JP6718275B2 - Method for manufacturing Al-Mg-Si alloy plate - Google Patents

Method for manufacturing Al-Mg-Si alloy plate Download PDF

Info

Publication number
JP6718275B2
JP6718275B2 JP2016067351A JP2016067351A JP6718275B2 JP 6718275 B2 JP6718275 B2 JP 6718275B2 JP 2016067351 A JP2016067351 A JP 2016067351A JP 2016067351 A JP2016067351 A JP 2016067351A JP 6718275 B2 JP6718275 B2 JP 6718275B2
Authority
JP
Japan
Prior art keywords
mass
rolling
alloy plate
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016067351A
Other languages
Japanese (ja)
Other versions
JP2017179448A (en
Inventor
眞二 籠重
眞二 籠重
和章 谷口
和章 谷口
西森 秀樹
秀樹 西森
智明 山ノ井
智明 山ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016067351A priority Critical patent/JP6718275B2/en
Publication of JP2017179448A publication Critical patent/JP2017179448A/en
Application granted granted Critical
Publication of JP6718275B2 publication Critical patent/JP6718275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、Al−Mg―Si系合金板の製造方法、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg―Si系合金板の製造方法に関する。 The present invention relates to a method for producing an Al—Mg—Si alloy sheet, and particularly to a method for producing an Al—Mg—Si alloy sheet having excellent thermal conductivity, conductivity, strength and workability.

薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Heat generators such as flat panel TVs, flat panel monitors for personal computers, laptops, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed circuit boards, and internal covers. The member material to be built-in or mounted is required to have excellent heat conductivity, strength and workability for prompt heat dissipation.

JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050 and 1070 have excellent thermal conductivity but low strength. An Al-Mg alloy (5000 series alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum series alloy.

これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg−Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, Al-Mg-Si alloys (6000 alloys) have good thermal conductivity and conductivity and can be strengthened by age hardening. Therefore, Al-Mg-Si alloys are used to improve strength and heat resistance. A method for obtaining an aluminum alloy plate having excellent conductivity and workability has been studied.

例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl−Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする、Al−Mg−Si系合金圧延板の製造方法が開示されている。 For example, in patent document 1, 0.1-0.34 mass% of Mg, 0.2-0.8 mass% of Si, 0.22-1.0 mass% of Cu are contained, and the balance contains Al and An Al-Mg-Si based alloy, which consists of unavoidable impurities and has a Si/Mg content ratio of 1.3 or more, is semi-continuously cast into an ingot having a thickness of 250 mm or more, and preheated at a temperature of 400 to 540°C. After that, hot rolling, cold rolling at a rolling reduction of 50 to 85%, and then annealing at a temperature of 140 to 280° C. are performed, which is a method for producing an Al—Mg—Si alloy rolled sheet. It is disclosed.

特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0.02 to 0.02% by mass. 0.15 mass%, Cr: 0.02 to 0.15% of 1 type or 2 types, and the balance regulates Al and Ti in unavoidable impurities to 0.2% or less, or Cu: 0.01 to 1 mass% or rare earth element: 0.01 to 0.2 mass% An aluminum alloy plate having a composition containing one or two is produced by continuous casting and rolling, and then cold rolling. Then, a solution treatment at 500 to 570° C. is performed, a cold rolling is further performed at a cold rolling ratio of 5 to 40%, and an aging treatment of heating to 150 to less than 190° C. is performed after the cold rolling. And a method for producing an aluminum plate excellent in heat conductivity, strength and bending workability.

特許文献3には、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるか、もしくはさらに不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されているAl−Mg−Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg―Si系合金板の製造方法が示されている。 Patent Document 3 contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, Cu: 0.5% by mass or less, and Ti: 0.1% by mass or less or B: 0.1% by mass or less, and at least one of Al and unavoidable impurities, or Mn and Cr as impurities are Mn: 0.1% by mass. %, Cr: Al-Mg-Si alloy ingot regulated to 0.1% by mass or less is hot rolled, and further includes a step of cold rolling. It shows a method for producing an Al-Mg-Si alloy plate, which is characterized by performing heat treatment by holding at 200 to 400°C for 1 hour or more after hot rolling and before completion of cold rolling.

