JP3951921B2 - Manufacturing method of aluminum alloy processed material of 58.1IACS% or more - Google Patents

Manufacturing method of aluminum alloy processed material of 58.1IACS% or more Download PDF

Info

Publication number
JP3951921B2
JP3951921B2 JP2003002920A JP2003002920A JP3951921B2 JP 3951921 B2 JP3951921 B2 JP 3951921B2 JP 2003002920 A JP2003002920 A JP 2003002920A JP 2003002920 A JP2003002920 A JP 2003002920A JP 3951921 B2 JP3951921 B2 JP 3951921B2
Authority
JP
Japan
Prior art keywords
mass
less
thermal conductivity
aluminum alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003002920A
Other languages
Japanese (ja)
Other versions
JP2004217945A (en
Inventor
茂 岡庭
正和 岩瀬
昇 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003002920A priority Critical patent/JP3951921B2/en
Publication of JP2004217945A publication Critical patent/JP2004217945A/en
Application granted granted Critical
Publication of JP3951921B2 publication Critical patent/JP3951921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、特に電子部品冷却用ヒートシンクとして好適で、熱伝導性に優れたアルミニウム合金材に関する。
【0002】
【従来技術】
近年、ノート型パソコン,携帯電話等の電子機器に使用されるヒートシンクには、熱伝導性に優れたアルミニウム合金を、高い寸法精度の小物製品あるいは複雑形状品の製造に適したダイカスト法で鋳造・成形したものが使用されるようになった。ところが、ヒートシンク用材料として使用されている純アルミニウムやAl−Mg−Si系アルミニウム合金は、熱伝導性に優れているものの鋳造性が悪く、ヒートシンクのように薄肉で複雑形状の部品に鋳造することはできなかった。他方、鋳造性確保のためにSiやFeを多量に含有させたアルミニウム合金は、熱伝導性が低く、ヒートシンクのように高い熱伝導性が要求される部品には適していない。
【0003】
このため、Siに代えてNiを含有させ、NiとAlの間で共晶組織を形成させ、鋳造性を改善するとともに優れた熱伝導性を確保する方法が提案されている(例えば特許文献1参照。)。しかし、生産性に優れ、熱伝導性の良いダイカスト製品は得られるものの、高価なNiの使用によりコスト高になっている。
また、Al−Mg−Si系アルミニウム合金を特定の温度に加熱し、その後の冷却過程において鍛造するとともに、冷却速度を規定し、さらにその後時効硬化処理を行う方法も提案されている(例えば特許文献2参照。)。しかし、この方法では十分な熱伝導性が得られなかった。
【0004】
【特許文献1】
特開2001−294962号公報(第2−3頁、第2図)
【特許文献2】
特開2000−204457号公報(第2−3頁)
【0005】
【本発明が解決しようとする課題】
パソコン等の電子機器の高性能化や軽量化および薄肉化により、冷却性能がさらに優れた、すなわち熱伝導性がさらに優れたヒートシンクが要求されるようになった。また、製造コストの低減も図られ、寸法精度が高いものを生産性良く製造する方法が求められている。
本発明は、このような問題を解消すべく案出されたものであり、アルミニウム合金の成分組成を細かく調整して、より熱伝導性に優れ、かつ加工性に優れ、安定した品質を保てるアルミニウム合金材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の58.1IACS%以上のアルミニウム合金加工材の製造方法は、その目的を達成するため、Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%,B:0.003〜0.10質量%を含み、残部がAl及び不可避的不純物からなり、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al,Si,Mg,Fe,B,Cu,Mn,Cr,Ti,V及びZr以外のその他の元素の合計が0.03質量%以下であるアルミニウム合金の鋳塊を、550〜595℃で1〜6時間保持して均熱処理し、200℃/時間以上の冷却速度で200℃以下まで冷却した後、再度加熱し、押出加工または圧延加工等の熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却した後、100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却することにより、熱伝導性に優れたアルミニウム合金熱間加工材が得られる。
