JP7422539B2 - Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method - Google Patents
Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method Download PDFInfo
- Publication number
- JP7422539B2 JP7422539B2 JP2019236936A JP2019236936A JP7422539B2 JP 7422539 B2 JP7422539 B2 JP 7422539B2 JP 2019236936 A JP2019236936 A JP 2019236936A JP 2019236936 A JP2019236936 A JP 2019236936A JP 7422539 B2 JP7422539 B2 JP 7422539B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- aluminum alloy
- electrical conductivity
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 78
- 239000000463 material Substances 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 74
- 239000000956 alloy Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000005097 cold rolling Methods 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 19
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000000265 homogenisation Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 description 16
- 229910045601 alloy Inorganic materials 0.000 description 15
- 238000005452 bending Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 4
- 238000003483 aging Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
この発明は、アルミニウム合金圧延材、特に熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材に関する。 The present invention relates to a rolled aluminum alloy material, particularly to a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength.
薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度が求められる。 Heat generating elements are used in chassis, metal-based printed circuit boards, and internal covers of products such as flat-screen televisions, flat-screen monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, and mobile terminals such as smartphones and mobile phones. Materials for built-in or attached components are required to have excellent thermal conductivity and strength for rapid heat dissipation.
また、電気自動車、ハイブリッド自動車に代表される電気を動力源とした各種電導輸送機器(EV、HV、PHV、FCV、その他電気機関車等)には、電池群、インバータ、モータ等の各種の電気機器が搭載され、これらを電気的に接続するバスバーと呼ばれる電気接続部品が使用されており、優れた導電性、振動に対する強度、発熱に対する熱拡散性(熱伝導性)が求められる。 In addition, various types of conductive transportation equipment (EV, HV, PHV, FCV, other electric locomotives, etc.) powered by electricity, such as electric vehicles and hybrid vehicles, are equipped with various electric power sources such as batteries, inverters, and motors. Devices are mounted and electrical connection parts called busbars are used to electrically connect these devices, and are required to have excellent electrical conductivity, strength against vibration, and heat dissipation (thermal conductivity) against heat generation.
更に、半導体素子、特に電力用半導体(パワーデバイス)や、液晶ディスプレイのバックライト、各種照明器具、自動車のヘッドランプやリアランプ等の光源として用いられる発光ダイオード(LED)の実装に用いられるリードフレームには、優れた導電性、素子を支持する強度、発熱に対する熱拡散性(熱伝導性)が求められる。 Furthermore, it is used in lead frames used for mounting semiconductor elements, especially power semiconductors (power devices), and light emitting diodes (LEDs) used as light sources for backlights of liquid crystal displays, various lighting equipment, and automobile headlamps and rear lamps. This requires excellent electrical conductivity, strength to support the device, and thermal diffusivity against heat generation (thermal conductivity).
JIS1100、1050、1070等の純アルミニウム合金は熱伝導性及び導電性に優れるが、強度が低い。高強度材として用いられるJIS5052等のAl-Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS1100, 1050, and 1070 have excellent thermal conductivity and electrical conductivity, but have low strength. Al-Mg alloys (5000 series alloys) such as JIS 5052 used as high-strength materials are significantly inferior in thermal conductivity and electrical conductivity to pure aluminum alloys.
これに対しAl-Mg-Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al-Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, Al-Mg-Si alloys (6000 series alloys) have good thermal and electrical conductivity and can be improved in strength through age hardening. A method of obtaining an aluminum alloy plate with excellent conductivity and workability is being studied.
例えば、特許文献1には、Mgを0.1~0.34質量%、Siを0.2~0.8質量%、Cuを0.22~1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上である合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400~540℃の温度で予備加熱を経て熱間圧延、50~85%の圧下率で冷間圧延を施した後、140~280℃の温度で焼鈍をすることを特徴とするAl-Mg―Si系合金圧延板の製造方法が開示されている。 For example, in Patent Document 1, it contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An alloy containing unavoidable impurities and a Si/Mg content ratio of 1.3 or more is made into an ingot with a thickness of 250 mm or more by semi-continuous casting, preheated at a temperature of 400 to 540 ° C, and then hot rolled for 50 minutes. A method for producing an Al--Mg--Si alloy rolled sheet is disclosed, which is characterized by cold rolling at a rolling reduction of ~85% and then annealing at a temperature of 140-280°C.
特許文献2には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02~0.15質量%、Cr:0.02~0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiを0.2%以下に規制し、もしくはこれに更にCu:0.01~1質量%か希土類元素:0.01~0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500~570℃の溶体化処理を行い、続いて冷間圧延率5~40%で冷間圧延を行い、冷間圧延後150~190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and further contains Mn: 0.02 to 1.5% by mass. 0.15% by mass, Cr: 0.02 to 0.15%, and the remainder consists of Al and unavoidable impurities, with Ti in the unavoidable impurities being regulated to 0.2% or less. or further, an aluminum alloy plate having a composition containing one or both of Cu: 0.01 to 1% by mass or rare earth elements: 0.01 to 0.2% by mass is produced by continuous casting and rolling. , followed by cold rolling, followed by solution treatment at 500 to 570°C, followed by cold rolling at a cold rolling rate of 5 to 40%, and aging treatment by heating to less than 150 to 190°C after cold rolling. A method for producing an aluminum alloy plate with excellent thermal conductivity, strength, and bending workability is described.
特許文献3には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Cr:0.02~0.1質量%、Fe:0.3質量%以下を含有し、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiが0.015質量%以下に規制され、かつ導電率が50%IACS以上、熱伝導率が200W/m・K以上であることを特徴とする熱伝導性と成形性に優れたアルミニウム合金板が開示されている。 Patent Document 3 describes Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Cr: 0.02 to 0.1 mass%, Fe: 0.3 mass% or less. , the remainder consists of Al and unavoidable impurities, Ti in the unavoidable impurities is regulated to 0.015% by mass or less, and the electrical conductivity is 50% IACS or higher and the thermal conductivity is 200 W/m K or higher. An aluminum alloy plate with excellent thermal conductivity and formability is disclosed.
特許文献4には、Si:1.1~1.5質量%、Mg:0.3~0.6質量%、Cu:0.6~0.8質量%を含有し、不純物としてFe:0.35質量%以下に規制し、残部がAlおよび不可避不純物よりなり、かつ導電率が55%IACS以上、引張強さを215N/mm2以上であることを特徴とする、熱伝導性と強度と曲げ加工性に優れたアルミニウム合金圧延板が開示されている。 Patent Document 4 contains Si: 1.1 to 1.5% by mass, Mg: 0.3 to 0.6% by mass, Cu: 0.6 to 0.8% by mass, and Fe: 0 as impurities. .35% by mass or less, the balance consists of Al and unavoidable impurities, and the electrical conductivity is 55% IACS or more and the tensile strength is 215N/mm 2 or more. An aluminum alloy rolled plate with excellent bending workability is disclosed.