なお、特許文献3に記載のとおり、JIS1000系から7000系のアルミニウム合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 As described in Patent Document 3, in the JIS 1000 to 7000 series aluminum alloys, the thermal conductivity and the electrical conductivity show a good correlation, and an aluminum alloy plate having excellent thermal conductivity has an excellent electrical conductivity. And can be used as a conductive member material as well as a heat dissipation member material.

特開2012−62517号公報JP, 2012-62517, A 特開2007−9262号公報JP, 2007-9262, A 特開2003−321755号公報JP, 2003-321755, A

上記のとおりAl−Mg―Si系合金板の改良がなされてきたが、アルミニウム合金部材材料を用いる製品の高性能化、小型化、薄型化に伴い、高い導電率と加工性に加え従来よりも更に高い強度を有することがAl−Mg−Si系合金板に求められているのに対し、上記特許文献1、特許文献2および特許文献3記載の方法では高い導電率と加工性を維持しつつ必要な強度を得ることが困難であった。 As described above, the Al-Mg-Si alloy plate has been improved, but with the high performance, miniaturization, and thinning of products using aluminum alloy member materials, in addition to high conductivity and workability, more than before. While it is required for the Al—Mg—Si alloy plate to have higher strength, the methods described in Patent Document 1, Patent Document 2 and Patent Document 3 described above maintain high conductivity and workability. It was difficult to obtain the required strength.

本発明は、上述した技術背景に鑑み、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金板の製造方法を提供することを目的とする。 The present invention has been made in view of the above technical background, and an object of the present invention is to provide a method for producing an Al-Mg-Si alloy plate having high electrical conductivity and good workability, and further having high strength.

上記課題は、以下の手段によって解決される。
(1)Al−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl−Mg−Si系合金板の製造方法であって、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。
(2)Al−Mg−Si系合金鋳塊の化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる前項1に記載のAl−Mg−Si系合金板の製造方法。
(3)不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている前項2に記載のAl−Mg−Si系合金板の製造方法。
(4)熱処理を熱間圧延終了後であって冷間圧延開始前に実施する前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(5)熱処理温度が130℃以上180℃以下である前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(6)熱処理以降の冷間圧延の圧延率が20%以上である前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(7)冷間圧延後に最終焼鈍を実施する前項1ないし前項6の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(8)最終焼鈍の温度が180℃以下である前項7に記載のAl−Mg−Si系合金板の製造方法。
The above problem can be solved by the following means.
(1) A method for manufacturing an Al-Mg-Si alloy sheet, which comprises sequentially performing hot rolling and cold rolling on an Al-Mg-Si alloy ingot, which is cold rolling after completion of hot rolling. A method for producing an Al-Mg-Si alloy plate, which comprises heat treatment at a temperature of 120°C or higher and lower than 200°C before the end.
(2) The chemical composition of the Al-Mg-Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: The method for producing an Al-Mg-Si alloy plate according to item 1 above, which contains 0.5% by mass or less and the balance is Al and unavoidable impurities.
(3) The method for producing an Al-Mg-Si alloy plate according to item 2, wherein Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1% by mass or less.
(4) The method for producing an Al-Mg-Si alloy plate according to any one of the above items 1 to 3, wherein the heat treatment is performed after the hot rolling is finished and before the cold rolling is started.
(5) The method for producing an Al-Mg-Si alloy plate according to any one of the preceding items 1 to 4, wherein the heat treatment temperature is 130°C or higher and 180°C or lower.
(6) The method for producing an Al-Mg-Si alloy sheet according to any one of the preceding items 1 to 5, wherein the rolling ratio of cold rolling after the heat treatment is 20% or more.
(7) The method for producing an Al-Mg-Si alloy plate according to any one of the items 1 to 6, wherein final annealing is performed after cold rolling.
(8) The method for producing an Al-Mg-Si alloy plate as described in 7 above, wherein the final annealing temperature is 180°C or lower.