上記方法で製造された熱間加工材をさらに冷間鍛造しても良い。
【0007】
【作用】
アルミニウムは純度が低くなるほど熱伝導性が低くなる。アルミニウム合金の熱伝導性は、母相中に固溶されている他の元素の量に影響されている。本発明は、他の元素のアルミニウム母相中への固溶量を極力少なくすることにより、熱伝導性を良くしたものである。
成分組成的には、Bを添加し、Al以外の元素、特に熱伝導を低下させるTi,V,Zr,CrをBと晶出物を形成させてアルミニウム母相中に固溶される他の元素の固溶量を低減させ、熱伝導度の低下を抑制することができる。しかも、このB系晶出物は安定しており、その後の熱処理や加工によっても母相に再固溶し難い。
また、熱処理的には、Al−Mg−Si系アルミニウム合金の熱間加工材を300〜400℃の温度範囲で焼鈍を行うことにより、母相中に固溶されているMgとSiをMg2Siとして析出させ、母相中の固溶量を低減させて熱伝導度の低下を抑制するものである。
【0008】
【実施の態様】
以下、本発明が対象とするアルミニウム合金の成分・組成,製造条件等を説明する。
Si:0.25〜0.85質量%
Siは強度を向上させる合金成分であり、0.25質量%以上のSiの含有で顕著になる。しかし、0.85質量%を超える過剰量のSiが含まれると、熱伝導性の低下が著しくなる。
Mg:0.20〜0.50質量%
Mgは強度を向上させる合金成分であり、0.20質量%以上の含有量でMgの効果が顕著になる。しかし、0.50質量%を超える過剰量のMgが含まれると、熱伝導性の低下が著しくなる。
【0009】
Fe:0.10〜0.20質量%
Feは鋳造組織を均一とし、母相の強度を向上させる作用を有している。0.10質量%以上の含有量でFeの効果が顕著になる。しかし、0.20質量%を超える過剰量のFeが含まれると、熱伝導性の低下が著しくなる。しかも粗大な金属間化合物を形成し、伸びが低下し、押出性や鍛造性等の成形性も低下する。
B:0.003〜0.01質量%
Bは、Al以外の元素と晶出物を形成する。そのため、他の元素のAl母相中での固溶量が減少し、熱伝導率の低下が抑制される。0.003質量%以上の含有量でBの効果が顕著になる。しかし、0.01質量%を超える過剰量のBが含まれると、粗大な金属間化合物を形成し、伸びが低下し、押出性や鍛造性等の成形性も低下する。
【0010】
Cu,Mn,Cr,Ti,V,Zr
Cu,Mn,Cr,Ti,V,Zrはアルミニウム合金中に含有されると熱伝導性を低下させる元素であるが、Cuは0.03質量%以下,Mnは0.005質量%以下,Crは0.03質量%以下,Tiは0.005質量%以下,Vは0.005質量%以下,Zrは0.005質量%以下であれば、熱伝導性はあまり低下しないので、これ以下の含有であれば許容される。上記数値を超えて含有すると急激に熱伝導性が低下する。
その他の元素
Al,Si、Mg,Fe,B,Cu,Mn,Cr,Ti,V及びZr以外のその他の元素もその合計が0.03質量%以下であれば、熱伝導性はほとんど低下しないので許容される。
【0011】
均質化処理:550〜595℃で1〜6時間保持し、200℃/時間以上の冷却速度で200℃以下まで冷却
均質化処理することにより、Mgの偏析がなくなり、Fe系化合物が微細に分断され、加工性が向上する。また主要元素であるMg,Si,Feの存在形態を安定化させる。
なお、鋳造時に晶出させたB系化合物はこの温度域では変化しない。
【0012】
熱間加工:熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却
均質化処理されたビレット中ではMg2Siが生成されている。熱間加工ではMg2Siを再固溶させるために、加工直後の形材温度が500〜600℃の範囲になるように温度制御される。加工直後の形材温度が500℃に満たないと、Mg2Siが十分に固溶できない。逆に600℃を超える形材温度では、加工後の再結晶粒組織が粗大化しやすく,機械的強度が低下する傾向が示される。加工後の形材は、200℃までを冷却速度50℃/分以上で冷却される。冷却速度をこのように制御するとき、加工材中に粗大なMg2Siが析出することが防止され、安定した組織を得ることができる。
なお、熱間加工を押出加工とし、室温にて引張り矯正する場合には、与える歪み量は0.6%以下にすることが好ましい。0.6%を超えて歪みを与えるとその後の焼鈍時にMg2Siの析出状態に変動を生じさせ、熱伝導性を低下させることになる。