なお、Al-Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In addition, in Al-Mg-Si alloys, thermal conductivity and electrical conductivity show a good correlation, and aluminum alloy plates with excellent thermal conductivity have excellent electrical conductivity, and are suitable for use as heat dissipation material as well. It can be used as a conductive member material.
しかしながら、特許文献1では、工程条件の検討が不十分である。また、特許文献1において、引張強さはSiまたはCuの寄与により改善がなされたものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なく、SiおよびMgをほぼ同じ割合で含有する合金は特許文献1の請求範囲に含まれない。 However, in Patent Document 1, consideration of process conditions is insufficient. Furthermore, in Patent Document 1, the tensile strength was improved due to the contribution of Si or Cu, and the next most abundant element after Al is Si or Cu, the content of Mg is relatively small, and Si and Cu are the most common elements. Alloys containing Mg in approximately the same proportion are not included in the scope of patent document 1.
特許文献2では、比較的高い強度が得られているものの実施例に記載の導電率は54%IACS未満と低い。 Although relatively high strength is obtained in Patent Document 2, the conductivity described in the examples is as low as less than 54% IACS.
特許文献3において、実施例の記載例では引張強度が280MPa以上の材料における導電率は50%IACS未満と低い。 In Patent Document 3, in the example described in Examples, the electrical conductivity of a material having a tensile strength of 280 MPa or more is as low as less than 50% IACS.
特許文献4においても、実施例の記載例では導電率は55%IACS以上と高いものの引張強度が250MPa以上の材料は得られていない。 Also in Patent Document 4, in the examples described in Examples, although the electrical conductivity is as high as 55% IACS or more, a material with a tensile strength of 250 MPa or more is not obtained.
上記のように、高い導電率及び熱伝導性と引張強さの双方の特性を備えるアルミニウム合金板を得ることは非常に困難である。 As mentioned above, it is very difficult to obtain an aluminum alloy plate with both high electrical and thermal conductivity and tensile strength properties.
本発明は、上述した技術背景に鑑み、良好な熱伝導性と高い導電率及び高い強度を有するアルミニウム合金圧延材を提供することを目的とする。 In view of the above-mentioned technical background, an object of the present invention is to provide a rolled aluminum alloy material having good thermal conductivity, high electrical conductivity, and high strength.
上記課題を解決すべく、本願発明者は鋭意研究の結果、アルミニウム圧延材の組成と製造工程を検討することで良好な熱伝導性と高い導電率及び高い強度を有するアルミニウム合金圧延材が得られることを見出した。すなわち本願発明は以下に関する。
(1)化学組成が、Si:0.45~0.85質量%、Mg:0.75~1.0質量%、Fe:0.05~0.45質量%、Cu:0.10~0.35質量%、Cr:0.02~0.15質量%、Ni:0.002~0.20質量%、Mnが0.15質量%以下、Znが0.12質量%以下、Ti:0.002~0.15質量%、B:0.0005~0.05質量%を含有し、残部がAlと不可避不純物からなり、且つ、0.5≦CSi/CMg≦1.1(但し、CSiはSi含有量、CMgはMg含有量)なる関係を満たすと共に、導電率が50%IACS以上、引張強さが305MPa以上であることを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(2)Cu:0.12~0.25質量%、Cr:0.03~0.12質量%、Ni:0.002~0.18質量%、Mn:0.002~0.08質量%、Zn:0.002~0.08質量%、Ti:0.01~0.08質量%、B:0.001~0.04質量%を含有し、導電率が52%IACS以上、引張強さが315MPa以上であることを特徴とする前項1に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(3)Cu:0.15~0.20質量%、Cr:0.04~0.10質量%、Ni:0.004~0.15質量%、Mn:0.004~0.06質量%、Zn:0.004~0.06質量%、Ti:0.02~0.06質量%、B:0.0015~0.03質量%を含有し、導電率が54%IACS以上、引張強さが330MPa以上であることを特徴とする前項1に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(4)Cr:0.06~0.10質量%、Ni:0.06~0.15質量%、Mn:0.01~0.04質量%、Zn:0.01~0.04質量%を含有することを特徴とする前項1に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(5)不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されていることを特徴とする前項1~前項4のいずれか1項に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材。
(6)前項1~5のいずれかに記載のアルミニウム合金圧延材の組成を有するアルミニウム合金鋳塊に後続して実施される面削の前または後に500℃以上570℃以下の温度で1時間以上20時間以下の時間にて均質化後、480℃以上550℃以下の温度で5分以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施し、280℃以下にて熱間圧延終了後、30%以上98.5%以下の冷間圧延を施す工程を含むことを特徴とする熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。
(7)冷間圧延を施す工程の開始から終了のいずれかのパスの前後に少なくとも1回、120℃以上220℃以下、10分以上12時間以下の熱処理工程を含むことを特徴とする前項6に記載の熱伝導性、導電性ならびに強度に優れたアルミニウム合金圧延材の製造方法。
In order to solve the above problems, the inventor of the present application has conducted intensive research and found that by examining the composition and manufacturing process of aluminum rolled materials, aluminum alloy rolled materials having good thermal conductivity, high electrical conductivity, and high strength can be obtained. I discovered that. That is, the present invention relates to the following.
(1) Chemical composition: Si: 0.45-0.85% by mass, Mg: 0.75-1.0% by mass, Fe: 0.05-0.45% by mass, Cu: 0.10-0 .35 mass%, Cr: 0.02 to 0.15 mass%, Ni: 0.002 to 0.20 mass%, Mn 0.15 mass% or less, Zn 0.12 mass% or less, Ti: 0 .002 to 0.15% by mass, B: 0.0005 to 0.05% by mass, the remainder consists of Al and unavoidable impurities, and 0.5≦C Si /C Mg ≦1.1 (provided that , C Si is Si content, C Mg is Mg content), and the thermal conductivity, electrical conductivity, and strength are characterized by having an electrical conductivity of 50% IACS or more and a tensile strength of 305 MPa or more. Rolled aluminum alloy material with excellent properties.
(2) Cu: 0.12-0.25% by mass, Cr: 0.03-0.12% by mass, Ni: 0.002-0.18% by mass, Mn: 0.002-0.08% by mass , Zn: 0.002 to 0.08 mass%, Ti: 0.01 to 0.08 mass%, B: 0.001 to 0.04 mass%, electrical conductivity is 52% IACS or more, tensile strength The aluminum alloy rolled material having excellent thermal conductivity, electrical conductivity, and strength according to item 1 above, wherein the aluminum alloy material has a heat conductivity of 315 MPa or more.
