 120 ° C. or lower.
 プレス加工工程では、板材にプレス加工を施し、ネットシェイプ又はニアネットシェイプの板状の成形体を得る。プレス加工は、温間プレス、冷間プレス、及び、これらの組み合わせのうち、いずれを利用して行ってもよい。温間プレスは、例えば、230℃以上300℃以下で行うことができる。なお、プレス加工工程に供する板材は、予め、適宜の保持温度で予備時効されていてもよいし、室温において自然時効されていてもよい。すなわち、プレス加工を施す板材として、事前に用意されたT4材等を用いてもよい。 In the pressing process, the plate material is pressed to obtain a net-shaped or near-net-shaped plate-shaped compact. The press working may be performed using any one of a warm press, a cold press, and a combination thereof. The warm pressing can be performed, for example, at 230 ° C. or higher and 300 ° C. or lower. In addition, the board | plate material with which it uses for a press work process may be pre-aged at the appropriate holding temperature previously, and may be naturally aged at room temperature. That is, a T4 material prepared in advance may be used as a plate material to be pressed.
 時効処理工程では、Niを添加したAl-Mg-Si-Cu系アルミニウム合金を時効硬化させるために、溶体化処理後の成形体を、析出相が生成する温度以上に保持する。時効処理としては、室温において自然時効硬化させる自然時効処理、熱処理により人工時効硬化させる人工時効処理のいずれを行ってもよい。また、最大強さを得るピーク時効処理、ピーク時効以前の強さを得る亜時効処理、ピーク時効以後の強さを得る過時効処理のいずれを行ってもよい。また、時効処理工程において二段時効を行ってもよいし、時効処理工程においてT4材等を一段時効させて二段時効を行ってもよいし、時効処理工程として自然時効を施した後、アルミニウム合金材の表面に樹脂塗料を塗装焼き付けする塗装焼き付け処理において焼き付け硬化させてもよい。 In the aging treatment step, in order to age harden the Al—Mg—Si—Cu based aluminum alloy to which Ni has been added, the solution after the solution treatment is maintained at a temperature equal to or higher than the temperature at which the precipitation phase is generated. As the aging treatment, either natural aging treatment for natural aging hardening at room temperature or artificial aging treatment for artificial aging hardening by heat treatment may be performed. Further, any of peak aging treatment for obtaining the maximum strength, sub-aging treatment for obtaining the strength before the peak aging, and overaging treatment for obtaining the strength after the peak aging may be performed. In addition, two-stage aging may be performed in the aging treatment process, two-stage aging may be performed by aging the T4 material, etc. in the aging treatment process, or after natural aging is performed as the aging treatment process, aluminum The surface of the alloy material may be baked and cured in a paint baking process in which a resin paint is applied and baked.
 人工時効処理における保持温度は、特に制限されるものではないが、例えば、100℃以上、好ましくは140℃以上、より好ましくは160℃以上とすることができる。また、保持温度は、例えば、250℃以下、好ましくは220℃以下、より好ましくは200℃以下とすることができる。このような保持温度であれば、溶質原子が拡散し易い状態で析出相が形成されるため、より良好で均一性も高い機械的特性を得ることができる。なお、人工時効処理は、バッチ炉、連続炉等の適宜の熱処理炉を使用して、適宜の保持時間で行うことができる。 The holding temperature in the artificial aging treatment is not particularly limited, but can be, for example, 100 ° C. or higher, preferably 140 ° C. or higher, more preferably 160 ° C. or higher. The holding temperature can be, for example, 250 ° C. or lower, preferably 220 ° C. or lower, more preferably 200 ° C. or lower. At such a holding temperature, a precipitated phase is formed in a state in which solute atoms are easily diffused, so that it is possible to obtain better mechanical properties with higher uniformity. The artificial aging treatment can be performed with an appropriate holding time using an appropriate heat treatment furnace such as a batch furnace or a continuous furnace.