前項(1)に記載の発明によれば、Al−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl−Mg−Si系合金板の製造方法であって、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (1), there is provided a method for manufacturing an Al-Mg-Si alloy plate, which comprises sequentially performing hot rolling and cold rolling on an Al-Mg-Si alloy ingot, which is hot. Since the heat treatment is performed at a temperature of 120°C or higher and lower than 200°C after the end of cold rolling and before the end of cold rolling, it is possible to improve the age hardening and conductivity during the heat treatment, and the work hardening and workability by cold rolling to improve the tensile strength. It is possible to manufacture an Al-Mg-Si alloy plate having high strength and high conductivity and good workability.

前項(2)に記載の発明によれば、Al−Mg−Si系合金鋳塊の化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl−Mg−Si系合金板の製造方法であって、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (2), the chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass %, Mg: 0.3 to 1 mass %, Fe: Al-Mg containing 0.5% by mass or less and Cu: 0.5% by mass or less, and hot-rolling and cold-rolling sequentially performed on an Al-Mg-Si alloy ingot containing the balance Al and unavoidable impurities. A method for manufacturing a Si-based alloy sheet, wherein heat treatment is performed at a temperature of 120° C. or higher and lower than 200° C. after completion of hot rolling and before completion of cold rolling. Further, by work hardening and workability improvement by cold rolling, it is possible to manufacture an Al-Mg-Si alloy plate exhibiting high tensile strength and conductivity and good workability.

前項(3)に記載の発明によれば、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (3), since Mn, Cr, Zn, and Ti as impurities are regulated to 0.1% by mass or less, respectively, the tensile strength and the conductivity show high values. It is possible to manufacture an Al-Mg-Si based alloy plate having good workability.

前項(4)に記載の発明によれば、熱処理を熱間圧延終了後であって冷間圧延の開始前に実施するため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (4), since the heat treatment is performed after the hot rolling is finished and before the cold rolling is started, the age hardening and the electric conductivity are improved during the heat treatment, and the work hardening is performed by the cold rolling. By improving the workability, it is possible to manufacture an Al-Mg-Si alloy plate having high tensile strength and high electrical conductivity and good workability.

前項(5)に記載の発明によれば、熱処理温度が130℃以上180℃以下であるため、確実に時効硬化と導電率向上の効果が得られる。 According to the invention described in the above item (5), since the heat treatment temperature is 130° C. or higher and 180° C. or lower, the effects of age hardening and improvement of conductivity can be reliably obtained.

前項(6)に記載の発明によれば、熱処理以降の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl−Mg−Si系合金板の強度を向上させるとともに良好な加工性を得ることができる。 According to the invention described in the above item (6), since the rolling ratio of the cold rolling after the heat treatment is 20% or more, the strength of the Al-Mg-Si alloy plate is improved by the cold rolling and good working is performed. You can get sex.

前項(7)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、Al−Mg−Si系合金板の加工性が良好なものとなる。 According to the invention described in the above item (7), since the final annealing is performed after cold rolling, the workability of the Al-Mg-Si alloy sheet is improved.

前項(8)に記載の発明によれば、最終焼鈍の温度が180℃以下であるため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (8), since the temperature of the final annealing is 180° C. or less, an Al—Mg—Si alloy plate having a high tensile strength and a high electrical conductivity and good workability is manufactured. can do.

本願発明者は、熱間圧延、冷間圧延を順次施するAl−Mg−Si系合金板の製造方法において、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金板が得られることを見出し本願の発明に至った。 The inventor of the present application performs a heat treatment as an aging treatment after the end of hot rolling and before the end of cold rolling in a method for manufacturing an Al-Mg-Si alloy plate in which hot rolling and cold rolling are sequentially performed. As a result, they have found that an Al-Mg-Si based alloy plate having high electrical conductivity and good workability and further high strength can be obtained, and the invention of the present application has been achieved.