(3) Cu: 0.15-0.20% by mass, Cr: 0.04-0.10% by mass, Ni: 0.004-0.15% by mass, Mn: 0.004-0.06% by mass , Zn: 0.004 to 0.06 mass%, Ti: 0.02 to 0.06 mass%, B: 0.0015 to 0.03 mass%, electrical conductivity is 54% IACS or more, tensile strength The aluminum alloy rolled material having excellent thermal conductivity, electrical conductivity, and strength according to item 1 above, characterized in that the aluminum alloy material has a heat conductivity of 330 MPa or more.
(4) Cr: 0.06-0.10% by mass, Ni: 0.06-0.15% by mass, Mn: 0.01-0.04% by mass, Zn: 0.01-0.04% by mass The aluminum alloy rolled material having excellent thermal conductivity, electrical conductivity, and strength as described in item 1 above, characterized by containing the following.
(5) In the inevitable impurities, V is 0.05% by mass or less, Ga is 0.05% by mass or less, Zr is 0.05% by mass or less, Ca is 0.01% by mass or less, and Pb is 0.05% by mass. Hereinafter, described in any one of the preceding clauses 1 to 4, wherein Bi is regulated to 0.05% by mass or less, Sn is regulated to 0.05% by mass or less, and In is regulated to 0.004% by mass or less. A rolled aluminum alloy material with excellent thermal conductivity, electrical conductivity, and strength.
(6) At a temperature of 500°C or more and 570°C or less for 1 hour or more before or after the subsequent facing of an aluminum alloy ingot having the composition of the aluminum alloy rolled material according to any one of items 1 to 5 above. After homogenization for 20 hours or less, hot rolling is started after holding at a temperature of 480°C or more and 550°C or less for 5 minutes or more and 10 hours, and a reduction rate of 95% or more and 99.5% or less is achieved by multiple rolling passes. Excellent thermal conductivity, electrical conductivity, and strength, characterized by including a step of hot rolling, and after completion of hot rolling at 280°C or lower, cold rolling of 30% or more and 98.5% or less. A method for producing rolled aluminum alloy material.
(7) The method includes a heat treatment step of 120°C or more and 220°C or less for 10 minutes or more and 12 hours or less at least once before or after any pass from the start to the end of the cold rolling process. A method for producing a rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength as described in .
前項(1)に記載の発明によれば、化学組成がSi:0.45~0.85質量%、Mg:0.75~1.0質量%、Fe:0.05~0.45質量%、Cu:0.10~0.35質量%、Cr:0.02~0.15質量%、Ni:0.002~0.20質量%、Mnが0.15質量%以下、Znが0.12質量%以下、Ti:0.002~0.15質量%、B:0.0005~0.05質量%、を含有し、残部がAlと不可避不純物からなり、且つ、0.5≦CSi/CMg≦1.1(但し、CSiはSi含有量、CMgはMg含有量)なる関係を満たすことにより、熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (1), the chemical composition is Si: 0.45 to 0.85% by mass, Mg: 0.75 to 1.0% by mass, and Fe: 0.05 to 0.45% by mass. , Cu: 0.10 to 0.35 mass%, Cr: 0.02 to 0.15 mass%, Ni: 0.002 to 0.20 mass%, Mn 0.15 mass% or less, Zn 0. 12% by mass or less, Ti: 0.002 to 0.15% by mass, B: 0.0005 to 0.05% by mass, the remainder consists of Al and inevitable impurities, and 0.5≦C Si By satisfying the relationship: /C Mg ≦1.1 (C Si is Si content, C Mg is Mg content), rolled aluminum alloy material with high thermal conductivity and electrical conductivity and strong tensile strength can be obtained. It can be done.
前項(2)に記載の発明によれば、Cu:0.12~0.25質量%、Cr:0.03~0.12質量%、Ni:0.002~0.18質量%、Mn:0.002~0.08質量%、Zn:0.002~0.04質量%、Ti:0.01~0.08質量%、B:0.001~0.04質量%を含有しており、熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (2), Cu: 0.12 to 0.25% by mass, Cr: 0.03 to 0.12% by mass, Ni: 0.002 to 0.18% by mass, Mn: Contains 0.002 to 0.08% by mass, Zn: 0.002 to 0.04% by mass, Ti: 0.01 to 0.08% by mass, and B: 0.001 to 0.04% by mass. It can be made into a rolled aluminum alloy material with high thermal conductivity, high electrical conductivity, and strong tensile strength.
前項(3)に記載の発明によれば、Cu:0.15~0.20質量%、Cr:0.03~0.10質量%、Ni:0.002~0.15質量%、Mn:0.002~0.04質量%、Zn:0.002~0.04質量%、Ti:0.02~0.06質量%、B:0.0015~0.03質量%を含有することにより、熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (3), Cu: 0.15 to 0.20% by mass, Cr: 0.03 to 0.10% by mass, Ni: 0.002 to 0.15% by mass, Mn: By containing 0.002 to 0.04% by mass, Zn: 0.002 to 0.04% by mass, Ti: 0.02 to 0.06% by mass, and B: 0.0015 to 0.03% by mass. It can be made into a rolled aluminum alloy material with high thermal conductivity, high electrical conductivity, and strong tensile strength.
前項(4)に記載の発明によれば、Cr:0.06~0.10質量%、Ni:0.06~0.15質量%、Mn:0.002~0.04質量%、Zn:0.002~0.04質量%の少なくとも1種以上を含有することにより、熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (4), Cr: 0.06 to 0.10% by mass, Ni: 0.06 to 0.15% by mass, Mn: 0.002 to 0.04% by mass, Zn: By containing at least one of 0.002 to 0.04% by mass, a rolled aluminum alloy material with high thermal conductivity and electrical conductivity and high tensile strength can be obtained.
前項(5)に記載の発明によれば、不可避不純物中のVが0.05質量%以下、Gaが0.05質量%以下、Zrが0.05質量%以下、Caが0.01質量%以下、Pbが0.05質量%以下、Biが0.05質量%以下、Snが0.05質量%以下、Inが0.004質量%以下に規制されているから、熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the previous item (5), V in the inevitable impurities is 0.05% by mass or less, Ga is 0.05% by mass or less, Zr is 0.05% by mass or less, and Ca is 0.01% by mass. Hereinafter, Pb is regulated to be 0.05% by mass or less, Bi 0.05% by mass or less, Sn 0.05% by mass or less, and In 0.004% by mass or less, so thermal conductivity and electrical conductivity are It can be made into a rolled aluminum alloy material with high tensile strength.
前項(6)に記載の発明によれば、上記(1)~(5)のいずれかに記載の組成を有するアルミニウム合金鋳塊に後続して実施される面削後に500℃以上570℃以下の温度で1時間以上20時間以下の時間にて均質化そのまま冷却後、480℃以上550℃以下の温度で5分以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施し、280℃以下にて熱間圧延終了後、30%以上98.5%以下の冷間圧延を施す工程により、更に熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding item (6), the aluminum alloy ingot having the composition described in any one of the above (1) to (5) is subjected to a temperature of 500°C or more and 570°C or less after subsequent facing. Homogenized at a temperature of 1 hour to 20 hours, cooled as it is, held at a temperature of 480 degrees Celsius to 550 degrees Celsius for 5 minutes to 10 hours, then started hot rolling, with a reduction rate of 95% by multiple reduction passes. Thermal conductivity and electrical conductivity are further improved by performing hot rolling of 99.5% or less, and after hot rolling at 280°C or less, cold rolling of 30% or more and 98.5% or less. It can be made into a rolled aluminum alloy material with high tensile strength.