【0013】
焼鈍:100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却
母相中に固溶しているSiとMgがMg2Siとして析出するので、母相中の固溶量が減少し、熱伝導性が向上する。この効果は300℃以上の加熱で顕著になる。しかし、400℃を超える温度で焼鈍すると一部微細なMg2Siが再固溶する。また冷却過程の冷却速度のバラツキにより析出に変動を生じ、Mg2Siの析出が均一とならないため熱伝導性が低下したり、バラツキが大きくなる。
冷間鍛造:
冷間で鍛造することにより、目的とする形状とすることができる。また加工硬化により、強度が向上する。
【0014】
【実施例】
実施例1:
表1に示す組成のアルミニウム合金鋳塊を、560℃で2時間保持し、均質化処理した後、250℃/時間の冷却速度で常温まで冷却した。冷却後500℃まで再加熱し、押出比10で厚さ4mm,幅60mmの平板状に押出加工した。押出直後の材料は540℃であった。100℃/分の冷却速度で室温まで冷却した。その後、180℃,350℃,410℃の3種類の温度に加熱して2時間保持する焼鈍を施した後、常温まで炉冷(30℃/時間)した。
得られた押出材の電気伝導度と機械的強度(ビッカース硬度)を測定した。なお、熱伝導度は合金が同じであれば電気伝導度と比例関係にあることがわかっている。本実施例では熱伝導度に代えて電気伝導度を測定することとし、簡易的にCuを100として測定・表示する方法で行った。IACS%(国際・焼鈍銅・標準)で表示した。電気伝導度は押出材の表面5箇所で測定し、その平均値とした。硬度は、ビッカース硬度計(5kg荷重)にて、5箇所測定し、その平均値とした。
その結果を表2に示す。
【0015】

Figure 0003951921
【0016】
Figure 0003951921
【0017】
表2に示す結果から、Bを添加した合金1,2を使用した試験番号1〜4では、B含有量の少ない合金3(この合金中のBは不純物として含まれている量であって、積極的に添加したものではない。)や不純物含有量の多い合金4を使用した試験番号5〜7より、焼鈍条件が同じであれば熱伝導度が高くなっていることがわかる。
また、焼鈍温度が350℃である試験番号1,2,5,6は、同じ合金でも焼鈍温度が180℃や410℃である試験番号3,4,7と比較して熱伝導度が高くなっていることがわかる。
【0018】
Bを積極的に添加した合金1,2を使用した試験番号1,2,3と比較して、B含有量が少ない合金3を使用した試験番号5,7で熱伝導度が低くなっている理由は、不純物元素をB系化合物として晶出させることができなったためである。なお、試験番号7では、焼鈍温度が低いためにSiとMgがMg2Siとして十分に析出できなかったために、熱伝導度がより低くなっている。不純物元素含有量が多い合金4を使用した試験番号6では、B系化合物として不純物を十分に晶出しきれず、不純物元素の固溶量が多くなっているためである。
【0019】
また、同じ合金番号1の焼鈍温度350℃の試験番号1と比較して焼鈍温度180℃,410℃の試験番号3,4は、熱伝導性が悪くなっている。焼鈍温度が180℃の試験番号3では、温度が低いために母相中に固溶しているSiとMgがMg2Siとして十分に析出できず、サブミクロンサイズのMg−Si系化合物として析出し、結晶格子を歪めているためである。また、焼鈍温度が420℃と高い試験番号4では、一旦析出したMg2Siが再び固溶したためである。
【0020】
実施例2:
実施例1の試験番号1,2のものを、押出後室温に冷却された段階でヒートシンク形状に冷間鍛造する工程を付加したものについて、実施例1と同じ方法で電気伝導度と機械的強度を測定した。
その結果を表3に示す。
この結果からもわかるように、冷間鍛造を行っても熱伝導度は低下せず、加工硬化により機械的強度が向上している。
【0021】
Figure 0003951921
【0022】
【発明の効果】
以上に説明したように、本発明では、Al−Mg−Si系アルミニウム合金において、アルミニウム母相中に固溶する不純物元素をBの添加によりB系化合物として晶出させ、しかもアルミニウム母相中に固溶しているSiおよびMgをMg2Siとして析出させて、アルミニウム母相中の他元素の固溶量を極力低減して、熱伝導性を高めることができたものである。
Bの添加で形成されたB系化合物は、熱処理や冷間鍛造によっても変化することなく、母相の不純物元素固溶量を低減できるので、本発明を適用した合金には冷間鍛造が適用できる。このため、複雑形状を有し、高い形状精度が要求されるヒートシンクを始めとした各種部品も、その熱伝導性を低下させることなく製造することができる。[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy material that is particularly suitable as a heat sink for cooling electronic components and is excellent in thermal conductivity.