以下に、本願のAl−Mg−Si系合金板の製造方法について詳細に説明する。 Below, the manufacturing method of the Al-Mg-Si type|system|group alloy plate of this application is demonstrated in detail.

本願のAl−Mg−Si系合金組成において、各元素の添加目的および好ましい含有量を示す。 In the Al-Mg-Si based alloy composition of the present application, the purpose of addition of each element and the preferable content are shown.

MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下であることが好ましい。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では強度が低くなる。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が更に好ましく、更に0.32質量%以上0.60質量%以下が特に好ましい。Mg含有量は0.45質量%以上0.9質量%以下が更に好ましく、特に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for developing strength, and the respective contents are Si: 0.2 mass% or more and 0.8 mass% or less, and Mg: 0.3 mass% or more and 1 mass% or less. preferable. If the Si content is less than 0.2 mass% or the Mg content is less than 0.3 mass%, the strength becomes low. On the other hand, when the Si content exceeds 0.8 mass% and the Mg content exceeds 1 mass %, the rolling load in the hot rolling increases, the productivity decreases, and the formability of the obtained aluminum alloy sheet also increases. Deteriorate. The Si content is more preferably 0.2 mass% or more and 0.6 mass% or less, and particularly preferably 0.32 mass% or more and 0.60 mass% or less. The Mg content is more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less.

FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制ことが好ましい。Fe含有量は0.35質量%以下に規制することが更に好ましく、特に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが更に好ましい。 Fe and Cu are necessary components for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are preferably regulated to 0.5 mass% or less. The Fe content is more preferably regulated to 0.35% by mass or less, and particularly preferably 0.1% by mass or more and 0.25% by mass or less. The Cu content is more preferably 0.1% by mass or less.

また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。Tiは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果があるが、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。不純物としてのMn、Cr、ZnおよびTiのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 Further, although various impurity elements are unavoidably contained in the alloy element, Mn and Cr reduce conductivity and conductivity, and Zn is less contained because the alloy content decreases in corrosion resistance as the content increases. preferable. Ti has the effect of refining the crystal grains and preventing solidification cracking when the alloy is cast into a slab, but when contained in a large amount, many crystallized substances with large size are produced, so Processability, thermal conductivity, and electrical conductivity are reduced. The content of each of Mn, Cr, Zn and Ti as impurities is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.

上記以外のその他不純物元素が含まれていてもよいが、その他不純物元素各々の含有量は0.05%以下であることが好ましい。 Other impurity elements other than the above may be contained, but the content of each of the other impurity elements is preferably 0.05% or less.

次に、本願規定のAl−Mg―Si系合金材を得るための処理工程について記述する。
常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。
Next, the processing steps for obtaining the Al—Mg—Si alloy material specified in the present application will be described.
The melting components are adjusted by a conventional method to obtain an Al-Mg-Si alloy ingot. It is preferable that the obtained alloy ingot is subjected to a homogenizing treatment as a step prior to the heating before hot rolling.

前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500° C. or higher.

前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The pre-hot-rolling heating is carried out in order to form a uniform structure by solidifying the crystallized substances and Mg and Si in the Al-Mg-Si alloy ingot, but if the temperature is too high, a part of It is preferable to carry out at 450° C. or higher and 580° C. or lower, and particularly preferably 500° C. or higher and 580° C. or lower, as there is a possibility that specific melting will occur.

Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After performing homogenization treatment on the Al-Mg-Si alloy ingot, cooling may be performed before hot rolling, or homogenization treatment and heating before hot rolling may be performed continuously, The homogenization treatment and the pre-hot rolling heating may be performed at the same temperature in the preferable temperature range of the homogenization treatment and the hot rolling pre-heating.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting, before hot rolling and before heating, it is preferable to chamfer the ingot to remove the impurity layer near the surface of the ingot. The surface cutting may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.