前項(7)に記載の発明によれば、上記(6)の工程に加えて、冷間圧延を施す工程の開始から終了のいずれかのパスの前後に少なくとも1回、120℃以上220℃以下、10分以上12時間保持による熱処理工程を施すことにより、更に熱伝導率ならびに導電率が高く、引張強さが強いアルミニウム合金圧延材となしうる。 According to the invention described in the preceding paragraph (7), in addition to the step (6) above, at least once before or after any one of the passes from the start to the end of the cold rolling step, the temperature is 120° C. or higher and 220° C. or lower. By performing a heat treatment step by holding the aluminum alloy for 10 minutes or more for 12 hours, it is possible to obtain a rolled aluminum alloy material with even higher thermal conductivity and electrical conductivity, as well as strong tensile strength.
本願発明者は、熱間圧延、冷間圧延を順次施するアルミニウム合金圧延材の製造方法において、熱間圧延上がりの合金材の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率を有しつつ高い強度を有するアルミニウム合金圧延材が得られることを見出し本願の発明に至った。 The inventor of the present application has disclosed that in a method for producing a rolled aluminum alloy material in which hot rolling and cold rolling are sequentially performed, the surface temperature of the alloy material after hot rolling is set to a predetermined temperature or less, and after the hot rolling is completed, The inventors have discovered that by applying heat treatment as an aging treatment before the end of cold rolling, a rolled aluminum alloy material having high electrical conductivity and high strength can be obtained, leading to the invention of the present application.
以下に、本願のアルミニウム合金圧延材について詳細に説明する。 Below, the rolled aluminum alloy material of the present application will be explained in detail.
アルミニウム合金圧延材の組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。
(Mg、Si含有量)
MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.45~0.85質量%、Mg:0.75~1.0質量%とする。Si含有量が0.45質量%未満あるいはMg含有量が0.75質量%未満では十分な強度を得ることができない。一方、Si含有量が0.85質量%、Mg含有量が1.0質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム板の成形加工性も悪くなる。Si含有量は0.55質量%以上0.8質量%以下であることが好ましく、更に0.65質量%以上0.75質量%以下であることが好ましい。Mg含有量は0.8質量%以上0.95質量%以下であることが好ましく、更に0.82質量%以上0.92質量%以下であることが好ましい。
(Si/Mg含有比)
本願ではMgとSiの含有比を規定している。高い導電率を確保するためには、アルミニウム中に固溶するMgをMg2Siの形で析出させる必要があり、そのために有効なSi含有量が存在する。一方、Siも固溶量が多くなると導電率低下の要因となる。従って、析出による強度向上との両立のため、Si/Mg含有比を0.5≦CSi/CMg≦1.1(但し、CSiはSi含有量、CMgはMg含有量)とする。
(Cu含有量)
Cuは強度向上に必要な成分であり、少量の含有でMg2Siの微細析出を促進する効果があるが、多量に含有すると耐食性が低下する。また0.35質量%を超えると導電率の確保が難しい。一方で、0.10質量%未満では強度の確保が難しい。従ってCu含有量の範囲は0.10~0.35質量%とする。更に0.12質量%以上0.25質量%以下であることが好ましく、特に0.15質量%以上0.20質量%以下であることが一層好ましい。
(Fe含有量)
Feは結晶粒の微細化効果が期待でき強度向上に有効な成分であるが、多量に含有すると耐食性が低下する。0.45質量%を超えると耐食性への阻害要因となる。一方で、0.05質量%未満では強度向上が期待できない上にアルミ塊のベース純度が上がり高価となる。従ってFe含有量の範囲は0.05~0.45質量%とする。更に0.08質量%以上0.35質量%以下であることが好ましい。
(Ni含有量)
Niは強度向上に有効な成分であり、少量の含有によりMg2Siの析出を促進する効果があるが、多量に含有すると導電率が低下する。0.20質量%を超えると導電率の確保が難しい。一方で、0.002質量%未満では強度の確保が難しい。従ってNi含有量の範囲は0.002~0.20質量%とする。更に0.002質量%以上0.18質量%以下であることが好ましく、特に0.004質量%以上0.15質量%以下であることが一層好ましい。
(Cr含有量)
Crは再結晶粒の粗大化防止に有効な合金元素である。但し、0.15%を超えると導電率が低下する。また、焼入れ感受性が高くなり、熱間圧延時の冷却が緩慢であるとその後の熱処理での強度向上が見込めなくなる。一方、0.02%未満では、結晶粒径の微細化効果は期待できない。従ってCrの含有量の範囲は0.02~0.15質量%とする。更に0.03質量%以上0.12質量%以下であることが好ましく、特に0.04質量%以上0.10質量%以下であることが一層好ましい。
(Mn含有量)
Mnは再結晶粒の微細化のために一般的に添加される合金元素であるが、必要以上に添加すると導電率の低下を招くと共に、焼入れ感受性が高くなるため、熱間圧延時の冷却が緩慢であるとその後の熱処理での強度向上が見込めなくなる。従って、Mnの含有量は0.15質量%以下であることが好ましい。更に0.002質量%以上0.08質量%以下が好ましく、特に0.004質量%以上0.06質量%以下であることが一層好ましい。
(Zn含有量)
Znは少量の含有でMg2Siの析出を促進する効果が認められるが、含有量が多くなると合金材の耐食性を低下させるためできるだけ少ないことが好ましい。従ってZnの含有量は0.12質量%以下とする。更に0.002質量%以上0.08質量%以下であることが好ましく、特に0.004質量%以上0.06質量%以下であることが一層好ましい。
(Ti、B含有量)
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。従って、Ti含有量は0.002~0.15質量%以下とする。更に0.01質量%以上0.08質量%以下が好ましく、特に0.02質量%以上0.06質量%以下であることが一層好ましい。また、B含有量は0.0005~0.05質量%以下とする。更に0.001質量%以上0.04質量%以下が好ましく、特に0.0015質量%以上0.03質量%以下であることが一層好ましい。
(In含有量)
Inは耐食性を著しく低下させるため少ないことが好ましい。不純物としてのIn含有量は0.004質量%以下であることが好ましい。
(Ca含有量)
Caは粒界に偏析しやすく、Ca含有量が多くなると延性を低下させるため少ないことが好ましい。不純物としてのCa含有量は0.01質量%以下であることが好ましい。
(その他不純物元素)
上記以外のその他の不純物元素としては、V、Ga、Zr、Pb、Bi、Sn、等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素は個々の元素の含有量として0.05質量%以下であることが好ましい。
In the composition of the rolled aluminum alloy material, the purpose of adding each element and the reason for limiting the content are as follows.