 また、自動車のサスペンションアーム等の材料となるアルミニウム合金材は、例えば、ネットシェイプ又はニアネットシェイプの成形体を成形し、成形体を溶体化処理工程、時効処理工程に順に供することによって製造することができる。成形体は、例えば、Alの地金、Alを含む廃棄物等と、Ni等の添加元素を含む合金とを溶解させて鋳塊を鋳造し、鋳造した鋳塊、又は、鋳塊に押出加工を施した押出材に均質化熱処理を施し、均質化熱処理を施した後に、鍛造加工を施すことによって得ることができる。なお、鋳造や均質化熱処理は、前記の板材を得る場合と同様に行うことができる。鋳造法としては、異形連続鋳造法を用いてもよい。 In addition, an aluminum alloy material used as a material for an automobile suspension arm or the like is manufactured, for example, by forming a net shape or near net shape molded body and subjecting the molded body to a solution treatment step and an aging treatment step in this order. Can do. The molded body is, for example, Al ingot, Al-containing waste, etc. and an alloy containing an additive element such as Ni are cast into an ingot, and the cast ingot or extrusion into the ingot It can obtain by performing the forging process after performing the homogenization heat processing to the extrusion material which gave, and performing a homogenization heat processing. Note that the casting and the homogenization heat treatment can be performed in the same manner as in the case of obtaining the plate material. As the casting method, an irregular continuous casting method may be used.
 成形体を成形するための鍛造加工は、熱間鍛造、温間鍛造、冷間鍛造、及び、これらの組み合わせのうち、いずれを利用して行ってもよいが、鋳塊を融点未満の温度で熱間鍛造することが好ましい。十分な加工率で塑性加工を施すと、溶体化処理において、Ni等の合金成分が固溶し易くなるため、時効析出による効果をより確実に得ることができる。鍛造は、例えば、油圧プレス、縦型プレス、横型プレス、スクリュプレス等による型打鍛造によって行ってもよいし、自由鍛造等によって行ってもよい。鍛造の回数、予備成形や再加熱の有無、閉塞鍛造やバリ出し鍛造の実施の有無は、特に制限されるものではない。 The forging process for forming the formed body may be performed using any of hot forging, warm forging, cold forging, and combinations thereof, but the ingot is at a temperature below the melting point. Hot forging is preferred. When plastic working is performed at a sufficient working rate, an alloy component such as Ni is easily dissolved in the solution treatment, so that the effect of aging precipitation can be obtained more reliably. Forging may be performed, for example, by die forging using a hydraulic press, vertical press, horizontal press, screw press, or the like, or may be performed by free forging. The number of forgings, presence or absence of preforming or reheating, presence or absence of closed forging or deburring forging are not particularly limited.
 また、成形体は、湯流れ性、鋳造割れに対する耐性等を確保できる化学組成の場合、鋳造成形によって得てもよい。例えば、Alの地金、Alを含む廃棄物等と、Ni等の添加元素を含む合金とを溶解させて溶湯とし、ダイカスト鋳造法、砂型鋳造法等を利用して成形体を得ることができる。鋳造法としては、0.05MPa以下程度の低い圧力をかける低圧鋳造法、数十MPa程度の高い圧力をかける高圧鋳造法、重力鋳造法等を用いてもよい。 In addition, the molded body may be obtained by casting in the case of a chemical composition that can ensure hot water flowability, resistance to casting cracking, and the like. For example, Al ingots, Al-containing wastes, and alloys containing additive elements such as Ni are melted to form a molten metal, and a molded body can be obtained using a die casting method, a sand mold casting method, or the like. . As the casting method, a low pressure casting method in which a low pressure of about 0.05 MPa or less is applied, a high pressure casting method in which a high pressure of about several tens of MPa is applied, a gravity casting method, or the like may be used.
 溶体化処理工程では、成形工程で成形した成形体を、析出相が固溶体に溶解する温度以上、且つ、固相線の温度以下に加熱して保持する。その後、時効処理工程では、溶体化処理後の成形体を、析出相が生成する温度以上に保持する。成形体の溶体化処理や時効処理は、前記の板材や板状の成形体の場合と同様の条件で行うことが可能であり、塑性加工度、再結晶の進行度合い、要求される機械的特性等に応じて、適宜の条件とすることができる。 In the solution treatment step, the compact formed in the molding step is heated and held at a temperature equal to or higher than the temperature at which the precipitated phase dissolves in the solid solution and equal to or lower than the solidus temperature. Thereafter, in the aging treatment step, the compact after the solution treatment is maintained at a temperature equal to or higher than the temperature at which the precipitated phase is generated. The solution treatment and aging treatment of the molded body can be performed under the same conditions as in the case of the plate material or plate-shaped molded body, and the degree of plastic working, the progress of recrystallization, and the required mechanical properties Depending on the conditions, etc., appropriate conditions can be set.