[0002]
[Prior art]
In recent years, for heat sinks used in electronic devices such as notebook computers and mobile phones, aluminum alloys with excellent thermal conductivity have been cast and cast by die-casting methods suitable for the manufacture of small dimensional precision products or complex shaped products. Molded ones are used. However, pure aluminum and Al-Mg-Si based aluminum alloys used as heat sink materials are excellent in thermal conductivity, but have poor castability, and cast into thin and complex parts like heat sinks. I couldn't. On the other hand, an aluminum alloy containing a large amount of Si or Fe in order to ensure castability has low thermal conductivity and is not suitable for a component that requires high thermal conductivity such as a heat sink.
[0003]
For this reason, a method has been proposed in which Ni is contained instead of Si, a eutectic structure is formed between Ni and Al, castability is improved, and excellent thermal conductivity is ensured (for example, Patent Document 1). reference.). However, although a die-cast product having excellent productivity and good thermal conductivity can be obtained, the use of expensive Ni increases the cost.
In addition, a method has also been proposed in which an Al—Mg—Si-based aluminum alloy is heated to a specific temperature, forged in a subsequent cooling process, a cooling rate is specified, and an age hardening treatment is performed thereafter (for example, Patent Documents). 2). However, this method did not provide sufficient thermal conductivity.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-294962 (page 2-3, FIG. 2)
[Patent Document 2]
JP 2000-204457 A (page 2-3)
[0005]
[Problems to be solved by the present invention]
With the improvement in performance, weight and thickness of electronic devices such as personal computers, there has been a demand for heat sinks with even better cooling performance, that is, better thermal conductivity. In addition, the manufacturing cost can be reduced, and a method for manufacturing a product with high dimensional accuracy with high productivity is required.