本願において熱間圧延終了直後のAl−Mg―Si系合金板の表面温度は170℃以下であることが好ましい。熱間圧延終了直後の合金板の温度を170℃以下とすることにより焼き入れ効果が高められ、その後の熱処理時により時効硬化するとともに導電率が向上する。 In the present application, the surface temperature of the Al—Mg—Si alloy plate immediately after the hot rolling is preferably 170° C. or lower. By setting the temperature of the alloy sheet immediately after the hot rolling to 170° C. or lower, the quenching effect is enhanced, and the subsequent heat treatment causes age hardening and electrical conductivity improvement.

熱間圧延直後のAl−Mg―Si系合金板の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度が向上し難くなる。熱間圧延終了直後のアルミニウム板の表面温度は更に150℃以下が好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy plate immediately after hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after completion of hot rolling and before completion of cold rolling. It will be difficult. The surface temperature of the aluminum plate immediately after the completion of hot rolling is preferably 150°C or lower, and particularly preferably 130°C or lower.

熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板に熱処理を施し、時効硬化させるとともに導電率を向上させる。 After completion of hot rolling and before completion of cold rolling, the Al—Mg—Si alloy plate is heat-treated to age-harden and improve conductivity.

本願において熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施する。前記熱処理の温度は130℃以上190℃以下が好ましく、更に140℃以上180℃以下が好ましい。 In the present application, the heat treatment of the Al—Mg—Si alloy plate after the completion of hot rolling and before the completion of cold rolling is performed at a temperature of 120° C. or higher and lower than 200° C. in order to obtain the effects of age hardening and conductivity improvement. The temperature of the heat treatment is preferably 130°C or higher and 190°C or lower, more preferably 140°C or higher and 180°C or lower.

前記熱間圧延終了後冷間圧延終了前において120℃以上200℃未満の温度で実施するAl−Mg―Si系合金板の熱処理の時間は特に限定されないが、時効硬化および導電率向上の効果が得られるように所定の温度で時間を調節すればよく、例えば、1〜12時間の範囲で時間を調節して熱処理を実施すればよい。 The time for heat treatment of the Al-Mg-Si alloy plate to be carried out at a temperature of 120°C or higher and lower than 200°C after the end of hot rolling and before the end of cold rolling is not particularly limited, but the effects of age hardening and conductivity improvement are obtained. The time may be adjusted at a predetermined temperature so as to obtain the heat treatment, and for example, the heat treatment may be performed by adjusting the time in the range of 1 to 12 hours.

前記熱処理の後、冷間圧延を実施することにより加工硬化し強度が更に向上する。 After the heat treatment, cold rolling is performed to work-harden and further improve the strength.

前記熱処理は時効硬化させたAl−Mg―Si系合金板の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。 The heat treatment is preferably performed after the hot rolling and before the cold rolling in order to enhance the strength improving effect of the age-hardened Al-Mg-Si alloy sheet by the cold rolling.

前記熱処理後の冷間圧延により所定の厚さのAl−Mg―Si系合金板とする。熱処理後の冷間圧延は強度向上と加工性の改善の為20%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl−Mg―Si系合金板の圧延率は更に30%以上が好ましく、特に60%以上が好ましい。 After the heat treatment, cold rolling is performed to obtain an Al-Mg-Si alloy plate having a predetermined thickness. Cold rolling after heat treatment is preferably carried out at a rolling rate of 20% or more in order to improve strength and workability. The rolling rate of the Al—Mg—Si alloy plate by cold rolling after the heat treatment is more preferably 30% or more, and particularly preferably 60% or more.

冷間圧延後のAl−Mg―Si系合金板に必要に応じて洗浄を実施しても良い。 The Al—Mg—Si alloy plate after cold rolling may be washed as necessary.

Al−Mg―Si系合金板の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl−Mg―Si系合金板の強度が低くなりすぎないようにする為に180℃以下で実施することが好ましく、更に160℃以下、特に140℃以下で実施することが好ましい。 When the workability of the Al-Mg-Si alloy plate is further emphasized, final annealing may be performed after cold rolling. The final annealing is preferably performed at 180° C. or less, more preferably 160° C. or less, and particularly preferably 140° C. or less so that the strength of the Al—Mg—Si alloy plate does not become too low.