 時効処理工程に供して得られるアルミニウム合金材には、用途に応じて、その他の加工や表面処理を施すことができる。アルミニウム合金材は、例えば、構造材と他部材とを接合するための接合部を形成する加工や、他部材と接合するための拡散接合、溶接等の加工や、表面を平滑化する研磨等の加工を施されていてもよい。また、表面には、化成処理、陽極酸化処理、めっき処理等の表面処理や、塗装焼き付け処理を施されていてもよい。 The aluminum alloy material obtained by being subjected to the aging treatment process can be subjected to other processing and surface treatment depending on the application. Aluminum alloy materials include, for example, processing to form a joint for joining a structural material and another member, diffusion joining for joining to another member, processing such as welding, polishing to smooth the surface, etc. Processing may be given. The surface may be subjected to a surface treatment such as a chemical conversion treatment, an anodizing treatment, or a plating treatment, or a paint baking treatment.
 以上の本実施形態に係るAl-Mg-Si系アルミニウム合金材の製造方法によると、時効処理が施されたAl-Mg-Si系アルミニウム合金材が得られる。得られるアルミニウム合金材は、Niを含む析出相が存在する時効組織を有し、高強度や良好な耐食性を備えたものとなる。また、晶出物の分散によって、切削時に生じる切粉が分断され易くなり、切粉の刃具等への巻き付きが起こり難くなるため、切削加工性が向上したアルミニウム合金材となる。 According to the method for producing an Al—Mg—Si aluminum alloy material according to this embodiment, an Al—Mg—Si aluminum alloy material that has been subjected to an aging treatment can be obtained. The obtained aluminum alloy material has an aging structure in which a precipitated phase containing Ni exists, and has high strength and good corrosion resistance. In addition, the dispersion of the crystallized product makes it easy to sever the chips generated during cutting and makes it difficult for the chips to wrap around the cutting tool or the like, so that an aluminum alloy material with improved machinability is obtained.
 なお、Al-Mg-Si系アルミニウム合金材の製造方法は、以上に例示した製造方法に限定されるものではなく、化学組成が前記の範囲を満たす限り、その他、適宜の成形、加工、熱処理等を行って、適宜の形態のAl-Mg-Si系アルミニウム合金材を製造することが可能である。 The production method of the Al—Mg—Si-based aluminum alloy material is not limited to the production methods exemplified above, and other appropriate forming, processing, heat treatment, etc. as long as the chemical composition satisfies the above range. It is possible to produce an Al—Mg—Si-based aluminum alloy material in an appropriate form.
<Al-Mg-Si系アルミニウム合金材の機械的特性>
 本実施形態に係るAl-Mg-Si系アルミニウム合金材は、Niが添加されていることによって、時効硬化後、一般的なAl-Mg-Si-Cu系アルミニウム合金と比較して、Cu量に依存することなく、より高い最大強さや硬さが得られる。Niが添加されていることによって、耐食性を大きく損なうことなく、任意部位の機械的特性が向上する効果が得られる。
<Mechanical properties of Al-Mg-Si-based aluminum alloy materials>
The Al—Mg—Si-based aluminum alloy material according to the present embodiment has a Cu content after age-hardening due to the addition of Ni, compared to a general Al—Mg—Si—Cu-based aluminum alloy. Higher maximum strength and hardness can be obtained without dependence. By adding Ni, the effect of improving the mechanical properties of an arbitrary part can be obtained without significantly impairing the corrosion resistance.
 具体的には、アルミニウム合金材は、Ni等の成分量や結晶組織の制御により、時効処理後の任意部位について測定される引張強さを、例えば、350MPa以上とすることができるし、360MPa以上とすることができる。また、Ni等の成分量や結晶組織の制御により、時効処理後の任意部位について測定される0.2%耐力を、例えば、330MPa以上とすることができるし、350MPa以上とすることができる。また、引張強さが約360~370MPaの範囲において、10%以上~13%以上の引張破断伸びを得ることができる。 Specifically, the aluminum alloy material can have a tensile strength measured for an arbitrary part after the aging treatment, for example, 350 MPa or more by controlling the amount of components such as Ni and the crystal structure, and is 360 MPa or more. It can be. Moreover, the 0.2% yield strength measured about the arbitrary site | parts after an aging treatment can be 330 Mpa or more, for example by control of the amount of components, such as Ni, and crystal structure, and can be 350 Mpa or more. Further, when the tensile strength is in the range of about 360 to 370 MPa, a tensile breaking elongation of 10% to 13% can be obtained.
 Al-Mg-Si系アルミニウム合金材における、引張強さ、0.2%耐力、及び、引張破断伸びは、時効硬化後に、JIS Z 2241:2011に規定される試験片、試験機、試験条件を用いた引張試験を行うことにより求めることができる。 The tensile strength, 0.2% proof stress and tensile elongation at break in Al-Mg-Si-based aluminum alloy materials are determined according to the test piece, tester and test conditions specified in JIS Z 2241: 2011 after age hardening. It can obtain | require by performing the used tensile test.
<Al-Mg-Si系アルミニウム合金材の用途>
 本実施形態に係るAl-Mg-Si系アルミニウム合金材は、例えば、自動車、自動二輪車等の車両用の構造材として用いることができる。車両用の構造材としては、例えば、ドアインナパネル、ドアアウタパネル、ルーフパネル、ボンネット、トランク、フェンダ、各種ビーム等をはじめとする外装の構造材や、サスペンションアームをはじめとする足回りの構造材が挙げられる。構造材の材料として、Niを添加したAl-Mg-Si-Cu系アルミニウム合金を用いると、耐食性を大きく損なうことなく高強度化を図ることができるため、応力腐食割れに対する耐性が高く、高い強度と良好な耐食性を兼ね備える耐久性が高い構造材を得ることができる。
<Applications of Al-Mg-Si-based aluminum alloy materials>
The Al—Mg—Si based aluminum alloy material according to the present embodiment can be used as a structural material for vehicles such as automobiles and motorcycles. Examples of structural materials for vehicles include exterior structural materials such as door inner panels, door outer panels, roof panels, bonnets, trunks, fenders, various beams, and suspension structural materials such as suspension arms. Is mentioned. When an Al-Mg-Si-Cu-based aluminum alloy with Ni added is used as the structural material, the strength can be increased without significantly damaging the corrosion resistance. Thus, it is possible to obtain a highly durable structural material that combines good corrosion resistance.
 以下、本発明の実施例を示して本発明について具体的に説明を行う。但し、本発明の技術的範囲は、これに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples of the present invention. However, the technical scope of the present invention is not limited to this.
 本実施形態に係るAl-Mg-Si系アルミニウム合金材を、ニッケルの添加量を変えて作製し、作製した各供試材について、ニッケルの添加量による影響、時効硬化性、及び、機械的特性について評価した。 The Al—Mg—Si-based aluminum alloy material according to the present embodiment was prepared by changing the amount of nickel added, and for each of the prepared test materials, the influence of the amount of nickel added, age hardenability, and mechanical properties Was evaluated.