(Mg, Si content)
Mg and Si are elements necessary for developing strength, and their respective contents are Si: 0.45 to 0.85% by mass, and Mg: 0.75 to 1.0% by mass. If the Si content is less than 0.45% by mass or the Mg content is less than 0.75% by mass, sufficient strength cannot be obtained. On the other hand, if the Si content exceeds 0.85% by mass and the Mg content exceeds 1.0% by mass, the rolling load during hot rolling increases, productivity decreases, and the forming processability of the resulting aluminum plate increases. It also gets worse. The Si content is preferably 0.55% by mass or more and 0.8% by mass or less, and more preferably 0.65% by mass or more and 0.75% by mass or less. The Mg content is preferably 0.8% by mass or more and 0.95% by mass or less, and more preferably 0.82% by mass or more and 0.92% by mass or less.
(Si/Mg content ratio)
In this application, the content ratio of Mg and Si is specified. In order to ensure high electrical conductivity, it is necessary to precipitate Mg dissolved in aluminum in the form of Mg 2 Si, and for this purpose an effective Si content exists. On the other hand, when the amount of solid solution increases, Si also becomes a cause of a decrease in electrical conductivity. Therefore, in order to achieve both strength improvement through precipitation, the Si/Mg content ratio is set to 0.5≦C Si /C Mg ≦1.1 (however, C Si is Si content, and C Mg is Mg content). .
(Cu content)
Cu is a necessary component for improving strength, and when contained in a small amount, it has the effect of promoting fine precipitation of Mg 2 Si, but when contained in a large amount, corrosion resistance decreases. Moreover, if it exceeds 0.35% by mass, it is difficult to ensure electrical conductivity. On the other hand, if it is less than 0.10% by mass, it is difficult to ensure strength. Therefore, the Cu content range is 0.10 to 0.35% by mass. Furthermore, it is preferably 0.12% by mass or more and 0.25% by mass or less, and particularly preferably 0.15% by mass or more and 0.20% by mass or less.
(Fe content)
Fe is a component that can be expected to have the effect of refining crystal grains and is effective in improving strength, but if it is contained in a large amount, corrosion resistance decreases. If it exceeds 0.45% by mass, it becomes a factor that inhibits corrosion resistance. On the other hand, if it is less than 0.05% by mass, no improvement in strength can be expected, and the base purity of the aluminum ingot increases, making it expensive. Therefore, the Fe content range is 0.05 to 0.45% by mass. Furthermore, it is preferably 0.08% by mass or more and 0.35% by mass or less.
(Ni content)
Ni is an effective component for improving strength, and when contained in a small amount it has the effect of promoting the precipitation of Mg 2 Si, but when contained in a large amount, the electrical conductivity decreases. If it exceeds 0.20% by mass, it is difficult to ensure electrical conductivity. On the other hand, if it is less than 0.002% by mass, it is difficult to ensure strength. Therefore, the Ni content range is 0.002 to 0.20% by mass. Furthermore, it is preferably 0.002% by mass or more and 0.18% by mass or less, and particularly preferably 0.004% by mass or more and 0.15% by mass or less.
(Cr content)
Cr is an alloying element effective in preventing coarsening of recrystallized grains. However, if it exceeds 0.15%, the conductivity will decrease. In addition, the quenching sensitivity increases, and if cooling during hot rolling is slow, no improvement in strength can be expected in the subsequent heat treatment. On the other hand, if it is less than 0.02%, no effect of reducing the crystal grain size can be expected. Therefore, the range of Cr content is 0.02 to 0.15% by mass. Furthermore, it is preferably 0.03% by mass or more and 0.12% by mass or less, and particularly preferably 0.04% by mass or more and 0.10% by mass or less.
(Mn content)
Mn is an alloying element that is generally added to refine the recrystallized grains, but adding more than necessary leads to a decrease in electrical conductivity and increases quenching sensitivity, making it difficult to cool during hot rolling. If the heat treatment is slow, no improvement in strength can be expected in the subsequent heat treatment. Therefore, the Mn content is preferably 0.15% by mass or less. Furthermore, the content is preferably 0.002% by mass or more and 0.08% by mass or less, and particularly preferably 0.004% by mass or more and 0.06% by mass or less.
(Zn content)
A small amount of Zn is recognized to have the effect of promoting the precipitation of Mg 2 Si, but if the Zn content increases, the corrosion resistance of the alloy material decreases, so it is preferably as small as possible. Therefore, the Zn content is set to 0.12% by mass or less. Furthermore, it is preferably 0.002% by mass or more and 0.08% by mass or less, and particularly preferably 0.004% by mass or more and 0.06% by mass or less.
(Ti, B content)
Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab. The above effect can be obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, many large-sized crystallized substances are produced, resulting in a decrease in processability, thermal conductivity, and electrical conductivity of the product. Therefore, the Ti content is set to 0.002 to 0.15% by mass or less. Furthermore, the content is preferably 0.01% by mass or more and 0.08% by mass or less, particularly preferably 0.02% by mass or more and 0.06% by mass or less. Further, the B content is 0.0005 to 0.05% by mass or less. Furthermore, the content is preferably 0.001% by mass or more and 0.04% by mass or less, and particularly preferably 0.0015% by mass or more and 0.03% by mass or less.
(In content)
Since In significantly reduces corrosion resistance, it is preferable that the content is small. The content of In as an impurity is preferably 0.004% by mass or less.
(Ca content)
Ca tends to segregate at grain boundaries, and as the Ca content increases, the ductility decreases, so it is preferable that the Ca content be small. The Ca content as an impurity is preferably 0.01% by mass or less.
(Other impurity elements)
Other impurity elements other than those listed above include, but are not limited to, V, Ga, Zr, Pb, Bi, Sn, etc. These other impurity elements are determined by the content of each individual element. It is preferably 0.05% by mass or less.
次に、本願規定のアルミニウム合金圧延材を得るための処理工程について記述する。
常法にて溶解成分調整し、アルミニウム合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。均質化処理は、500℃以上で行うことが好ましい。
Next, the processing steps for obtaining the aluminum alloy rolled material specified in the present application will be described.
The dissolved components are adjusted in a conventional manner to obtain an aluminum alloy ingot. It is preferable to subject the obtained alloy ingot to homogenization treatment as a step prior to heating before hot rolling. The homogenization treatment is preferably performed at 500°C or higher.
前記均質化処理はアルミニウム合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると共晶融解が生じるため、500℃以上570℃以下で行うことが好ましく、特に520℃以上560℃以下で行うことが好ましい。時間は1時間以上20時間以下で行うことが好ましく、特に2時間以上18時間以下で行うことが好ましい。 The above-mentioned homogenization treatment is carried out to form a uniform structure by dissolving the crystallized substances, Mg, and Si in the aluminum alloy ingot, but if the temperature is too high, eutectic melting will occur, so the temperature should be 500°C or higher and 570°C. It is preferably carried out at a temperature of 520°C or higher and 560°C or lower. The time is preferably 1 hour or more and 20 hours or less, particularly 2 hours or more and 18 hours or less.
アルミニウム合金鋳塊に均質化処理を行った後、一端冷却した後、あるいは冷却することなく引き続いて熱間圧延前加熱を行う。熱間圧延前加熱の好ましい温度範囲は480℃以上550℃以下である。時間は5分以上10時間以下が好ましい。更に好ましい範囲は、温度500℃以上540℃以下、時間1時間以上8時間以下である。なお、前記均質化処理および熱間圧延前加熱双方の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After homogenizing the aluminum alloy ingot, it is cooled once or subsequently heated before hot rolling without cooling. The preferred temperature range for heating before hot rolling is 480°C or higher and 550°C or lower. The time is preferably 5 minutes or more and 10 hours or less. A more preferable range is a temperature of 500° C. or more and 540° C. or less, and a time of 1 hour or more and 8 hours or less. In addition, within the preferable temperature range for both the homogenization treatment and the heating before hot rolling, heating may be performed at the same temperature for both the homogenization treatment and the heating before hot rolling.
鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting and before heating before hot rolling, the ingot is preferably subjected to surface cutting in order to remove an impurity layer near the surface of the ingot. The facing may be performed after casting and before homogenization treatment, or after homogenization treatment and before hot rolling and before heating.
熱間圧延前加熱後のアルミニウム合金鋳塊に熱間圧延を施す。熱間圧延は圧下率95%以上99.5%以下とするのが良い。熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling is performed on the aluminum alloy ingot after heating before hot rolling. The hot rolling is preferably carried out at a reduction rate of 95% or more and 99.5% or less. Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a roughing hot rolling mill, a finishing hot rolling machine different from the roughing hot rolling mill is used. Finish hot rolling is performed using Note that in the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, finishing hot rolling can be omitted.
冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のアルミニウム合金圧延材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、アルミニウム合金圧延材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When cold rolling is performed in a coil, the aluminum alloy rolled material after finish hot rolling may be wound up with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, after rough hot rolling, the aluminum alloy rolled material is wound up with a winding device to form a hot rolled coil. You can also use it as
粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるアルミニウム合金圧延材の冷却、もしくは粗熱間圧延のパス後とパス後の冷却による温度降下により焼き入れの効果を得ることができる。 In rough hot rolling, after maintaining Mg and Si in a solid solution state according to solution treatment, the aluminum alloy rolled material is cooled by a rough hot rolling pass, or after the rough hot rolling pass and after the rough hot rolling pass. The effect of hardening can be obtained by lowering the temperature due to subsequent cooling.
上記粗熱間圧延のパス間の冷却は、アルミニウム合金圧延材を圧延しながら圧延後の部位に対し順次実施してもよいし、アルミニウム合金圧延材全体を圧延した後実施してもよい。冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 The cooling between the passes of the rough hot rolling may be carried out sequentially on the rolled parts while rolling the aluminum alloy rolled material, or may be carried out after the entire aluminum alloy rolled material is rolled. The cooling method is not limited, but may be water cooling, air cooling, or a coolant.
本願において、粗熱間圧延の最終パス後に仕上げ圧延を行わない場合は、熱間圧延の最終パス直後のアルミニウム合金圧延材の表面温度を熱間圧延上り温度(熱延上り温度ともいう)とし、粗熱間圧延の最終パス後に仕上げ圧延を行う場合は、仕上げ圧延直前のアルミニウム合金圧延材の表面温度を熱延上り温度とする。 In the present application, if finish rolling is not performed after the final pass of rough hot rolling, the surface temperature of the aluminum alloy rolled material immediately after the final pass of hot rolling is defined as hot rolling finishing temperature (also referred to as hot rolling finishing temperature), When finish rolling is performed after the final pass of rough hot rolling, the surface temperature of the rolled aluminum alloy material immediately before finish rolling is defined as the hot rolling temperature.
上記熱延上り温度は280℃以下とすることが好ましい。熱延上り温度を280℃以下とすることにより有効な焼き入れ効果が得られ、その後の熱処理時により時効硬化するとともに導電率が向上する。熱延上り温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱延上り温度は260℃以下が更に好ましく、特に250℃以下が好ましい。 It is preferable that the above-mentioned hot rolling finishing temperature is 280°C or less. By setting the hot-rolling temperature to 280° C. or less, an effective hardening effect can be obtained, and during subsequent heat treatment, age hardening occurs and the electrical conductivity improves. If the finishing temperature of hot rolling is too high, the hardening effect will be insufficient, and even if heat treatment is performed after hot rolling and before cold rolling, the strength will not be sufficiently improved. The hot rolling temperature is more preferably 260°C or lower, particularly preferably 250°C or lower.
なお、後工程の冷間圧延をコイルで実施するために熱間圧延後にコイル巻き取りを実施する際、巻き取り後の自然冷却速度が極めて遅くなる場合がある。その時、高温で長時間保持されると粗大な析出物が発生し過時効となるため、後述する熱処理による時効硬化が見込めなくなる。 Note that when coil winding is performed after hot rolling in order to perform post-process cold rolling in a coil, the natural cooling rate after winding may become extremely slow. At that time, if the material is kept at a high temperature for a long time, coarse precipitates are generated and overage occurs, so that age hardening due to the heat treatment described below cannot be expected.
従って、コイル状に巻き取る場合で仕上げ熱間圧延を行わない場合は、粗熱間圧延最終パス上りのアルミニウム合金板の表面温度は180℃以下が好ましい。粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延後のアルミニウム合金板の表面温度は180℃以下であることが好ましい。 Therefore, when winding into a coil and not performing finish hot rolling, the surface temperature of the aluminum alloy plate after the final pass of rough hot rolling is preferably 180° C. or lower. When finishing hot rolling is performed after rough hot rolling, the surface temperature of the aluminum alloy plate after finishing hot rolling is preferably 180° C. or lower.
熱間圧延終了後、冷間圧延前後またはそのパス間においてアルミニウム合金圧延材に熱処理を施し、時効硬化させるとともに導電率を向上させることができる。本願においてアルミニウム合金圧延材への熱処理は時効硬化および導電率向上の効果を得るために120℃以上220℃以下の温度で実施することが好ましい。前記熱処理の温度は130℃以上190℃以下が更に好ましく、特に140℃以上180℃以下が一層好ましい。 After completion of hot rolling, the aluminum alloy rolled material can be heat treated before and after cold rolling or between passes to age harden and improve electrical conductivity. In the present application, the heat treatment of the aluminum alloy rolled material is preferably carried out at a temperature of 120° C. or higher and 220° C. or lower in order to obtain the effects of age hardening and improving electrical conductivity. The temperature of the heat treatment is more preferably 130°C or more and 190°C or less, particularly preferably 140°C or more and 180°C or less.
前記熱間圧延終了後、冷間圧延前後またはそのパス間において実施するアルミニウム合金圧延材の熱処理の時間は、10分以上12時間以下が好ましい。更に1時間以上10時間以下が好ましく、特に2時間以上8時間以下が一層好ましい。 After the completion of the hot rolling, the heat treatment time of the rolled aluminum alloy material before and after the cold rolling or between passes thereof is preferably 10 minutes or more and 12 hours or less. Furthermore, the time period is preferably 1 hour or more and 10 hours or less, and particularly preferably 2 hours or more and 8 hours or less.
前記熱処理後の冷間圧延により所定の厚さのアルミニウム合金圧延材とする。冷間圧延を実施することにより一般に加工硬化にて強度は向上する。熱間圧延終了後、前記熱処理により時効硬化させたアルミニウム合金圧延材に冷間圧延を実施すると加工硬化による強度向上効果が期待できる。冷間圧延後に前記熱処理を実施すると予備歪により時効硬化能を更に向上させることが出来る。冷間圧延終了後に前記熱処理を実施すると冷間加工歪の回復と時効析出が同時に起こるため、大きな強度向上は期待できないが、延性が大幅に向上し、曲げ加工等の成形性を向上させることができる。 After the heat treatment, a rolled aluminum alloy material having a predetermined thickness is obtained by cold rolling. Cold rolling generally improves strength through work hardening. After hot rolling, if the aluminum alloy rolled material age-hardened by the heat treatment is cold-rolled, an effect of improving strength due to work hardening can be expected. When the heat treatment is performed after cold rolling, the age hardenability can be further improved due to pre-straining. If the above heat treatment is performed after cold rolling, recovery of cold work strain and aging precipitation will occur at the same time, so a large increase in strength cannot be expected, but ductility can be significantly improved and formability such as bending can be improved. can.
このように要求される特性により前記熱処理の位置は、熱間圧延終了後、冷間圧延前後またはそのパス間で使い分けることが望ましい。 Due to the characteristics required in this way, it is desirable that the heat treatment is performed at different positions after the end of hot rolling, before and after cold rolling, or between passes thereof.
熱間圧延終了後、所定の厚さのアルミニウム合金圧延材を得るまでの冷間圧延の総圧下率は強度向上の為30%以上で実施されることが好ましい。冷間圧延によるアルミニウム合金圧延材の総圧延率は更に40%以上が好ましく、特に50%以上が好ましい。総圧下率の上限は、加工硬化による伸びの低下を考慮し、98.5%以下とする。 After the hot rolling is completed, the total reduction rate of cold rolling is preferably 30% or more to obtain a rolled aluminum alloy material of a predetermined thickness in order to improve strength. The total rolling rate of the aluminum alloy rolled material by cold rolling is preferably 40% or more, particularly preferably 50% or more. The upper limit of the total rolling reduction is set to 98.5% or less, taking into account the reduction in elongation due to work hardening.
冷間圧延後のアルミニウム合金圧延材に必要に応じて洗浄を実施しても良い。 The aluminum alloy rolled material after cold rolling may be washed if necessary.
なお、本願のアルミニウム合金圧延材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程でアルミニウム合金圧延材を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットして条にしても良い。 Note that the aluminum alloy rolled material of the present application may be manufactured using a coil or a single plate. Further, the rolled aluminum alloy material may be cut at any step after cold rolling, and the step after cutting may be performed as a single sheet, or it may be slit into strips depending on the purpose.
上記の製造方法によれば、高い導電率を得つつ、強度を向上させることができ、優れたアルミニウム合金圧延材が得られる。 According to the above manufacturing method, strength can be improved while obtaining high electrical conductivity, and an excellent aluminum alloy rolled material can be obtained.
本願のアルミニウム合金圧延材の導電率は50%IACS以上、引張強さは305MPa以上と規定する。更に導電率は52%IACS以上、引張強さは315MPa以上が好ましく、特に導電率は54%IACS以上、引張強さは330MPa以上が一層好ましい。本願規定の導電率と引張強さを満足することにより優れた強度と熱伝導性を有するアルミニウム合金圧延材となる。 The electrical conductivity of the aluminum alloy rolled material of the present application is specified to be 50% IACS or more, and the tensile strength is specified to be 305 MPa or more. Further, the electrical conductivity is preferably 52% IACS or more and the tensile strength is 315 MPa or more, and particularly preferably the electrical conductivity is 54% IACS or more and the tensile strength is 330 MPa or more. By satisfying the electrical conductivity and tensile strength specified in this application, the aluminum alloy rolled material has excellent strength and thermal conductivity.
以下に、本発明を実施例により説明する。なお、本発明は、ここに記述する実施例に発明の範囲を限定するものではなく、本発明の趣旨に適合しうる範囲で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術範囲に含まれる。 The present invention will be explained below using examples. It should be noted that the scope of the present invention is not limited to the examples described herein, and it is possible to implement the present invention with appropriate changes within the scope that fits the spirit of the present invention. It is within the technical scope of the present invention.
まず、表1に示す11種類の化学組成のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で表2記載の均質化処理を実施した後、同じ炉中で温度を降下させ、表2記載の熱間圧延前加熱温度に到達後に保持し、表2に記載の条件にて粗熱間圧延を実施し、表2に記載の合金板とした。 First, aluminum alloy slabs having 11 different chemical compositions shown in Table 1 were subjected to surface cutting. Next, the alloy slab after facing is subjected to the homogenization treatment listed in Table 2 in a heating furnace, and then the temperature is lowered in the same furnace and held after reaching the pre-hot rolling heating temperature listed in Table 2. Then, rough hot rolling was performed under the conditions listed in Table 2 to obtain the alloy plates listed in Table 2.
粗熱間圧延の後、引き続き仕上げ熱間圧延を実施し、表2に記載の熱延上り温度、板厚の熱間圧延板を得た。仕上げ熱間圧延後の合金板に表2に記載の熱処理、冷間圧延を施し、所定の板厚のアルミニウム合金板を得た。表1の合金スラブと表2の工程の組み合わせは表3の通りとした。 After the rough hot rolling, finish hot rolling was subsequently performed to obtain a hot rolled plate having the hot rolling finishing temperature and plate thickness shown in Table 2. The alloy plate after finish hot rolling was subjected to the heat treatment and cold rolling described in Table 2 to obtain an aluminum alloy plate with a predetermined thickness. The combinations of the alloy slabs in Table 1 and the steps in Table 2 were as shown in Table 3.
得られた合金板の引張強さ、0.2%耐力、伸び、導電率、曲げ加工性を以下の方法により評価した。
[引張強さ、耐力、伸び]
引張強さ(σB)、0.2%耐力(σ0.2)および伸び(δ)は、JISZ2201に定めるJIS5号試験片にて、圧延方向に対し平行方向に採取した試料について常温、常法により測定した。
[導電率]
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。
[曲げ加工性]
曲げ加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の「6.3 Vブロック法による曲げ試験」を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。
The tensile strength, 0.2% proof stress, elongation, electrical conductivity, and bending workability of the obtained alloy plate were evaluated by the following methods.
[Tensile strength, yield strength, elongation]
Tensile strength (σB), 0.2% yield strength (σ0.2), and elongation (δ) are measured using a JIS No. 5 test piece specified in JIS Z2201, using a sample taken in a direction parallel to the rolling direction at room temperature using an ordinary method. It was measured.
[conductivity]
The electrical conductivity was determined as a relative value (%IACS) when the electrical conductivity of internationally adopted annealed standard annealed copper (volume low efficiency 1.7241×10 −2 μΩm) is taken as 100% IACS.
[Bending workability]
Bending workability is determined by bending at a bending angle of 90°, by bending the inner radius of each alloy plate if the thickness of the alloy plate is 0.4 mm or more, or by bending the inner radius if the thickness of the alloy plate is less than 0.4 mm. With the inner radius set as 0, "6.3 Bending test by V block method" of JIS Z 2248 Metal material bending test method was carried out, and those with no cracks were evaluated as ○, and those with cracks were evaluated as ×. .
引張強さ、0.2%耐力、導電率、および曲げ加工性の評価結果を表3に示す。表3より、本願規定の化学組成、引張強さ、および導電率を満足する実施例記載のアルミニウム合金圧延材が確認できた。 Table 3 shows the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and bending workability. From Table 3, it was confirmed that the aluminum alloy rolled material described in the example satisfied the chemical composition, tensile strength, and electrical conductivity specified in the present application.
本発明に係るアルミニウム合金圧延材においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができて有用である。 In the aluminum alloy rolled material according to the present invention, thermal conductivity and electrical conductivity show a good correlation, and an aluminum alloy plate with excellent thermal conductivity has excellent electrical conductivity, and can be used as a conductive material as well as a heat dissipating material. It is useful because it can be used as a member material.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236936A JP7422539B2 (en) | 2019-12-26 | 2019-12-26 | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236936A JP7422539B2 (en) | 2019-12-26 | 2019-12-26 | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021105198A JP2021105198A (en) | 2021-07-26 |
JP7422539B2 true JP7422539B2 (en) | 2024-01-26 |
Family
ID=76919230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019236936A Active JP7422539B2 (en) | 2019-12-26 | 2019-12-26 | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7422539B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113737066A (en) * | 2021-08-11 | 2021-12-03 | 广东华昌集团有限公司 | Aluminum conductor rail section bar and preparation method thereof |
CN115011848B (en) * | 2022-05-11 | 2023-03-28 | 北京理工大学 | High-purity aluminum alloy conductor and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011137201A (en) | 2009-12-28 | 2011-07-14 | Kobe Steel Ltd | Aluminum alloy sheet for heat insulator and method for producing the same |
JP2017179446A (en) | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY SHEET |
JP2018009211A (en) | 2016-07-13 | 2018-01-18 | 古河電気工業株式会社 | Aluminum alloy wire material, aluminum alloy twisted wire, covered conductor and wire harness |
CN108300879A (en) | 2018-01-30 | 2018-07-20 | 广西南南铝加工有限公司 | Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process |
JP2019056163A (en) | 2017-09-22 | 2019-04-11 | 株式会社Uacj | Aluminum alloy plate and method of producing the same |
WO2019167469A1 (en) | 2018-03-01 | 2019-09-06 | 本田技研工業株式会社 | Al-mg-si system aluminum alloy material |
-
2019
- 2019-12-26 JP JP2019236936A patent/JP7422539B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011137201A (en) | 2009-12-28 | 2011-07-14 | Kobe Steel Ltd | Aluminum alloy sheet for heat insulator and method for producing the same |
JP2017179446A (en) | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY SHEET |
JP2018009211A (en) | 2016-07-13 | 2018-01-18 | 古河電気工業株式会社 | Aluminum alloy wire material, aluminum alloy twisted wire, covered conductor and wire harness |
US20190139668A1 (en) | 2016-07-13 | 2019-05-09 | Furukawa Electric Co., Ltd. | Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness |
JP2019056163A (en) | 2017-09-22 | 2019-04-11 | 株式会社Uacj | Aluminum alloy plate and method of producing the same |
CN108300879A (en) | 2018-01-30 | 2018-07-20 | 广西南南铝加工有限公司 | Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process |
WO2019167469A1 (en) | 2018-03-01 | 2019-09-06 | 本田技研工業株式会社 | Al-mg-si system aluminum alloy material |
Also Published As
Publication number | Publication date |
---|---|
JP2021105198A (en) | 2021-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5451674B2 (en) | Cu-Si-Co based copper alloy for electronic materials and method for producing the same | |
JP7442304B2 (en) | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method | |
JP2017179457A (en) | Al-Mg-Si-BASED ALLOY MATERIAL | |
JP6695725B2 (en) | Al-Mg-Si alloy plate | |
CN112981153B (en) | High-strength high-conductivity aluminum/aluminum alloy composite board and preparation method thereof | |
JP7422539B2 (en) | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method | |
CN110872664A (en) | Al-Mg-Si alloy plate | |
JP2017179454A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP2017179442A (en) | Al-Mg-Si-BASED ALLOY MATERIAL | |
JP6355098B2 (en) | High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same | |
JP6718276B2 (en) | Method for manufacturing Al-Mg-Si alloy plate | |
JP5330590B1 (en) | Aluminum alloy plate for bus bar and manufacturing method thereof | |
JP2017179453A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP2020033604A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
CN110872665B (en) | Al-Mg-Si alloy plate | |
CN108884542B (en) | Method for producing Al-Mg-Si alloy sheet | |
JP2017179452A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP4933326B2 (en) | Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof | |
JP2004027253A (en) | Aluminum alloy sheet for molding, and method of producing the same | |
WO2017168891A1 (en) | Method for producing al-mg-si alloy plate | |
JP2017179444A (en) | Al-Mg-Si-BASED ALLOY SHEET | |
JP2017179443A (en) | Al-Mg-Si-BASED ALLOY MATERIAL | |
JP6718275B2 (en) | Method for manufacturing Al-Mg-Si alloy plate | |
JP2020033609A (en) | Al-Mg-Si-BASED ALLOY SHEET | |
JP6774200B2 (en) | Manufacturing method of Al-Mg-Si based alloy plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20211028 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7422539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |