JP6562087B2 - Wire harness and method for manufacturing wire harness - Google Patents

Wire harness and method for manufacturing wire harness Download PDF

Info

Publication number
JP6562087B2
JP6562087B2 JP2017559210A JP2017559210A JP6562087B2 JP 6562087 B2 JP6562087 B2 JP 6562087B2 JP 2017559210 A JP2017559210 A JP 2017559210A JP 2017559210 A JP2017559210 A JP 2017559210A JP 6562087 B2 JP6562087 B2 JP 6562087B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
wire
less
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017559210A
Other languages
Japanese (ja)
Other versions
JPWO2017115801A1 (en
Inventor
鈴木 健太
健太 鈴木
安志 大和田
安志 大和田
敏也 穴見
敏也 穴見
博実 松島
博実 松島
正彦 塩田
正彦 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Publication of JPWO2017115801A1 publication Critical patent/JPWO2017115801A1/en
Application granted granted Critical
Publication of JP6562087B2 publication Critical patent/JP6562087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/012Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing wire harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Description

本発明は、導電線用アルミニウム合金、導電線及びワイヤーハーネスの製造方法に関する。   The present invention relates to an aluminum alloy for conductive wires, a conductive wire, and a method for manufacturing a wire harness.

導電線に用いられる材料として、特許文献1に開示されているようなアルミニウム合金が知られている。   As a material used for the conductive wire, an aluminum alloy as disclosed in Patent Document 1 is known.

特開2005−336549号公報JP 2005-336549 A

特許文献1に開示されているようなアルミニウム合金では、固液共存領域の温度範囲が狭く鋳造欠陥を抑制するには、鋳造の際の鋳込み温度の管理を、厳密に行う必要がある。   In an aluminum alloy as disclosed in Patent Document 1, it is necessary to strictly control the casting temperature during casting in order to suppress a casting defect because the temperature range of the solid-liquid coexistence region is narrow.

本発明の態様は、鋳造欠陥が抑制される導電線用アルミニウム合金、導電線及びワイヤーハーネスの製造方法を提供することを目的とする。   The aspect of this invention aims at providing the manufacturing method of the aluminum alloy for conductive wires in which a casting defect is suppressed, a conductive wire, and a wire harness.

本発明の態様に係る導電線用アルミニウム合金は、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部がAlと不可避不純物からなる。   The aluminum alloy for conductive wires according to an embodiment of the present invention includes 0.6 mass% to 2.5 mass% Ni, 0.1 mass% to 0.7 mass% Mg, and 0.2 mass%. The Si content is 0.7% by mass or less and the balance is Al and inevitable impurities.

本発明の態様によれば、固液共存領域の温度範囲が広がり鋳造欠陥が抑制される導電線用アルミニウム合金が提供される。   According to the aspect of the present invention, there is provided an aluminum alloy for conductive wires in which the temperature range of the solid-liquid coexistence region is widened and casting defects are suppressed.

本発明の一態様として、0.1質量%以上0.4質量%以下のCuと、0.01質量%以上0.05質量%以下のTiと、0.001質量%以上0.01質量%以下のBと、からなる群から選択された1種以上の元素が含有されてもよい。これにより、機械的強度が高まる導電線用アルミニウム合金が提供される。   As one embodiment of the present invention, 0.1% by mass to 0.4% by mass Cu, 0.01% by mass to 0.05% by mass Ti, 0.001% by mass to 0.01% by mass One or more elements selected from the group consisting of the following B and B may be contained. Thereby, the aluminum alloy for conductive wires with which mechanical strength increases is provided.

本発明の態様によれば、固液共存領域の温度範囲が広がり鋳造欠陥が抑制される導電線用アルミニウム合金が提供される。   According to the aspect of the present invention, there is provided an aluminum alloy for conductive wires in which the temperature range of the solid-liquid coexistence region is widened and casting defects are suppressed.

本発明の他の態様として、導電線は、合金組成が、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部がAlと不可避不純物からなる。   As another aspect of the present invention, the conductive wire has an alloy composition of 0.6 mass% to 2.5 mass% Ni, 0.1 mass% to 0.7 mass%, 2 mass% or more and 0.7 mass% or less of Si, the remainder consists of Al and inevitable impurities.

望ましい態様として、前記合金組成が、0.1質量%以上0.4質量%以下のCuと、0.01質量%以上0.05質量%以下のTiと、0.001質量%以上0.01質量%以下のBと、からなる群から選択された1種以上の元素を含んでもよい。   As a desirable aspect, the alloy composition is 0.1 mass% or more and 0.4 mass% or less of Cu, 0.01 mass% or more and 0.05 mass% or less of Ti, and 0.001 mass% or more and 0.01 mass% or less. One or more elements selected from the group consisting of B and less than mass% may be included.

本発明の他の態様として、ワイヤーハーネスの製造方法は、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部がAlと不可避不純物からなるアルミニウム合金の撚り線を形成し、前記撚り線に対して溶体化処理及び時効処理後、前記撚り線表面に絶縁樹脂を被覆し、被覆後の前記撚り線を所定の長さに切断した後、切断された前記撚り線の両端に端子を設ける。   As another aspect of the present invention, a method for manufacturing a wire harness includes 0.6 mass% to 2.5 mass% Ni, 0.1 mass% to 0.7 mass% Mg, and 0.2 mass%. Form an aluminum alloy stranded wire composed of Si and 0.7% by mass of Si and the balance consisting of Al and inevitable impurities, and insulate the surface of the stranded wire after solution treatment and aging treatment. After covering the resin and cutting the coated stranded wire to a predetermined length, terminals are provided at both ends of the cut stranded wire.

本発明に係る態様によれば、鋳造欠陥が抑制される導電線用アルミニウム合金、導電線及びワイヤーハーネスの製造方法を提供することができる。   According to the aspect which concerns on this invention, the manufacturing method of the aluminum alloy for conductive wires in which a casting defect is suppressed, a conductive wire, and a wire harness can be provided.

図1は、本実施形態に係るアルミニウム合金の平衡状態図の一例を示す図である。FIG. 1 is a diagram illustrating an example of an equilibrium diagram of an aluminum alloy according to the present embodiment. 図2は、本実施形態に係るアルミニウム合金の平衡状態図の一例を示す図である。FIG. 2 is a diagram illustrating an example of an equilibrium diagram of an aluminum alloy according to the present embodiment. 図3は、本実施形態に係るアルミニウム合金の平衡状態図の一例を示す図である。FIG. 3 is a diagram illustrating an example of an equilibrium diagram of an aluminum alloy according to the present embodiment. 図4は、比較例に係るアルミニウム合金の平衡状態図の一例を示す図である。FIG. 4 is a diagram illustrating an example of an equilibrium diagram of an aluminum alloy according to a comparative example. 図5は、プロペルチ連続鋳造圧延機の鋳造機の部分であるベルトアンドホイール鋳造機の全体構造を模式的に説明する説明図である。FIG. 5 is an explanatory view schematically illustrating the entire structure of a belt-and-wheel casting machine that is a part of the casting machine of the Properti continuous casting and rolling machine. 図6は、円周溝の構造を説明する部分断面図である。FIG. 6 is a partial cross-sectional view illustrating the structure of the circumferential groove.

以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、以下で説明する実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The components of the embodiments described below can be combined as appropriate. Some components may not be used. In addition, constituent elements in the embodiments described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range.