 供試材としては、表1に「無添加」として示すAl-Mg-Si-Cu系アルミニウム合金を基礎組成とし、ニッケルの原子濃度の狙い値を0.025~1.0at%の範囲で変えた展伸材(供試材No.1~5)を作製して用いた。供試材の基礎組成(「無添加」)と、成分の測定値とを表1に示す。 As a test material, an Al—Mg—Si—Cu-based aluminum alloy indicated as “no additive” in Table 1 is used as a basic composition, and the target value of the atomic concentration of nickel is changed within a range of 0.025 to 1.0 at%. A wrought material (sample Nos. 1 to 5) was prepared and used. Table 1 shows the basic composition of the test material (“no addition”) and the measured values of the components.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 はじめに、各供試材の時効硬化性をT6処理時のピーク硬さに基づいて評価した。溶体化処理は、575℃で1時間行った。また、人工時効処理は、溶体化処理した供試材を水焼入れした後、200℃で保持することにより行った。そして、異なる保持時間毎に、人工時効処理した供試材の試験力0.98Nによるマイクロビッカース硬さ(HV0.1)を測定した。ピーク硬さの測定結果を表2に示す。 First, age hardening of each specimen was evaluated based on the peak hardness during T6 treatment. The solution treatment was performed at 575 ° C. for 1 hour. In addition, the artificial aging treatment was performed by water quenching the solution-treated specimen and holding it at 200 ° C. And the micro Vickers hardness (HV0.1) by the test force 0.98N of the test material which carried out artificial aging treatment for every different holding time was measured. Table 2 shows the measurement results of the peak hardness.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、測定の結果、ニッケルの添加量に依存してピーク硬さが向上する傾向が確認された。ニッケルを添加していない基礎組成の供試材(「無添加」)と比較すると、狙い値が0.025at%以上では、いずれも有意な時効硬化が認められ、Ni量が増大するほど硬さが向上した。但し、ニッケルの固溶限(約0.3at%)を超える狙い値とした供試材No.3~5では、硬さの上昇が小さくなり、互いの到達ピーク硬さは略同等となった。 As shown in Table 2, as a result of the measurement, it was confirmed that the peak hardness tends to improve depending on the amount of nickel added. Compared with the test material of the basic composition to which nickel is not added (“no addition”), when the target value is 0.025 at% or more, significant age hardening is recognized, and the hardness increases as the amount of Ni increases. Improved. However, the test material No. 1 was set to a target value exceeding the solid solubility limit of nickel (about 0.3 at%). In 3 to 5, the increase in hardness was small, and the peak hardness of each other was substantially the same.
 図1は、Al-Mg-Si-Cu系アルミニウム合金からなる供試材の透過電子顕微鏡像である。図2は、Niを添加したAl-Mg-Si-Cu系アルミニウム合金からなる供試材の透過電子顕微鏡像である。
 図1は、Niを添加していない基礎組成の供試材(「無添加」)の断面の時効組織を透過電子顕微鏡で観察した結果である。また、図2は、ニッケルの狙い値を0.2at%とした供試材No.2の断面の時効組織を透過電子顕微鏡で観察した結果である。
FIG. 1 is a transmission electron microscope image of a test material made of an Al—Mg—Si—Cu-based aluminum alloy. FIG. 2 is a transmission electron microscope image of a specimen made of an Al—Mg—Si—Cu-based aluminum alloy to which Ni is added.
FIG. 1 is a result of observing an aging structure of a cross section of a specimen having a basic composition to which Ni is not added (“no addition”) with a transmission electron microscope. Further, FIG. 2 shows the test material No. 1 in which the target value of nickel is 0.2 at%. It is the result of having observed the aging structure | tissue of 2 cross sections with the transmission electron microscope.
 図1及び図2に示すように、アルミニウム合金の母相中に、多数の析出物が確認された。Niを添加していない基礎組成の供試材(「無添加」)の組織と、Niを添加した供試材No.2の組織とを比較すると、供試材No.2の方が、析出物が微細に多数分散した状態を生じていることが確認された。このような状態の析出物を、別途、組成分析した結果、ニッケルの分布が認められた。 As shown in FIGS. 1 and 2, a large number of precipitates were confirmed in the parent phase of the aluminum alloy. The structure of the test material with the basic composition to which Ni was not added (“no addition”) and the test material No. with Ni added. When comparing with the structure of Sample No. 2, It was confirmed that No. 2 produced a state in which many precipitates were finely dispersed. As a result of separately analyzing the composition of the precipitate in such a state, nickel distribution was observed.
 次に、各供試材の時効硬化後の機械的特性を評価した。溶体化処理は、575℃で1時間行った。また、人工時効処理は、溶体化処理した供試材を水焼入れした後、200℃で100分間保持することにより行った。そして、人工時効処理後の供試材を、JIS Z 2241:2011に準じた引張試験に供し、引張強さ、0.2%耐力、及び、引張破断伸びを測定した。その結果を表3に示す。なお、「参考値」は、JIS H 4000、4040、4080、4100、4140等に規定される規格値を参考にした値であり、6061-T6材の規格値全般に基づいて設定した下限値を示す。 Next, the mechanical properties of each test material after age hardening were evaluated. The solution treatment was performed at 575 ° C. for 1 hour. In addition, the artificial aging treatment was performed by water quenching the solution-treated specimen and holding it at 200 ° C. for 100 minutes. The test material after the artificial aging treatment was subjected to a tensile test according to JIS Z 2241: 2011, and the tensile strength, 0.2% proof stress, and tensile breaking elongation were measured. The results are shown in Table 3. The “reference value” is a value based on the standard values specified in JIS H 4000, 4040, 4080, 4100, 4140, etc., and the lower limit value set based on the overall standard values of the 6061-T6 material. Show.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ニッケルの狙い値が0.025at%から1.0at%まで、Ni量の増加に伴い、概ね強度が上昇していく傾向が見られる。その一方で、引張破断伸びは、ニッケルの狙い値を1.0at%とした供試材No.5にて参考値を下回った。本発明に係るアルミニウム合金材におけるNi量は、0.025~1.0at%(約0.05~2.3質量%)が適切であり、ニッケルの固溶限(約0.3at%)を考慮すると、求められる機械的特性に応じて、0.025~0.3at%、又は、0.3at%以上とすることが有効であることが確認された。 As shown in Table 3, when the target value of nickel is 0.025 at% to 1.0 at%, there is a tendency that the strength generally increases as the amount of Ni increases. On the other hand, the tensile elongation at break is the test material No. 1 in which the target value of nickel is 1.0 at%. 5 was below the reference value. The amount of Ni in the aluminum alloy material according to the present invention is suitably 0.025 to 1.0 at% (about 0.05 to 2.3 mass%), and the nickel solid solubility limit (about 0.3 at%) is satisfied. In consideration, it has been confirmed that it is effective to set the amount to 0.025 to 0.3 at% or 0.3 at% or more depending on the required mechanical properties.

Claims (2)

  1.  Si:0.1質量%以上2.0質量%以下、Mg:0.3質量%以上1.5質量%以下、Cu:0.05質量%以上3.0質量%以下、Ni:0.05質量%を超え2.3質量%以下を含有し、Fe、Mn、Cr、Zn及びTiからなる群より選択される1種以上の元素を1.0質量%以下で任意に含有し、残部がAl及び不可避的不純物からなるAl-Mg-Si系アルミニウム合金材。 Si: 0.1% by mass to 2.0% by mass, Mg: 0.3% by mass to 1.5% by mass, Cu: 0.05% by mass to 3.0% by mass, Ni: 0.05 It contains more than 2.3% by mass and more than 1% by mass, optionally containing one or more elements selected from the group consisting of Fe, Mn, Cr, Zn and Ti at 1.0% by mass or less, with the balance being An Al—Mg—Si aluminum alloy material comprising Al and inevitable impurities.
  2.  引張強さが350MPa以上であり、0.2%耐力が330MPa以上であり、引張破断伸びが10%以上である請求項1に記載のAl-Mg-Si系アルミニウム合金材。 2. The Al—Mg—Si-based aluminum alloy material according to claim 1, wherein the tensile strength is 350 MPa or more, the 0.2% proof stress is 330 MPa or more, and the tensile breaking elongation is 10% or more.
PCT/JP2019/001614 2018-03-01 2019-01-21 Al-mg-si system aluminum alloy material WO2019167469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502856A JP7044863B2 (en) 2018-03-01 2019-01-21 Al-Mg-Si based aluminum alloy material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036385 2018-03-01
JP2018036385 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019167469A1 true WO2019167469A1 (en) 2019-09-06

Family

ID=67805757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001614 WO2019167469A1 (en) 2018-03-01 2019-01-21 Al-mg-si system aluminum alloy material

Country Status (2)

Country Link
JP (1) JP7044863B2 (en)
WO (1) WO2019167469A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153412A1 (en) * 2020-01-30 2021-08-05 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire, aluminum alloy member, and bolt
US20230067206A1 (en) * 2021-08-31 2023-03-02 GM Global Technology Operations LLC Aluminum alloy for casting high-strength and high electrically conductive components
WO2023068167A1 (en) * 2021-10-20 2023-04-27 株式会社Uacj Extruded multi-hole tube and production method for same
WO2023209810A1 (en) * 2022-04-26 2023-11-02 日本軽金属株式会社 Al-mg-si-ni alloy and al-mg-si-ni alloy material
JP7422539B2 (en) 2019-12-26 2024-01-26 堺アルミ株式会社 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125504A (en) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd Manufacture of baking hardenability aluminum alloy plate for forming
JPH07242976A (en) * 1994-03-01 1995-09-19 Nippon Steel Corp Aluminum alloy for elongation, excellent in heat resistance, and its production
WO2016047617A1 (en) * 2014-09-22 2016-03-31 古河電気工業株式会社 Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
WO2017142030A1 (en) * 2016-02-19 2017-08-24 日本発條株式会社 Aluminum alloy and fastener member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277786A (en) * 2003-03-14 2004-10-07 Nippon Light Metal Co Ltd Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
JP6562087B2 (en) * 2015-12-28 2019-08-21 日本軽金属株式会社 Wire harness and method for manufacturing wire harness
CN109072351A (en) * 2016-07-13 2018-12-21 古河电气工业株式会社 Aluminum alloy materials and use its conductive member, battery component, fastenings, spring part and structure part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125504A (en) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd Manufacture of baking hardenability aluminum alloy plate for forming
JPH07242976A (en) * 1994-03-01 1995-09-19 Nippon Steel Corp Aluminum alloy for elongation, excellent in heat resistance, and its production
WO2016047617A1 (en) * 2014-09-22 2016-03-31 古河電気工業株式会社 Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
WO2017142030A1 (en) * 2016-02-19 2017-08-24 日本発條株式会社 Aluminum alloy and fastener member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422539B2 (en) 2019-12-26 2024-01-26 堺アルミ株式会社 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
WO2021153412A1 (en) * 2020-01-30 2021-08-05 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire, aluminum alloy member, and bolt
US20230067206A1 (en) * 2021-08-31 2023-03-02 GM Global Technology Operations LLC Aluminum alloy for casting high-strength and high electrically conductive components
WO2023068167A1 (en) * 2021-10-20 2023-04-27 株式会社Uacj Extruded multi-hole tube and production method for same
WO2023209810A1 (en) * 2022-04-26 2023-11-02 日本軽金属株式会社 Al-mg-si-ni alloy and al-mg-si-ni alloy material

Also Published As

Publication number Publication date
JPWO2019167469A1 (en) 2021-01-14
JP7044863B2 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
US9217622B2 (en) 5XXX aluminum alloys and wrought aluminum alloy products made therefrom
EP2563944B1 (en) Damage tolerant aluminium material having a layered microstructure
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
CA2657331C (en) A high strength, heat treatable aluminum alloy
JP3194742B2 (en) Improved lithium aluminum alloy system
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
CN113302327A (en) 7xxx series aluminum alloy products
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
US20230175103A1 (en) New 6xxx aluminum alloys and methods for producing the same
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
US20210262065A1 (en) 2xxx aluminum alloys
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH10259464A (en) Production of aluminum alloy sheet for forming
WO2010029572A1 (en) Method for manufacture of aluminium alloy sheets
JPH07305135A (en) High strength aluminum alloy excellent in formability and corrosion resistance and its production
JP4035465B2 (en) Al-Mg aluminum alloy sheet for high-speed superplastic forming
JP2004225114A (en) Al-Mg BASED ALUMINUM ALLOY SHEET FOR HIGH SPEED SUPERPLASTIC MOLDING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761571

Country of ref document: EP

Kind code of ref document: A1