The present invention has been devised in order to solve such problems. The aluminum alloy is capable of finely adjusting the component composition of an aluminum alloy to achieve better thermal conductivity, better workability, and stable quality. An object is to provide an alloy material.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the manufacturing method of the aluminum alloy processed material of 58.1IACS% or more of the present invention, Si: 0.25-0.85 mass%, Mg: 0.20-0.50 mass%, Fe : 0.10 to 0.20% by mass, B: 0.003 to 0.10% by mass, the balance consisting of Al and inevitable impurities, Cu: 0.03% by mass or less, Mn: 0.005% by mass %, Cr: 0.03 mass% or less, Ti: 0.005 mass% or less, V: 0.005 mass% or less, Zr: 0.005 mass% or less, Al, Si, Mg, Fe, An ingot of aluminum alloy in which the total of other elements other than B, Cu, Mn, Cr, Ti, V, and Zr is 0.03% by mass or less is maintained at 550 to 595 ° C. for 1 to 6 hours, and is soaked. And cooled down to 200 ° C. or less at a cooling rate of 200 ° C./hour or more. Then, it is heated again and hot-worked so that the temperature of the hot-worked material immediately after hot working such as extrusion or rolling is 500 to 600 ° C, and the obtained hot-worked material is 50 ° C / After cooling to 200 ° C. or less at a cooling rate of not less than minutes, heated to 300 to 400 ° C. at a temperature rising rate of 100 ° C./hour or less, held at that temperature range for 0.5 to 4 hours, and then 50 ° C./hour By cooling to 100 ° C. or lower at the following speed, an aluminum alloy hot-worked material excellent in thermal conductivity can be obtained.
The hot-worked material manufactured by the above method may be further cold forged.
[0007]
[Action]
The lower the purity of aluminum, the lower the thermal conductivity. The thermal conductivity of the aluminum alloy is affected by the amount of other elements dissolved in the matrix. The present invention improves thermal conductivity by minimizing the amount of other elements dissolved in the aluminum matrix.
In terms of component composition, B is added, and elements other than Al, particularly Ti, V, Zr, and Cr, which lower thermal conductivity, form a crystallized product with B and are dissolved in the aluminum matrix. It is possible to reduce the solid solution amount of the element and suppress a decrease in thermal conductivity. In addition, this B-based crystallized product is stable and hardly re-dissolves in the parent phase even by subsequent heat treatment or processing.
Also, in terms of heat treatment, the hot-worked material of Al—Mg—Si-based aluminum alloy is annealed in the temperature range of 300 to 400 ° C., so that Mg and Si dissolved in the matrix phase are converted into Mg 2. It precipitates as Si and reduces the amount of solid solution in the matrix phase to suppress the decrease in thermal conductivity.
[0008]
Embodiment
Hereinafter, the components and composition of the aluminum alloy targeted by the present invention, production conditions, and the like will be described.
Si: 0.25 to 0.85 mass%
Si is an alloy component that improves the strength, and becomes remarkable when Si is contained in an amount of 0.25% by mass or more. However, when an excessive amount of Si exceeding 0.85% by mass is included, the thermal conductivity is significantly lowered.
Mg: 0.20 to 0.50 mass%
Mg is an alloy component that improves the strength, and the effect of Mg becomes remarkable when the content is 0.20% by mass or more. However, when an excessive amount of Mg exceeding 0.50% by mass is contained, the thermal conductivity is significantly lowered.
[0009]
Fe: 0.10 to 0.20 mass%
Fe has the effect of making the cast structure uniform and improving the strength of the matrix. When the content is 0.10% by mass or more, the effect of Fe becomes remarkable. However, when an excessive amount of Fe exceeding 0.20% by mass is included, the thermal conductivity is significantly lowered. In addition, a coarse intermetallic compound is formed, elongation is lowered, and moldability such as extrudability and forgeability is also lowered.
B: 0.003 to 0.01% by mass
B forms a crystallized product with elements other than Al. Therefore, the amount of solid solution of other elements in the Al matrix decreases, and a decrease in thermal conductivity is suppressed. The effect of B becomes remarkable at a content of 0.003 mass% or more. However, when an excessive amount of B exceeding 0.01% by mass is contained, a coarse intermetallic compound is formed, elongation is lowered, and moldability such as extrudability and forgeability is also lowered.
[0010]
Cu, Mn, Cr, Ti, V, Zr
Cu, Mn, Cr, Ti, V, and Zr are elements that reduce thermal conductivity when contained in an aluminum alloy, but Cu is 0.03% by mass or less, Mn is 0.005% by mass or less, Cr If 0.03 mass% or less, Ti is 0.005 mass% or less, V is 0.005 mass% or less, and Zr is 0.005 mass% or less, the thermal conductivity will not decrease so much. If contained, it is acceptable. When it contains exceeding the said numerical value, thermal conductivity will fall rapidly.
Other elements other than Al, Si, Mg, Fe, B, Cu, Mn, Cr, Ti, V, and Zr, if the total is 0.03% by mass or less, the thermal conductivity is hardly lowered. So acceptable.
[0011]
Homogenization treatment: Hold at 550-595 [deg.] C. for 1-6 hours and cool to 200 [deg.] C. or less at a cooling rate of 200 [deg.] C./hour or more . Is finely divided to improve workability. It also stabilizes the existence forms of the main elements Mg, Si, and Fe.
The B-based compound crystallized during casting does not change in this temperature range.
[0012]
Hot working: Hot working is performed so that the temperature of the hot-worked material immediately after hot working is 500 to 600 ° C., and the obtained hot-worked material is reduced to 200 ° C. or less at a cooling rate of 50 ° C./min or more. cooling <br/> the homogenized billet of Mg 2 Si is produced. In hot working, in order to re-dissolve Mg 2 Si, temperature control is performed so that the shape material temperature immediately after working is in the range of 500 to 600 ° C. If the shape material temperature immediately after processing is less than 500 ° C., Mg 2 Si cannot be sufficiently dissolved. On the contrary, when the material temperature exceeds 600 ° C., the recrystallized grain structure after processing tends to be coarsened, and the mechanical strength tends to decrease. The processed shape is cooled to 200 ° C. at a cooling rate of 50 ° C./min or more. When the cooling rate is controlled in this way, coarse Mg 2 Si is prevented from precipitating in the processed material, and a stable structure can be obtained.
In addition, when hot processing is extrusion processing and tensile correction is performed at room temperature, the amount of strain applied is preferably 0.6% or less. If the strain exceeds 0.6%, the Mg 2 Si precipitation state varies during subsequent annealing, and the thermal conductivity is lowered.
[0013]
Annealing: Heating to 300 to 400 ° C. at a temperature rising rate of 100 ° C./hour or less, holding in that temperature range for 0.5 to 4 hours, then cooling to 100 ° C. or less at a rate of 50 ° C./hour or less <br / > Since Si and Mg dissolved in the matrix phase are precipitated as Mg 2 Si, the amount of the solid solution in the matrix phase is reduced and the thermal conductivity is improved. This effect becomes significant when heating at 300 ° C. or higher. However, when annealing is performed at a temperature exceeding 400 ° C., some fine Mg 2 Si is dissolved again. In addition, the precipitation varies due to variations in the cooling rate during the cooling process, and the Mg 2 Si precipitation is not uniform, resulting in a decrease in thermal conductivity or an increase in variation.
Cold forging:
The target shape can be obtained by cold forging. In addition, strength is improved by work hardening.
[0014]
【Example】
Example 1:
The aluminum alloy ingot having the composition shown in Table 1 was held at 560 ° C. for 2 hours, homogenized, and then cooled to room temperature at a cooling rate of 250 ° C./hour. After cooling, it was reheated to 500 ° C. and extruded into a flat plate having a thickness of 4 mm and a width of 60 mm at an extrusion ratio of 10. The material immediately after extrusion was 540 ° C. It cooled to room temperature with the cooling rate of 100 degree-C / min. Then, after heating to three types of temperatures of 180 ° C., 350 ° C., and 410 ° C. and annealing for 2 hours, the furnace was cooled to room temperature (30 ° C./hour).