前記180℃以下の温度で実施するAl−Mg―Si系合金板の最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1〜10時間の範囲で最終焼鈍の温度により選択すれば良い。 The time for the final annealing of the Al-Mg-Si alloy plate to be carried out at a temperature of 180°C or lower may be adjusted so that the required workability and strength can be obtained. For example, the final annealing is performed in the range of 1 to 10 hours. It may be selected according to the temperature.

なお、本願のAl−Mg―Si系合金板の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程で合金板を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。 The Al—Mg—Si alloy plate of the present invention may be manufactured using a coil or a single plate. Further, the alloy sheet may be cut in any step after the cold rolling and the step after cutting may be performed as a single sheet, or slits may be formed depending on the application.

以下に本発明の実施例および比較例を示す。 Examples and comparative examples of the present invention will be shown below.

表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.

[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃4hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を実施し、厚さ7.0mmの合金板を得た。熱間圧延終了直後の合金板の温度は110℃であった。熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the alloy slab after chamfering was homogenized at 570° C. for 4 hours in a heating furnace, and then heated at 540° C. for 4 hours at 540° C. for 4 hours in the same furnace. After heating before hot rolling, the slab at 540° C. was taken out of the heating furnace, and rough hot rolling was performed to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the hot rolling was 110°C. The alloy plate after hot rolling was heat-treated at 170° C. for 5 hours, and then cold rolled at a rolling ratio of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.

Figure 0006718275
Figure 0006718275

[実施例2〜39、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2-39, Comparative Examples 1-6]
After the aluminum alloy slabs shown in Table 1 were chamfered, they were treated under the conditions shown in Tables 2 to 6 to obtain aluminum alloy plates. As in Example 1, the homogenization treatment and the heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples. Further, in some examples, final annealing was performed after cold rolling.

Figure 0006718275
Figure 0006718275

Figure 0006718275
Figure 0006718275

Figure 0006718275
Figure 0006718275

Figure 0006718275
Figure 0006718275

Figure 0006718275
Figure 0006718275

得られた合金板の引張強さ、導電率、加工性を以下の方法により評価した。 The tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.

引張強さは、JIS5号試験片について、常温で常法により測定した。 The tensile strength of JIS No. 5 test piece was measured at room temperature by a conventional method.

導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10−2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was determined as a relative value (%IACS) when the electrical conductivity of internationally adopted annealing standard annealed copper (volume low efficiency 1.7241×10 −2 μΩm) was 100%IACS.

加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, the bending angle is 90°, the inner thickness of each alloy plate is the bending inner radius when the alloy plate thickness is 0.4 mm or more, and the inner bending radius is when the alloy plate thickness is less than 0.4 mm. A bending test was carried out by the 6.3 V block method of the JIS Z 2248 metal material bending test method with the radius set to 0. The case where no cracks occurred was evaluated as ◯, and the case where cracks occurred was evaluated as x.

引張強さ、導電率、および加工性の評価結果を表2〜表7に示す。 Tables 2 to 7 show the evaluation results of tensile strength, conductivity, and workability.

前記熱間圧延終了後冷間圧延終了前の熱処理温度が120℃以上200℃未満の範囲内である実施例では、引張強さおよび導電率が高い値を示し加工性も良好であるのに対し、前記熱間圧延終了後冷間圧延終了前の熱処理温度が本願規定範囲下限未満の比較例1は引張強さおよび導電率が実施例に劣り、前記熱間圧延終了後冷間圧延終了前の熱処理温度が本願規定範囲上限を超える比較例2は引張強さが実施例に劣る。また、Si含有量が実施例より少ない比較例3、Si含有量が実施例より多い比較例4、Mg含有量が実施例より少ない比較例5、およびMg含有量が実施例より多い比較例6も、引張強さもしくは導電率の少なくともどちらかが実施例に劣り、比較例4および比較例6は加工性も劣る。 In the examples in which the heat treatment temperature after the hot rolling and before the cold rolling is in the range of 120° C. or higher and lower than 200° C., the tensile strength and the conductivity are high and the workability is good. In Comparative Example 1 in which the heat treatment temperature after the hot rolling and before the cold rolling is less than the lower limit of the specified range of the present application, the tensile strength and the electrical conductivity are inferior to those of the examples, and after the hot rolling and before the cold rolling is finished. In Comparative Example 2 in which the heat treatment temperature exceeds the upper limit of the specified range of the present application, the tensile strength is inferior to that of the example. Further, Comparative Example 3 having a lower Si content than that of the Examples, Comparative Example 4 having a higher Si content than the Examples, Comparative Example 5 having a lower Mg content than the Examples, and Comparative Example 6 having a higher Mg content than the Examples. Also, at least one of the tensile strength and the conductivity is inferior to the examples, and the comparative examples 4 and 6 are also inferior in workability.

Claims (6)

化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制され、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl−Mg−Si系合金板の製造方法であって、熱間圧延終了直後の合金板の表面温度を170℃以下とし、熱間圧延終了後、溶体化処理を実施することなく冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。 The chemical composition contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less. Al in which Mn, Cr, Zn, and Ti are regulated to 0.1% by mass or less, respectively, and hot-rolling and cold-rolling are sequentially performed on an Al-Mg-Si alloy ingot containing the balance Al and inevitable impurities. A method for manufacturing an Mg-Si alloy plate, wherein the surface temperature of the alloy plate immediately after the hot rolling is 170° C. or lower, after the hot rolling is completed, and before the cold rolling is completed without performing the solution treatment. A method for producing an Al-Mg-Si alloy plate, which further comprises heat treatment at a temperature of 120°C or more and less than 200°C. 熱処理を熱間圧延終了後であって冷間圧延開始前に実施する請求項1に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to claim 1, wherein the heat treatment is performed after the hot rolling is finished and before the cold rolling is started. 熱処理温度が130℃以上180℃以下である請求項1または請求項2に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 1 or 2, wherein the heat treatment temperature is 130°C or higher and 180°C or lower. 熱処理以降の冷間圧延の圧延率が20%以上である請求項1ないし請求項の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 1 to 3 , wherein a rolling ratio of cold rolling after the heat treatment is 20% or more. 冷間圧延後に最終焼鈍を実施する請求項1ないし請求項の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 Al-Mg-Si-based method for producing alloy sheet according to any one of claims 1 to 4 implementing the final annealing after cold rolling. 最終焼鈍の温度が180℃以下である請求項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 5 , wherein the final annealing temperature is 180°C or lower.
JP2016067351A 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate Active JP6718275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067351A JP6718275B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067351A JP6718275B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Publications (2)

Publication Number Publication Date
JP2017179448A JP2017179448A (en) 2017-10-05
JP6718275B2 true JP6718275B2 (en) 2020-07-08

Family

ID=60006678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067351A Active JP6718275B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Country Status (1)

Country Link
JP (1) JP6718275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257677A (en) * 2019-07-23 2019-09-20 江苏威腾电力科技有限公司 A kind of novel high thermal conductivity Al-Mg-Si alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292812A (en) * 1976-02-02 1977-08-04 Mitsubishi Metal Corp Production of corrosion-resisting al alloy sheet having high strength and tough ductility
JPS57143472A (en) * 1981-03-02 1982-09-04 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy sheet for forming
JP2773874B2 (en) * 1988-09-29 1998-07-09 古河電気工業株式会社 Manufacturing method of aluminum alloy plate
JP3951921B2 (en) * 2003-01-09 2007-08-01 日本軽金属株式会社 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Also Published As

Publication number Publication date
JP2017179448A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774196B2 (en) Al-Mg-Si based alloy material
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2009242813A (en) Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7422539B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
CN110872665B (en) Al-Mg-Si alloy plate
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
JP4933326B2 (en) Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP6774197B2 (en) Al-Mg-Si based alloy material
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2020033609A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2020033606A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250