[ワイヤーハーネス]
自動車、電車などの車両、飛行機、ロボットなどの産業機器には、電流又は電気信号を流すための導電線に端子(コネクタ)を取り付けたワイヤーハーネスが用いられている。ワイヤーハーネスの導電線には、導電性のよい銅(Cu)が良く用いられてきた。これに対して、ワイヤーハーネスの導電線が含むアルミニウム(Al)の含有比率を高めると、CuよりもAlの方が鉄合金の特性に影響を与えにくいので、Feのリサイクル(解体時の分別)性が向上する。その結果、産業機器を解体した場合、コストが低減できる。また、Alは、Cuよりも比重が小さいので、ワイヤーハーネスが軽量となり、車両、飛行機などの輸送費用が低減できる。ワイヤーハーネスの導電線が含むAlの含有比率を高めると、Cuの資源枯渇を抑制することができる。
[Wire Harness]
2. Description of the Related Art Wire harnesses in which terminals (connectors) are attached to conductive wires for passing current or electric signals are used in industrial equipment such as automobiles, trains, vehicles, airplanes, and robots. Copper (Cu) having good conductivity has been often used for the conductive wire of the wire harness. On the other hand, if the content ratio of aluminum (Al) contained in the conductive wire of the wire harness is increased, Al is less likely to affect the properties of the iron alloy than Cu, so Fe recycling (separation during disassembly) Improves. As a result, when industrial equipment is disassembled, costs can be reduced. Moreover, since Al has a smaller specific gravity than Cu, the wire harness becomes lighter, and the transportation cost of vehicles, airplanes and the like can be reduced. When the content ratio of Al contained in the conductive wire of the wire harness is increased, Cu resource depletion can be suppressed.

ワイヤーハーネスは、送電用電線とは異なり、限られたスペースを縫うように配線されることが多く、そのため線の取り回し(配線のしやすさ)が、重要となる。また、車両のドア部等に用いられるワイヤーハーネスは、ドアの開け閉めのたびに、屈曲するので、耐屈曲性も要求される。ワイヤーハーネスにおいて、φ1mm以下の導電線が撚り加工された撚り線であると、導電線の取り回しが容易となる。また、ワイヤーハーネスにおいて、φ1mm以下の導電線が撚り加工された撚り線であると、導電線の耐屈曲性が高まる。そして、ワイヤーハーネスが撚り線であることにより、同じ断面積を有する1本の線より、表面積を多くできるので、導電率が高くなる。   Unlike electric wires for power transmission, wire harnesses are often wired so as to sew a limited space. Therefore, the handling of wires (ease of wiring) is important. Moreover, since the wire harness used for the door part etc. of a vehicle bends whenever a door is opened and closed, bending resistance is also requested | required. In the wire harness, when the conductive wire having a diameter of 1 mm or less is a twisted wire, handling of the conductive wire is facilitated. Moreover, in the wire harness, when the conductive wire having a diameter of 1 mm or less is a twisted wire, the bending resistance of the conductive wire is increased. And since a surface area can be increased more than one line | wire which has the same cross-sectional area because a wire harness is a strand wire, electrical conductivity becomes high.

[導電線用アルミニウム合金]
本実施形態の導電線用アルミニウム合金は、0.6質量%以上2.5質量%以下のニッケル(Ni)と、0.1質量%以上0.7質量%以下のマグネシウム(Mg)と、0.2質量%以上0.7質量%以下のシリコン(Si)と、残部がAlと不可避不純物からなる。
[Aluminum alloy for conductive wire]
The aluminum alloy for conductive wires of the present embodiment includes 0.6 mass% or more and 2.5 mass% or less nickel (Ni), 0.1 mass% or more and 0.7 mass% or less magnesium (Mg), 0 .2 mass% or more and 0.7 mass% or less of silicon (Si), with the balance being Al and inevitable impurities.

Al合金において、NiがAlの母相中にはあまり固溶せず、Ni−Al系晶出物(NiAl等)を形成し、導電線の機械的強度の向上に寄与する。機械的強度が向上することにより、伸線加工や撚り加工を行う際に、導電線の断線が起きにくくなる。また、Niは、Al合金に添加した際の電気抵抗を増加させる作用が小さく、更に、Alの母相中にはあまり固溶しないので、導電率の低下も少ない。In the Al alloy, Ni is not so solidly dissolved in the Al matrix, and forms a Ni—Al-based crystallized product (Ni 3 Al or the like), contributing to an improvement in the mechanical strength of the conductive wire. When the mechanical strength is improved, the conductive wire is less likely to be disconnected when performing wire drawing or twisting. Ni has a small effect of increasing electrical resistance when added to an Al alloy, and further, since it does not dissolve so much in the Al matrix, there is little decrease in conductivity.

図1から図3は、本実施形態に係るアルミニウム合金の平衡状態図の一例である。図4は、比較例に係るアルミニウム合金の平衡状態図の一例である。図1に示すアルミニウム合金は、Niが0.7質量%含有され、残部がAlである。図2に示すアルミニウム合金は、Niが1.0質量%含有され、残部がAlである。図3に示すアルミニウム合金は、Niが1.5質量%含有され、残部がAlである。図4に示すアルミニウム合金は、鉄(Fe)が1.5質量%含有され、残部がAlである。   1 to 3 are examples of an equilibrium diagram of an aluminum alloy according to the present embodiment. FIG. 4 is an example of an equilibrium diagram of an aluminum alloy according to a comparative example. The aluminum alloy shown in FIG. 1 contains 0.7% by mass of Ni and the balance is Al. The aluminum alloy shown in FIG. 2 contains 1.0% by mass of Ni and the balance is Al. The aluminum alloy shown in FIG. 3 contains 1.5% by mass of Ni and the balance is Al. The aluminum alloy shown in FIG. 4 contains 1.5% by mass of iron (Fe), and the balance is Al.

例えば、図4に示すアルミニウム合金において、固液共存領域(液相線と固相線間の温度範囲)が654℃以上655℃以下である。これに対して、図1に示すアルミニウム合金は、0.7質量%のNiが含まれると、固液共存領域が640℃以上658℃以下である。このように、本実施形態のアルミニウム合金は、Niが0.7質量%以上含まれると、比較例よりも固液共存領域が大きくなる。   For example, in the aluminum alloy shown in FIG. 4, the solid-liquid coexistence region (temperature range between the liquidus and solidus) is 654 ° C. or higher and 655 ° C. or lower. On the other hand, the aluminum alloy shown in FIG. 1 has a solid-liquid coexistence region of 640 ° C. or higher and 658 ° C. or lower when 0.7 mass% of Ni is included. Thus, when the aluminum alloy of this embodiment contains 0.7 mass% or more of Ni, the solid-liquid coexistence region becomes larger than the comparative example.

図2に示すアルミニウム合金は、1.0質量%のNiが含まれ、固液共存領域が640℃以上657℃以下である。図3に示すアルミニウム合金は、1.5質量%のNiが含まれ、固液共存領域が640℃以上656℃以下である。このように、本実施形態のアルミニウム合金は、0.7質量%以上1.5質量%以下のNiが含有されれば、固液共存領域が16℃以上18℃以下となり、Niの含有量に対して、固液共存領域の変化が小さい。液相温度は、純Alがもっとも高く、Ni含有量がAl−Ni系合金の共晶組成へ相変態する目安である5.5質量%に近づくと液相温度が徐々に低下する。Ni含有量が、5.5質量%を超えると逆に液相温度が高くなっていく傾向にある。本実施形態の導電線用アルミニウム合金組成の場合、Niは共晶組成より少ない亜共晶組成範囲なので、Ni含有量が増加すると液相温度が低下する傾向にある。   The aluminum alloy shown in FIG. 2 contains 1.0% by mass of Ni, and the solid-liquid coexistence region is 640 ° C. or higher and 657 ° C. or lower. The aluminum alloy shown in FIG. 3 contains 1.5% by mass of Ni, and the solid-liquid coexistence region is 640 ° C. or higher and 656 ° C. or lower. Thus, if the aluminum alloy of this embodiment contains 0.7 mass% or more and 1.5 mass% or less of Ni, the solid-liquid coexistence region becomes 16 ° C. or more and 18 ° C. or less, and the content of Ni is reduced. In contrast, the change in the solid-liquid coexistence region is small. As for the liquidus temperature, pure Al is the highest, and when the Ni content approaches 5.5% by mass, which is a standard for phase transformation to the eutectic composition of the Al—Ni alloy, the liquidus temperature gradually decreases. Conversely, when the Ni content exceeds 5.5% by mass, the liquidus temperature tends to increase. In the case of the aluminum alloy composition for conductive wires of this embodiment, since Ni is a hypoeutectic composition range less than the eutectic composition, the liquidus temperature tends to decrease as the Ni content increases.

本実施形態のアルミニウム合金では、比較例のアルミニウム合金よりも固液共存領域が大きいので、鋳造の際の鋳込み温度の管理が容易となり、鋳造欠陥が抑制される。その結果、本実施形態のアルミニウム合金は、比較例のアルミニウム合金よりも鋳造性が向上する。   In the aluminum alloy of this embodiment, since the solid-liquid coexistence region is larger than that of the aluminum alloy of the comparative example, the management of the casting temperature during casting is facilitated, and casting defects are suppressed. As a result, the castability of the aluminum alloy of this embodiment is improved as compared with the aluminum alloy of the comparative example.

本実施形態のアルミニウム合金において、Niが2.5質量%を超えて含有されると、伸線加工の際に破断の起点となる可能性のある粗大なNi−Al系晶出物ができやすくなる。このため、本実施形態のアルミニウム合金においては、Niが2.5質量%以下であることで、伸線加工の際の破断が抑制されている。本実施形態のアルミニウム合金は、Niが2.0質量%以下であることで、粗大なNi−Al系晶出物が少なくなり、より伸線加工の際の破断が抑制されるので、より好ましい。Niが2.5質量%以下であると、Al母相中へのNiの固溶量が少ないので、純Alの導電率と比較しても導電率の低下が小さい。   In the aluminum alloy of the present embodiment, when Ni is contained in an amount exceeding 2.5% by mass, a coarse Ni—Al-based crystallized substance that may become a starting point of breakage at the time of wire drawing is easily formed. Become. For this reason, in the aluminum alloy of this embodiment, the fracture | rupture at the time of a wire drawing process is suppressed because Ni is 2.5 mass% or less. The aluminum alloy of the present embodiment is more preferable because Ni is 2.0% by mass or less because coarse Ni—Al-based crystallized substances are reduced and breakage during wire drawing is further suppressed. . When Ni is 2.5% by mass or less, since the amount of Ni dissolved in the Al matrix is small, the decrease in conductivity is small even when compared with the conductivity of pure Al.

MgとSiとは、時効処理を行うとともにMg−Si系析出物(MgSi等)を形成し、機械的強度の向上に寄与する。機械的強度が向上することにより、伸線加工や撚り加工を行う際に、導電線の断線が起きにくくなる。本実施形態の導電線用アルミニウム合金において、0.1質量%以上のMgが含有され、0.2質量%以上のSiが含有されると機械的強度増加の効果が顕著となる。本実施形態の導電線用アルミニウム合金において、0.7質量%を超えるMgが含有されると、伸線加工の際に破断の起点となる可能性のある粗大なMg−Si系晶出物ができやすくなる。本実施形態の導電線用アルミニウム合金において、Mgが含有される量を0.7質量%以下とすることで、Alの母相中のMgの固溶量が少なくなり、導電率の低下を抑制できる。本実施形態の導電線用アルミニウム合金において、0.7質量%を超えるSiが含有されると、伸線加工の際に破断の起点となる可能性のある粗大なMg−Si系晶出物ができやすくなる。本実施形態の導電線用アルミニウム合金において、Mgが含有される量を0.7質量%以下とすることで、Alの母相中のMgの固溶量が少なくなり、導電率の低下を抑制できる。Mg and Si form an Mg—Si based precipitate (Mg 2 Si or the like) while performing an aging treatment, and contribute to improvement of mechanical strength. When the mechanical strength is improved, the conductive wire is less likely to be disconnected when performing wire drawing or twisting. In the aluminum alloy for conductive wires of this embodiment, 0.1 mass% or more of Mg is contained, and if 0.2 mass% or more of Si is contained, the effect of increasing the mechanical strength becomes remarkable. In the aluminum alloy for conductive wires of the present embodiment, when Mg exceeding 0.7% by mass is contained, a coarse Mg-Si crystallized product that may become a starting point of breakage during wire drawing is obtained. It becomes easy to do. In the aluminum alloy for conductive wires of the present embodiment, the amount of Mg contained is 0.7% by mass or less, so that the solid solution amount of Mg in the Al matrix is reduced and the decrease in conductivity is suppressed. it can. In the aluminum alloy for conductive wires of this embodiment, when Si exceeding 0.7 mass% is contained, a coarse Mg-Si based crystallized substance that may become a starting point of breakage during wire drawing is obtained. It becomes easy to do. In the aluminum alloy for conductive wires of the present embodiment, the amount of Mg contained is 0.7% by mass or less, so that the solid solution amount of Mg in the Al matrix is reduced and the decrease in conductivity is suppressed. it can.

本実施形態の導電線用アルミニウム合金では、さらにCuを含有してもよい。Cuは、機械的強度を向上させる作用を有し、さらに時効処理を行うとAl−Cu系析出物(AlCu等)を形成し、さらに機械的強度の向上に寄与する。本実施形態の導電線用アルミニウム合金において、0.1質量%以上のCuが含有されると機械的強度増加の効果が顕著となる。本実施形態の導電線用アルミニウム合金において、0.4質量%を超えるCuが含有されると、変形抵抗性が大きくなり、導電線の伸線性が低下する可能性がある。The aluminum alloy for conductive wires of this embodiment may further contain Cu. Cu has an effect of improving mechanical strength, and when further subjected to aging treatment, forms Al—Cu-based precipitates (Al 2 Cu, etc.), and further contributes to improvement of mechanical strength. In the aluminum alloy for conductive wires of this embodiment, when 0.1 mass% or more of Cu is contained, the effect of increasing the mechanical strength becomes remarkable. In the aluminum alloy for conductive wires of this embodiment, when Cu exceeding 0.4 mass% is contained, the deformation resistance is increased, and the drawability of the conductive wires may be reduced.

本実施形態の導電線用アルミニウム合金では、さらにチタン(Ti)及びボロン(B)の少なくとも1種以上を含有してもよい。Ti又はBは、鋳造組織の微細化に寄与する作用を有し、鋳造性及び加工性を向上させる作用を有する。本実施形態の導電線用アルミニウム合金において、0.01質量%以上のTi又は0.001質量%以上のBが含有されると鋳造組織の微細化の作用が顕著となる。本実施形態の導電線用アルミニウム合金において、0.05質量%を超えてTiを含有したり0.01質量%を超えてBを含有したりすると導電性の低下が著しくなる。   The aluminum alloy for conductive wires of this embodiment may further contain at least one of titanium (Ti) and boron (B). Ti or B has an effect of contributing to refinement of the cast structure, and has an effect of improving castability and workability. When the aluminum alloy for conductive wires of this embodiment contains 0.01 mass% or more of Ti or 0.001 mass% or more of B, the effect of refining the cast structure becomes remarkable. In the aluminum alloy for conductive wires of this embodiment, if the Ti content exceeds 0.05% by mass or the B content exceeds 0.01% by mass, the electrical conductivity will be significantly reduced.

例えば、本実施形態の導電線用アルミニウム合金は、実質的に、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部のAlとからなる。本実施形態の導電線用アルミニウム合金において、不可避不純物を含んでもよい。本実施形態の導電線用アルミニウム合金は、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部のAlと不可避不純物からなる。   For example, the aluminum alloy for conductive wires of the present embodiment is substantially 0.6 mass% to 2.5 mass% Ni, 0.1 mass% to 0.7 mass% Mg, 0% .2% to 0.7% by mass of Si and the balance of Al. The aluminum alloy for conductive wires of this embodiment may contain inevitable impurities. The aluminum alloy for conductive wires of the present embodiment includes 0.6 mass% or more and 2.5 mass% or less of Ni, 0.1 mass% or more and 0.7 mass% or less of Mg, and 0.2 mass% or more of 0. .7% by mass or less of Si, the balance of Al and inevitable impurities.

不可避不純物は、意図的に添加したものではなく、原料中又は製造工程において不可避的に混入される可能性のある物質である。不可避不純物としては、Fe及びバナジウム(V)、マンガン(Mn)、クロム(Cr)、ジルコニウム(Zr)等がある。   Inevitable impurities are not intentionally added, but are substances that may be inevitably mixed in the raw material or in the manufacturing process. Inevitable impurities include Fe and vanadium (V), manganese (Mn), chromium (Cr), zirconium (Zr) and the like.

Feは、Al合金に含有されると、Al合金の機械的強度を向上する作用を有するが、Feの含有量が多いと導電率を低下させる。Feは、Al−Fe−Si系晶出物を形成し、強度の向上に寄与するMg−Si系析出物の析出を抑制するので、本実施形態のアルミニウム合金では、Feが含有されていてもよいが0.4質量%以下の含有量とする。本実施形態のアルミニウム合金では、Feが含有されていてもよいが、0.1質量%未満のFeとすることで導電率を向上させることができる。   When Fe is contained in an Al alloy, it has an effect of improving the mechanical strength of the Al alloy, but when the Fe content is large, the electrical conductivity is lowered. Fe forms an Al-Fe-Si-based crystallized product and suppresses the precipitation of Mg-Si-based precipitates that contribute to the improvement of strength. Therefore, in the aluminum alloy of this embodiment, even if Fe is contained. Although it is good, it is set as 0.4 mass% or less content. In the aluminum alloy of the present embodiment, Fe may be contained, but the conductivity can be improved by using Fe of less than 0.1% by mass.

Vは、導電性に与える影響が特に大きく、本実施形態の導電線用アルミニウム合金において、0.002質量%を超えるVが含有されると、導電率の低下が大きくなる。本実施形態のアルミニウム合金では、Vが含有されていてもよいが、0.002質量%以下のVとすることで導電率を向上させることができる。不可避不純物には、その他の元素も含まれるが、その他の元素も含有量が多くなると導電率を低下させるので、0.1質量%未満、好ましくは0.05質量%以下に規制することが好ましい。   V has a particularly large effect on conductivity. When the amount of V exceeds 0.002% by mass in the aluminum alloy for conductive wires of this embodiment, the decrease in conductivity becomes large. In the aluminum alloy of this embodiment, V may be contained, but the conductivity can be improved by setting V to 0.002 mass% or less. The inevitable impurities include other elements, but if the content of the other elements is increased, the conductivity is lowered. Therefore, it is preferable to control the content to less than 0.1% by mass, preferably 0.05% by mass or less. .

[製造方法]
以下に、上述した実施態様のアルミニウム合金を用いて、ワイヤーハーネスを製造する工程の一例を説明する。
[Production method]
Below, an example of the process of manufacturing a wire harness is demonstrated using the aluminum alloy of the embodiment mentioned above.

(溶解工程)
JIS H2110規格の電気用アルミニウム地金は、添加元素の母合金が添加された後、アルミニウム合金溶湯として溶解される。但し、Ti、Bが微細化材として添加される場合、Ti、Bの母合金が鋳造直前にアルミニウム合金溶湯に添加される。
(Dissolution process)
JIS H2110 standard aluminum ingot is melted as a molten aluminum alloy after the mother alloy of the additive element is added. However, when Ti and B are added as a refining material, the master alloy of Ti and B is added to the molten aluminum alloy immediately before casting.

(鋳造工程)
得られたアルミニウム合金溶湯は、成分調整、除滓、脱ガス処理等の溶湯処理が施される。Ti、Bが微細化材として添加される場合、Al−Ti―B合金で形成されたロッドハードナー(微細化材)が鋳造前にアルミニウム合金溶湯に添加される。連続鋳造圧延機は、鋳型部分にアルミニウム合金溶湯を注湯し、実施態様のアルミニウム合金を鋳造すると共に連続圧延を行いφ9.5mmの荒引き線形状に鋳造圧延する。
(Casting process)
The obtained aluminum alloy molten metal is subjected to molten metal processing such as component adjustment, removal, and degassing. When Ti and B are added as a refined material, a rod hardener (a refined material) formed of an Al-Ti-B alloy is added to the molten aluminum alloy before casting. The continuous casting and rolling machine pours a molten aluminum alloy into a mold portion, casts the aluminum alloy of the embodiment, performs continuous rolling, and casts and rolls into a rough drawing line shape of φ9.5 mm.

以下、図5及び図6を用いて、鋳造圧延について、詳細に説明する。図5は、プロペルチ連続鋳造圧延機の鋳造機の部分であるベルトアンドホイール鋳造機の全体構造を模式的に説明する説明図である。図5に示すように、ベルトアンドホイール鋳造機と、回転鋳造輪1と、円周溝2と、無端ベルト3と、スパウト4と、ロール5とを備えている。回転鋳造輪1の周面に円周溝2が形成されており、この円周溝2を約200度の角度範囲にわたって蓋をするように、回転鋳造輪1の周面に接触して無端ベルト3が走行される。なお、上記角度範囲は、装置により適宜変更される。   Hereinafter, casting and rolling will be described in detail with reference to FIGS. 5 and 6. FIG. 5 is an explanatory view schematically illustrating the entire structure of a belt-and-wheel casting machine that is a part of the casting machine of the Properti continuous casting and rolling machine. As shown in FIG. 5, a belt and wheel casting machine, a rotary casting wheel 1, a circumferential groove 2, an endless belt 3, a spout 4 and a roll 5 are provided. A circumferential groove 2 is formed on the circumferential surface of the rotary casting wheel 1, and an endless belt is brought into contact with the circumferential surface of the rotary casting wheel 1 so as to cover the circumferential groove 2 over an angle range of about 200 degrees. 3 runs. In addition, the said angle range is suitably changed with an apparatus.

図6は、円周溝の構造を説明する部分断面図である。図6に示すように、ロール5により無端ベルト3が回転鋳造輪1の外周面に押し付けられ、無端ベルト3により蓋をされた状態の円周溝2内が鋳造キャビティとなる。   FIG. 6 is a partial cross-sectional view illustrating the structure of the circumferential groove. As shown in FIG. 6, the endless belt 3 is pressed against the outer peripheral surface of the rotary casting wheel 1 by the roll 5, and the inside of the circumferential groove 2 covered with the endless belt 3 becomes a casting cavity.

後述する組成のアルミニウム合金溶湯がスパウト4により鋳造キャビティ内に連続的に供給される。図示されていない冷却水の供給等の補助により、供給された溶湯は回転鋳造輪1及び無端ベルト3によって冷却され、凝固される。鋳造キャビティに供給されるアルミニウム合金溶湯の温度が高すぎるとうまく凝固せず、鋳造失敗や鋳造欠陥の原因となる。逆に、鋳造キャビティに供給されるアルミニウム合金溶湯の温度が低すぎると鋳造キャビティへ供給する途中で、凝固してしまい、これも鋳造失敗や鋳造欠陥の原因となる。このため、鋳造キャビティへアルミニウム合金溶湯を供給する温度の管理は重要となるが、本実施形態の導電線用アルミニウム合金の場合、固液共存の温度領域が比較的広いので、鋳造時のアルミニウム合金溶湯の温度管理が、容易になる。   A molten aluminum alloy having a composition described later is continuously supplied into the casting cavity by the spout 4. The supplied molten metal is cooled and solidified by the rotary casting wheel 1 and the endless belt 3 with the assistance of cooling water not shown. If the temperature of the molten aluminum alloy supplied to the casting cavity is too high, it will not solidify well, resulting in casting failure and casting defects. Conversely, if the temperature of the molten aluminum alloy supplied to the casting cavity is too low, it will solidify during the supply to the casting cavity, which will also cause casting failure and casting defects. For this reason, it is important to control the temperature at which the molten aluminum alloy is supplied to the casting cavity. However, in the case of the aluminum alloy for conductive wires of this embodiment, the temperature range of solid-liquid coexistence is relatively wide. The temperature control of the molten metal becomes easy.

回転鋳造輪1の回転に伴って、無端ベルト3が円周溝2から外れると、鋳造体6も円周溝2から外れる。そして、円周溝2から完全に離れた時点で鋳造体6の先端部分を少し(10〜20度程度)曲げると、鋳造が進むにつれて、無端ベルト3に再び接触することなく鋳造体6は連続鋳造機から、取り出されていく。このようにして製造された鋳造体6は、鋳造時に酸化物等の巻き込みが少なく、空気に触れて凝固した自由凝固面がないため、全体として酸化物の極めて少ない製品が得られ、次の熱延工程に送られる。   When the endless belt 3 is detached from the circumferential groove 2 as the rotary casting wheel 1 rotates, the cast body 6 is also detached from the circumferential groove 2. When the tip portion of the cast body 6 is bent slightly (about 10 to 20 degrees) when it is completely separated from the circumferential groove 2, the cast body 6 continues without contacting the endless belt 3 again as casting proceeds. It is taken out from the casting machine. The cast body 6 produced in this way has a small amount of oxides or the like during casting and does not have a free solidified surface that is solidified by contact with air, so that a product with very little oxide as a whole can be obtained. Sent to the rolling process.

連続鋳造機から取り出された鋳造体6は、図示されていない圧延機に導かれる。なお、回転鋳造輪1から取り出された鋳造体6は、円周溝2の曲面に沿って凝固し曲っているので、圧延機に導く前にロール矯正機を通して、鋳造体を真直ぐに矯正することが好ましい。   The cast body 6 taken out from the continuous casting machine is guided to a rolling mill (not shown). Since the cast body 6 taken out from the rotary casting wheel 1 is solidified and bent along the curved surface of the circumferential groove 2, the cast body is straightened through a roll straightening machine before being guided to the rolling mill. Is preferred.

圧延機に導かれた鋳造体6は、まだ相当に高温状態を維持しているので、通常はそのまま熱間圧延して、荒引き線を製造する。圧延機入り口での温度が低すぎる場合、圧延機の前に加熱装置を設けて温度が上昇するように調整することも可能であるが、連続鋳造機での冷却状況を調整し、連続鋳造機の出口での温度を制御することが、コスト的にも好ましい。   Since the cast body 6 guided to the rolling mill is still maintained at a considerably high temperature, it is usually hot-rolled as it is to produce a rough drawn wire. If the temperature at the entrance of the rolling mill is too low, a heating device can be installed in front of the rolling mill to adjust the temperature to rise. It is preferable in terms of cost to control the temperature at the outlet.

圧延時には、冷却を兼ねた潤滑剤エマルジョンを使用してもよい。圧延時の断面減少率が小さいと鋳塊中の鋳巣を十分に潰すことができず、荒引き線材の巻き取り時や荒引き線材の巻き取り後の伸線加工時に割れが発生しやすくなる。また、断面減少率が大きいと圧延中の鋳塊の温度低下が激しくなり、荒引き線材が圧延しにくくなる。このため、圧延は、断面減少率60%以上98%以下の範囲で行うことが好ましい。   During rolling, a lubricant emulsion that also serves as cooling may be used. If the reduction rate of the cross section during rolling is small, the cast hole in the ingot cannot be sufficiently crushed, and cracks are likely to occur during winding of the rough drawn wire or after drawing of the rough drawn wire. . Moreover, when the cross-section reduction rate is large, the temperature drop of the ingot during rolling becomes severe, and the rough drawn wire becomes difficult to roll. For this reason, it is preferable to perform rolling in the range of a cross-sectional reduction rate of 60% or more and 98% or less.

なお、連続鋳造機及び圧延機を用いず、DC鋳造にて円柱状の鋳塊(ビレット)にアルミニウム合金溶湯が鋳造された後、押出加工により、φ9.5mmの中実丸棒に成形してもよい。   In addition, without using a continuous casting machine and a rolling mill, after a molten aluminum alloy was cast into a cylindrical ingot (billet) by DC casting, it was formed into a solid round bar of φ9.5 mm by extrusion. Also good.

(伸線加工工程)
上述した鋳造工程により得られた荒引き線が、所定の線径になるように、伸線加工される。伸線加工工程において、必要に応じて所定温度の焼鈍工程を介在させると、伸線加工が行いやすくなる。なお、必要に応じて伸線加工の前、伸線加工の中間、伸線加工終了後に、焼鈍処理が行われる。圧延後、荒引き線を一旦巻き取った後に、再び焼鈍と冷間伸線加工が行われるようにしてもよい。焼鈍処理は、バッチ処理で行っても良いし、通電による連続焼鈍を行っても良い。
(Wire drawing process)
The rough drawing wire obtained by the casting process described above is drawn so as to have a predetermined wire diameter. In the wire drawing process, if an annealing process at a predetermined temperature is interposed as required, the wire drawing process is facilitated. In addition, an annealing process is performed before a wire drawing process, the middle of a wire drawing process, and after completion | finish of a wire drawing process as needed. After rolling, after winding the rough wire once, annealing and cold wire drawing may be performed again. The annealing treatment may be performed by batch processing or continuous annealing by energization.

(撚り加工工程)
伸線加工工程により得られた伸線を複数本撚り合わせる撚り加工工程が行われる。次に、得られた撚り線が所定の断面積になるように圧縮加工が行われる。
(Twisting process)
A twisting process of twisting a plurality of drawn wires obtained by the drawing process is performed. Next, compression processing is performed so that the obtained stranded wire has a predetermined cross-sectional area.

(溶体化処理工程)
撚り加工工程により得られた撚り線が、溶体化処理された後、水焼き入れが行われる。
(Solution treatment process)
After the twisted wire obtained by the twisting process is subjected to a solution treatment, water quenching is performed.

撚り線が溶体化処理されることにより、鋳造の際に晶出したMg−Si系化合物、又はAl−Cu系化合物が、母相中に固溶し、母相中のMg、Si及びCuの固溶量が増加する。   By the solution treatment of the stranded wire, the Mg-Si compound or Al-Cu compound crystallized during casting is dissolved in the matrix, and Mg, Si and Cu in the matrix are dissolved. The amount of solid solution increases.

そして、撚り線が水焼き入れにより急冷されることにより、Mg、Si及びCuから選択される1種以上の元素が冷却時に析出することが抑制され、Mg、Si及びCuから選択される1種以上の元素の固溶量が高い状態が維持される。   And, when the stranded wire is quenched by water quenching, it is suppressed that one or more elements selected from Mg, Si and Cu are precipitated during cooling, and one kind selected from Mg, Si and Cu. The state where the solid solution amount of the above elements is high is maintained.

なお、溶体化処理条件としては、0.5時間(hr)以上12時間(hr)以下の間、520℃以上560℃以下の溶体化処理温度を保持することが好ましい。溶体化処理温度が520℃未満の温度であったり、温度保持時間が0.5時間(hr)未満であったりすると、溶体化の効果が小さい。溶体化処理温度が560℃より高温になると局部溶融が発生する可能性がある。また、温度保持時間が12時間(hr)を超えても、Mg、Si及びCuから選択される1種以上の元素の固溶量の変化は見られず、コスト増となる。   In addition, as solution treatment conditions, it is preferable to hold | maintain the solution treatment temperature of 520 degreeC or more and 560 degrees C or less for 0.5 hours (hr) or more and 12 hours (hr) or less. When the solution treatment temperature is less than 520 ° C. or the temperature holding time is less than 0.5 hours (hr), the effect of solution treatment is small. When the solution treatment temperature is higher than 560 ° C., local melting may occur. Further, even if the temperature holding time exceeds 12 hours (hr), the change in the solid solution amount of one or more elements selected from Mg, Si and Cu is not observed, resulting in an increase in cost.

(時効処理工程)
溶体化処理工程で、溶体化処理をされた撚り線に、時効処理を行う。時効処理を行うことにより、強度向上に寄与する微細なMg−Si系化合物、又はAl−Cu系化合物が析出し、強度が向上するとともに、母相中のMg、Si及びCuの固溶量が低下し、導電率も向上する。好ましい時効条件としては、時効処理温度が150℃以上200℃以下であり、温度保持時間が0.5時間(hr)以上14時間(hr)以下である。時効処理温度が150℃未満であったり、温度保持時間が0.5時間(hr)未満では、析出が十分でない。また、時効処理温度が200℃を超えたり、温度保持時間が14時間(hr)を超えると析出物が粗大化し、伸線性が低下する可能性がある。
(Aging process)
In the solution treatment step, an aging treatment is performed on the solution-treated strands. By performing the aging treatment, a fine Mg-Si compound or Al-Cu compound that contributes to improving strength is precipitated, the strength is improved, and the solid solution amount of Mg, Si, and Cu in the matrix phase is increased. The electrical conductivity is also improved. As preferable aging conditions, the aging treatment temperature is 150 ° C. or more and 200 ° C. or less, and the temperature holding time is 0.5 hours (hr) or more and 14 hours (hr) or less. If the aging treatment temperature is less than 150 ° C. or the temperature holding time is less than 0.5 hour (hr), precipitation is not sufficient. On the other hand, if the aging treatment temperature exceeds 200 ° C. or the temperature holding time exceeds 14 hours (hr), the precipitates may become coarse and the wire drawing property may be reduced.

(被覆)
時効処理を行った撚り線には、絶縁樹脂の被覆が行なわれる。絶縁樹脂の被覆後、撚り線が所定の長さに切断される。撚り線の両端には、端子が設けられ、ワイヤーハーネスが製造される。
(Coating)
The stranded wire subjected to the aging treatment is coated with an insulating resin. After covering with the insulating resin, the stranded wire is cut into a predetermined length. Terminals are provided at both ends of the stranded wire, and a wire harness is manufactured.

[実施例]
次に、本発明に係る実施例について説明する。表1に示す組成を有するアルミニウム合金の溶湯を用意し、除滓、脱ガス等の溶湯処理を行った。溶湯処理後、CFF(セラミックフォームフィルター)で、ろ過処理し、連続鋳造圧延法により、φ9.5mmの荒引き線を得た。
[Example]
Next, examples according to the present invention will be described. A molten aluminum alloy having the composition shown in Table 1 was prepared and subjected to molten metal treatment such as degassing and degassing. After the molten metal treatment, it was filtered with a CFF (ceramic foam filter), and a rough drawing line of φ9.5 mm was obtained by a continuous casting and rolling method.

Figure 0006562087
Figure 0006562087

得られた荒引き線が、φ3.2mmまで伸線加工された後、焼鈍温度が300℃かつ10時間(hr)で、焼鈍がされる。次に得られた荒引き線が、φ1.0mmまで伸線加工された。得られた導電線には、溶体化処理温度540℃、保持時間10時間(hr)の溶体化処理工程が処理され、水冷される。溶体化処理工程の後、時効処理温度180℃、保持時間10時間(hr)の時効処理工程が処理され、φ1.0mmの導電線の試料を得た。   The obtained rough drawing wire is drawn to φ3.2 mm, and then annealed at an annealing temperature of 300 ° C. and 10 hours (hr). Next, the obtained rough drawing wire was drawn to φ1.0 mm. The obtained conductive wire is subjected to a solution treatment step at a solution treatment temperature of 540 ° C. and a holding time of 10 hours (hr), and is cooled with water. After the solution treatment step, an aging treatment step with an aging treatment temperature of 180 ° C. and a holding time of 10 hours (hr) was processed to obtain a conductive wire sample of φ1.0 mm.

表1に示すように、組成が異なる20種類の導電性用アルミニウム合金について、φ1.0mmの導電線の試料(本願発明の実施例である試料1から12、比較例である試料13から20)を用意し、それら試料のそれぞれについての性能を評価した。なお、各材料の組成は、回転鋳造輪1の直前で採取したアルミニウム合金溶湯を凝固させたサンプルをJIS H1305規格に基づく発光分析法で分析することにより分析可能である。   As shown in Table 1, with respect to 20 types of conductive aluminum alloys having different compositions, samples of conductive wires of φ1.0 mm (Samples 1 to 12 as examples of the present invention, Samples 13 to 20 as comparative examples) Were prepared and the performance of each of these samples was evaluated. The composition of each material can be analyzed by analyzing a sample obtained by solidifying a molten aluminum alloy collected immediately before the rotary casting wheel 1 by an emission analysis method based on the JIS H1305 standard.

第1の性能評価としては、JIS Z 2241号(1998年)試験に基づき、引張試験が行なわれ、抗張力(Ultimate Tensile Strength,UTS)及び伸びを、測定した。抗張力、伸びの結果が表1に示されている。   As the first performance evaluation, a tensile test was performed based on the JIS Z 2241 (1998) test, and the tensile strength (Ultimate Tensile Strength, UTS) and elongation were measured. The results of tensile strength and elongation are shown in Table 1.

引張強さは、抗張力を評価し、抗張力が150[MPa]を超える試料を「Y」と評価し、抗張力が150[MPa]以下の試料を「N」と評価した。引張強さの結果が表1に示されている。   As for the tensile strength, the tensile strength was evaluated, a sample having a tensile strength exceeding 150 [MPa] was evaluated as “Y”, and a sample having a tensile strength of 150 [MPa] or less was evaluated as “N”. The tensile strength results are shown in Table 1.

また、第2の性能評価としては、JIS H0505の試験法により、導電率を測定し、導電率の結果も表1に示されている。導電率が50[%IACS]以上の試料を「Y」と評価し、導電率が50[%IACS]未満の試料を「N」と評価した。   Further, as the second performance evaluation, the conductivity was measured by the test method of JIS H0505, and the results of the conductivity are also shown in Table 1. A sample having an electric conductivity of 50 [% IACS] or higher was evaluated as “Y”, and a sample having an electric conductivity of less than 50 [% IACS] was evaluated as “N”.

また、第3の性能評価としては、φ3.2mmからφ1.0mmに伸線加工する際に、伸線性も確認し、8,000kgのφ3.2mm線をφ1.0mmに伸線する際に断線が起こった試料を「N」、起こらなかったものを「Y」と評価した。   In addition, as a third performance evaluation, when drawing from φ3.2 mm to φ1.0 mm, the drawability was also confirmed, and when an 8,000 kg φ3.2 mm wire was drawn to φ1.0 mm, the wire was broken. A sample in which the occurrence occurred was evaluated as “N”, and a sample in which the occurrence did not occur was evaluated as “Y”.

実施例1から実施例12は、上述した本実施形態に係る導電線用アルミニウム合金に相当する。   Examples 1 to 12 correspond to the aluminum alloy for conductive wires according to the above-described embodiment.

比較例13の導電線用アルミニウム合金は、本願発明の実施例1から実施例12の導電線用アルミニウム合金よりも、Ni、Si、Mgの含有量が少なく、引張強さの評価が「N」となる課題がある。   The aluminum alloy for conductive wire of Comparative Example 13 has less Ni, Si, Mg content than the aluminum alloy for conductive wire of Examples 1 to 12 of the present invention, and the evaluation of tensile strength is “N”. There is a problem.

比較例14の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Siの含有量が少ないので、Mg−Si系析出物(MgSi等)の形成が少なく、引張強さの評価が「N」となる課題がある。Siの含有量に対して、Mgの含有量が大きく、Alの母相に対してMgの固溶量が大きくなり、導電率の評価が「N」となる課題がある。Since the aluminum alloy for conductive wires of Comparative Example 14 has a lower Si content than the aluminum alloys for conductive wires 1 to 12 which are the examples of the present invention, Mg-Si based precipitates (Mg 2 Si, etc.) There is a problem that evaluation of tensile strength is “N”. There is a problem that the Mg content is large with respect to the Si content, the Mg solid solution amount is large with respect to the Al matrix, and the conductivity is evaluated as “N”.

比較例15の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Mgの含有量が少ないので、Mg−Si系析出物(MgSi等)の形成が少なく、引張強さの評価が「N」となる課題がある。The aluminum alloy for conductive wires of Comparative Example 15 has a lower Mg content than the aluminum alloys for conductive wires of 1 to 12 which are the examples of the present invention. Therefore, Mg-Si based precipitates (Mg 2 Si, etc.) There is a problem that evaluation of tensile strength is “N”.

比較例16の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Mgの含有量が多いので、Siの含有量に対して、Mgの含有量が大きく、Alの母相に対してMgの固溶量が大きくなり、導電性の評価が「N」となる課題がある。伸線性の評価が「N」となっているのは、0.7質量%を超えるMgが含有され、伸線加工の際に破断の起点となる可能性のある粗大なMg−Si系晶出物ができやすくなるためと考えられる。   Since the aluminum alloy for conductive wires of Comparative Example 16 has a higher Mg content than the aluminum alloys for conductive wires 1 to 12 which are the examples of the present invention, the Mg content relative to the Si content However, there is a problem that the solid solution amount of Mg increases with respect to the Al matrix and the conductivity is evaluated as “N”. The wire drawing evaluation is “N” because Mg containing more than 0.7% by mass contains coarse Mg—Si-based crystallization that may be the starting point of fracture during wire drawing. This is thought to be because it becomes easier to make things.

比較例17の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Siの含有量が多い。このため、伸線性の評価が「N」となっているのは、0.7質量%を超えるSiが含有され、伸線加工の際に破断の起点となる可能性のある粗大なMg−Si系晶出物ができやすくなるためと考えられる。   The aluminum alloy for conductive wires of Comparative Example 17 has a higher Si content than the aluminum alloys for conductive wires 1 to 12 which are the examples of the present invention. For this reason, the evaluation of the drawability is “N” because it contains more than 0.7% by mass of Si, which is a coarse Mg—Si that may be the starting point of fracture during wire drawing. This is thought to be because it becomes easier to form a system crystallized product.

比較例18の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Niの含有量が多く、Niが2.5質量%を超えて含有される。伸線性の評価が「N」となっているのは、伸線加工の際に破断の起点となる可能性のある粗大なNi−Al系晶出物ができやすくなるためと考えられる。   The aluminum alloy for conductive wires of Comparative Example 18 has a higher Ni content than the aluminum alloy for conductive wires of 1 to 12, which is an example of the present invention, and Ni is contained in excess of 2.5% by mass. . The reason why the wire drawing property is evaluated as “N” is considered to be that a coarse Ni—Al-based crystallized substance that may become a starting point of breakage at the time of wire drawing is easily formed.

比較例19の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Cuの含有量が多く、Cuが0.4質量%を超えて含有される。伸線性の評価が「N」となっているのは、変形抵抗性が大きくなり、導電線の伸線性が低下するためと考えられる。また、比較例19の導電線用アルミニウム合金は、Cuの含有量が大きく、Alの母相に対してCuの固溶量が大きくなり、導電性の評価が「N」となる課題がある。   The aluminum alloy for conductive wires of Comparative Example 19 has a higher Cu content than the aluminum alloy for conductive wires of 1 to 12, which is an example of the present invention, and Cu is contained in excess of 0.4% by mass. . The evaluation of the drawability is “N” because the deformation resistance is increased and the drawability of the conductive wire is lowered. Moreover, the aluminum alloy for conductive wires of Comparative Example 19 has a problem that the Cu content is large, the solid solution amount of Cu is large with respect to the Al matrix, and the conductivity evaluation is “N”.

比較例20の導電線用アルミニウム合金は、本願発明の実施例である1から12の導電線用アルミニウム合金よりも、Feの含有量が多く、Feが0.4質量%を超えて含有される。引張強さの評価が「N」となっているのは、Al−Fe−Si系晶出物を形成し、強度の向上に寄与するMg−Si系析出物の析出を抑制するためと考えられる。   The aluminum alloy for conductive wires of Comparative Example 20 contains more Fe than the aluminum alloy for conductive wires 1 to 12 which is an example of the present invention, and Fe is contained in excess of 0.4 mass%. . It is considered that the evaluation of the tensile strength is “N” in order to suppress the precipitation of Mg—Si based precipitates that form Al—Fe—Si based crystals and contribute to the improvement of strength. .

以上説明したように、本願発明の実施例1から実施例12の導電線用アルミニウム合金は、0.6質量%以上2.5質量%以下のニッケル(Ni)と、0.1質量%以上0.7質量%以下のマグネシウム(Mg)と、0.2質量%以上0.7質量%以下のシリコン(Si)と、残部がAlと不可避不純物からなる。これにより、実施例1から実施例12の導電線用アルミニウム合金は、機械的強度、伸線性及び導電率が優れている。さらに、Niと、Mgと、Siとの合計含有量は、1.1質量%以上であることが好ましい。Niと、Mgと、Siとの合計含有量は、1.1質量%以上であると、機械的強度の特性を向上させることができる。   As described above, the aluminum alloy for conductive wires of Examples 1 to 12 of the present invention includes 0.6 mass% to 2.5 mass% nickel (Ni) and 0.1 mass% to 0 mass%. 0.7% by mass or less of magnesium (Mg), 0.2% by mass or more and 0.7% by mass or less of silicon (Si), and the balance is made of Al and inevitable impurities. Thereby, the aluminum alloy for conductive wires of Example 1 to Example 12 is excellent in mechanical strength, wire drawability, and electrical conductivity. Furthermore, the total content of Ni, Mg, and Si is preferably 1.1% by mass or more. When the total content of Ni, Mg, and Si is 1.1% by mass or more, the mechanical strength characteristics can be improved.

そして、本願発明の実施例1から実施例12の導電線用アルミニウム合金で形成された導電線は、耐屈曲性も向上する。本願発明の実施例である1から12の導電線用アルミニウム合金で形成された導電線が、φ1mm以下とされ、撚り加工された撚り線であると、ワイヤーハーネスに使用した場合、導電線の取り回しが容易となる。また、ワイヤーハーネスにおいて、φ1mm以下の導電線が撚り加工された撚り線であると、導電線の耐屈曲性が高まる。そして、ワイヤーハーネスが撚り線であることにより、同じ断面積を有する1本の線より、表面積を多くできるので、導電率が高くなる。   And the conductive wire formed with the aluminum alloy for conductive wires of Examples 1 to 12 of the present invention also has improved bending resistance. When the conductive wire formed of the aluminum alloy for conductive wires of 1 to 12, which is an embodiment of the present invention, is a stranded wire of φ1 mm or less and twisted, when used for a wire harness, the conductive wire is routed. Becomes easy. Moreover, in the wire harness, when the conductive wire having a diameter of 1 mm or less is a twisted wire, the bending resistance of the conductive wire is increased. And since a surface area can be increased more than one line | wire which has the same cross-sectional area because a wire harness is a strand wire, electrical conductivity becomes high.

本願発明の実施例である1から12の導電線用アルミニウム合金は、上述した特許文献1のアルミニウム合金よりも固液共存領域の温度範囲が広がり、鋳造の際の鋳込み温度の管理が容易となり、鋳造欠陥が抑制される。   The temperature range of the solid-liquid coexistence region is wider than the aluminum alloy of Patent Document 1 described above, and the aluminum alloy for conductive wires 1 to 12 which is an example of the present invention makes it easy to manage the casting temperature during casting, Casting defects are suppressed.

以上、本願発明の種々の有用な実施例を示し、かつ、説明を施した。本願発明は、上述した種々の実施例や変形例に限定されること無く、この発明の要旨や添付する特許請求の範囲に記載された内容を逸脱しない範囲で種々変形可能であることは言うまでも無い。   In the above, various useful examples of the present invention have been shown and described. The present invention is not limited to the various embodiments and modifications described above, and various modifications can be made without departing from the gist of the present invention and the contents described in the appended claims. There is no.

1 回転鋳造輪
2 円周溝
3 無端ベルト
4 スパウト
5 ロール
6 鋳造体
1 Rotating casting wheel 2 Circumferential groove 3 Endless belt 4 Spout 5 Roll 6 Casting body

Claims (3)

合金組成が、0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部がAlと不可避不純物からなる導電線を有するワイヤーハーネス。   The alloy composition is 0.6 mass% to 2.5 mass% Ni, 0.1 mass% to 0.7 mass% Mg, and 0.2 mass% to 0.7 mass% Si. And the wire harness which has a conductive wire which the remainder consists of Al and an unavoidable impurity. 前記合金組成が、
0.1質量%以上0.4質量%以下のCuと、
0.01質量%以上0.05質量%以下のTiと、
0.001質量%以上0.01質量%以下のBと、
からなる群から選択された1種以上の元素を含む、請求項1に記載のワイヤーハーネス。
The alloy composition is
0.1 mass% or more and 0.4 mass% or less of Cu;
0.01 mass% or more and 0.05 mass% or less of Ti,
0.001 mass% or more and 0.01 mass% or less B,
The wire harness according to claim 1, comprising at least one element selected from the group consisting of:
0.6質量%以上2.5質量%以下のNiと、0.1質量%以上0.7質量%以下のMgと、0.2質量%以上0.7質量%以下のSiと、残部がAlと不可避不純物とからなるアルミニウム合金の撚り線を形成し、
前記撚り線に対して溶体化処理及び時効処理後、
前記撚り線表面に絶縁樹脂を被覆し、
被覆後の前記撚り線を所定の長さに切断した後、切断された前記撚り線の両端に端子を設ける、ワイヤーハーネスの製造方法。
0.6 mass% or more and 2.5 mass% or less of Ni, 0.1 mass% or more and 0.7 mass% or less of Mg, 0.2 mass% or more of 0.7 mass% or less of Si, and the balance Forming a stranded wire of aluminum alloy consisting of Al and inevitable impurities,
After solution treatment and aging treatment for the stranded wire,
Covering the surface of the stranded wire with an insulating resin,
A method of manufacturing a wire harness, comprising: cutting the stranded wire after coating into a predetermined length; and providing terminals at both ends of the cut stranded wire.
JP2017559210A 2015-12-28 2016-12-27 Wire harness and method for manufacturing wire harness Active JP6562087B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015257102 2015-12-28
JP2015257102 2015-12-28
PCT/JP2016/088910 WO2017115801A1 (en) 2015-12-28 2016-12-27 Aluminum alloy for electroconductive wire, electroconductive wire, and method for manufacturing wire harness

Publications (2)

Publication Number Publication Date
JPWO2017115801A1 JPWO2017115801A1 (en) 2018-11-01
JP6562087B2 true JP6562087B2 (en) 2019-08-21

Family

ID=59224752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559210A Active JP6562087B2 (en) 2015-12-28 2016-12-27 Wire harness and method for manufacturing wire harness

Country Status (3)

Country Link
JP (1) JP6562087B2 (en)
CN (1) CN108431259A (en)
WO (1) WO2017115801A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167469A1 (en) * 2018-03-01 2019-09-06 本田技研工業株式会社 Al-mg-si system aluminum alloy material
JP2021025084A (en) * 2019-08-02 2021-02-22 株式会社フジクラ Method for manufacturing aluminum alloy wire, method for manufacturing electric wire using the same, and method for manufacturing wire harness

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248857A (en) * 1984-05-22 1985-12-09 Sumitomo Electric Ind Ltd Aluminum alloy for bonding wire
JPH02129335A (en) * 1988-11-08 1990-05-17 Kobe Steel Ltd Grayly natural colored aluminum alloy
JPH05214474A (en) * 1992-02-04 1993-08-24 Hitachi Cable Ltd Low lightness aluminum formed part and its production and low lightness transmission line
JP5128109B2 (en) * 2006-10-30 2013-01-23 株式会社オートネットワーク技術研究所 Electric wire conductor and manufacturing method thereof
EP2896706B1 (en) * 2013-03-29 2017-09-06 Furukawa Electric Co., Ltd. Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductors
JP6379021B2 (en) * 2014-12-05 2018-08-22 矢崎総業株式会社 Method for producing aluminum alloy stranded wire conductor

Also Published As

Publication number Publication date
CN108431259A (en) 2018-08-21
JPWO2017115801A1 (en) 2018-11-01
WO2017115801A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
EP3115473B1 (en) Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
JP6328805B2 (en) Aluminum wire for automobile
US10096394B2 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire and wire harness, and method of manufacturing aluminum alloy wire rod
US9997276B2 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, and wire harness, and method of manufacturing aluminum alloy wire rod
EP3228719B1 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, wire harness, and method for producing the aluminum alloy wire rod
EP3260563B1 (en) Aluminum alloy conductor, aluminum alloy stranded wire, coated wire, wire harness, and manufacturing method of aluminum alloy conductor
EP3150732B1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
JP4279203B2 (en) Aluminum alloy for conductive wire of automobile
KR20150080011A (en) Aluminum alloy wire and aluminum alloy twisted wire, covered electric wire, and wire harness using same
CN107849670B (en) Method for manufacturing aluminum alloy wire and aluminum alloy wire
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP6562087B2 (en) Wire harness and method for manufacturing wire harness
KR20190080878A (en) Aluminum alloy wire, aluminum alloy wire, coated wire, and terminal wire
JP2010163677A (en) Aluminum alloy wire rod
CN111279005A (en) Method for manufacturing aluminum alloy wire, method for manufacturing electric wire using same, and method for manufacturing wire harness
JP7022320B2 (en) Copper alloy wire
KR20190077370A (en) Aluminum alloy wire, aluminum alloy wire, coated wire, and terminal wire
JP2016216758A (en) Copper iron alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6562087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350