The obtained extruded material was measured for electric conductivity and mechanical strength (Vickers hardness). It is known that the thermal conductivity is proportional to the electrical conductivity if the alloys are the same. In this example, the electrical conductivity was measured instead of the thermal conductivity, and the measurement was performed by simply measuring and displaying Cu as 100. Displayed in IACS% (international, annealed copper, standard). The electrical conductivity was measured at five locations on the surface of the extruded material, and the average value was taken. The hardness was measured at five locations with a Vickers hardness meter (5 kg load), and the average value was taken.
The results are shown in Table 2.
[0015]
Figure 0003951921
[0016]
Figure 0003951921
[0017]
From the results shown in Table 2, in Test Nos. 1 to 4 using Alloys 1 and 2 to which B was added, Alloy 3 with a low B content (B in this alloy is an amount contained as an impurity, From the test numbers 5 to 7 using the alloy 4 having a high impurity content, it can be seen that the thermal conductivity is high if the annealing conditions are the same.
Further, test numbers 1, 2, 5, and 6 having an annealing temperature of 350 ° C. have higher thermal conductivity than test numbers 3, 4, and 7 having an annealing temperature of 180 ° C. and 410 ° C. even in the same alloy. You can see that
[0018]
Compared with test numbers 1, 2 and 3 using alloys 1 and 2 to which B is positively added, thermal conductivity is lower in test numbers 5 and 7 using alloy 3 having a low B content. The reason is that the impurity element could not be crystallized as a B-based compound. In Test No. 7, since the annealing temperature was low, Si and Mg could not be sufficiently precipitated as Mg 2 Si, so the thermal conductivity was lower. This is because in Test No. 6 using the alloy 4 having a large impurity element content, the impurities cannot be sufficiently crystallized out as the B-based compound, and the amount of impurity elements in solid solution increases.
[0019]
Moreover, compared with the test number 1 with the annealing temperature of 350 degreeC of the same alloy number 1, test numbers 3 and 4 with the annealing temperature of 180 degreeC and 410 degreeC have bad thermal conductivity. In test number 3 where the annealing temperature is 180 ° C., Si and Mg dissolved in the matrix phase cannot be sufficiently precipitated as Mg 2 Si because the temperature is low, and precipitate as sub-micron sized Mg—Si compounds. This is because the crystal lattice is distorted. Further, the annealing temperature is 420 ° C. and higher Test No. 4, once precipitated Mg 2 Si is due to solid solution again.
[0020]
Example 2:
About the thing of the test numbers 1 and 2 of Example 1 which added the process of cold forging to the heat sink shape in the step cooled to room temperature after extrusion, it is the same method as Example 1, and electrical conductivity and mechanical strength Was measured.
The results are shown in Table 3.
As can be seen from these results, the thermal conductivity does not decrease even when cold forging is performed, and the mechanical strength is improved by work hardening.
[0021]
Figure 0003951921
[0022]
【The invention's effect】
As described above, in the present invention, in an Al—Mg—Si-based aluminum alloy, an impurity element that dissolves in an aluminum matrix phase is crystallized as a B-based compound by adding B, and in the aluminum matrix phase. It was possible to increase the thermal conductivity by precipitating Si and Mg in solid solution as Mg 2 Si to reduce the solid solution amount of other elements in the aluminum matrix as much as possible.
The B-based compound formed by the addition of B can reduce the amount of impurity element solid solution in the parent phase without being changed by heat treatment or cold forging. Therefore, cold forging is applied to the alloy to which the present invention is applied. it can. For this reason, various parts including a heat sink that has a complicated shape and requires high shape accuracy can be manufactured without lowering its thermal conductivity.

Claims (2)

Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%,B:0.003〜0.10質量%を含み、残部がAl及び不可避的不純物からなり、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al,Si,Mg,Fe,B,Cu,Mn,Cr,Ti,V及びZr以外のその他の元素の合計が0.03質量%以下であるアルミニウム合金の鋳塊を、550〜595℃で1〜6時間保持して均熱処理し、200℃/時間以上の冷却速度で200℃以下まで冷却した後、再度加熱し、熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却した後、100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却することを特徴とする58.1 IACS %以上のアルミニウム合金加工材の製造方法。Si: 0.25 to 0.85% by mass, Mg: 0.20 to 0.50% by mass, Fe: 0.10 to 0.20% by mass , B: 0.003 to 0.10% by mass , The balance consists of Al and inevitable impurities, Cu: 0.03% by mass or less, Mn: 0.005% by mass or less, Cr: 0.03% by mass or less, Ti: 0.005% by mass or less, V: 0.0. 005 mass% or less, Zr: 0.005 mass% or less, and the total of other elements other than Al 2 , Si, Mg, Fe, B, Cu, Mn, Cr, Ti, V, and Zr is 0.03 mass % Of aluminum alloy ingots at 550 to 595 ° C. for 1 to 6 hours, soaking and cooling to 200 ° C. or less at a cooling rate of 200 ° C./hour or more, and then heating again. Hot so that the temperature of the hot processed material immediately after processing is 500 to 600 ° C. After cooling the obtained hot-worked material to 200 ° C. or less at a cooling rate of 50 ° C./min or more, it is heated to 300 to 400 ° C. at a temperature increase rate of 100 ° C./hour or less, and within that temperature range. A method for producing an aluminum alloy processed material of 58.1 IACS % or more, wherein the material is cooled to 100 ° C. or less at a rate of 50 ° C./hour or less after being held for 0.5 to 4 hours. 請求項1に記載の方法で製造された熱間加工材をさらに冷間鍛造することを特徴とする58.1 IACS %以上のアルミニウム合金加工材の製造方法。The method for producing an aluminum alloy processed material of 58.1 IACS % or more, wherein the hot-worked material manufactured by the method according to claim 1 is further cold forged.
JP2003002920A 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more Expired - Fee Related JP3951921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002920A JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002920A JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Publications (2)

Publication Number Publication Date
JP2004217945A JP2004217945A (en) 2004-08-05
JP3951921B2 true JP3951921B2 (en) 2007-08-01

Family

ID=32894333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002920A Expired - Fee Related JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Country Status (1)

Country Link
JP (1) JP3951921B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100473735C (en) * 2007-09-29 2009-04-01 深圳市富亿通精密科技有限公司 High electric-conductivity heat-conductivity high-strength aluminum alloy material, preparation method and application thereof
CN102011035A (en) * 2010-12-04 2011-04-13 江苏南瑞淮胜电缆有限公司 Heat-resistant all aluminum alloy conductor and manufacturing method thereof
JP5586502B2 (en) * 2011-02-18 2014-09-10 三協立山株式会社 Method for producing extruded aluminum alloy
JP6718276B2 (en) * 2016-03-30 2020-07-08 昭和電工株式会社 Method for manufacturing Al-Mg-Si alloy plate
JP6718275B2 (en) * 2016-03-30 2020-07-08 昭和電工株式会社 Method for manufacturing Al-Mg-Si alloy plate

Also Published As

Publication number Publication date
JP2004217945A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
EP2281909B1 (en) Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
CN102453815B (en) Copper alloy, forged copper adopting the copper alloy, electronic component, connector and method for manufacturing copper alloy
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
KR20080023192A (en) Method for making aluminum alloy sheets for forming
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP3951921B2 (en) Manufacturing method of aluminum alloy processed material of 58.1IACS% or more
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP2021085040A (en) Rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity and strength and method for producing the same
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
CN116635549A (en) Aluminum alloy and aluminum alloy casting material
JP5522692B2 (en) High strength copper alloy forging
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP2001003131A (en) Aluminum alloy material excellent in low temperature creep characteristics, its manufacture, and aluminum alloy product
JPS6146534B2 (en)
JPH09176808A (en) Production of precipitation hardening copper alloy
JP3958230B2 (en) Aluminum alloy die casting and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees