JP2004217945A - Method for manufacturing aluminum alloy for forming and formed material superior in thermal conductance - Google Patents

Method for manufacturing aluminum alloy for forming and formed material superior in thermal conductance Download PDF

Info

Publication number
JP2004217945A
JP2004217945A JP2003002920A JP2003002920A JP2004217945A JP 2004217945 A JP2004217945 A JP 2004217945A JP 2003002920 A JP2003002920 A JP 2003002920A JP 2003002920 A JP2003002920 A JP 2003002920A JP 2004217945 A JP2004217945 A JP 2004217945A
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
thermal conductivity
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003002920A
Other languages
Japanese (ja)
Other versions
JP3951921B2 (en
Inventor
Shigeru Okaniwa
茂 岡庭
Masakazu Iwase
正和 岩瀬
Noboru Numata
昇 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003002920A priority Critical patent/JP3951921B2/en
Publication of JP2004217945A publication Critical patent/JP2004217945A/en
Application granted granted Critical
Publication of JP3951921B2 publication Critical patent/JP3951921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy material which has superior thermal conductance and formability and keeps the stable quality, by finely adjusting the composition of the aluminum alloy. <P>SOLUTION: The aluminum alloy comprises 0.25 to 0.85 mass% Si, 0.20 to 0.50 mass% Mg, 0.10 to 0.20 mass% Fe, further a specified quantity of B and each regulated amount of Cu, Mn, Cr, Ti, V and Zr. The manufacturing method comprises soaking an ingot of the above aluminum alloy, cooling, reheating, and hot-forming it, cooling the hot-formed material, and then subjecting it to annealing comprising heating to 300 to 400°C at the programming rate of 100°C/hour or lower, holding for 0.5 to 4 hours in the temperature range and cooling to 100°C or lower at the rate of 50°C/hour or lower. B-based compounds formed during manufacture of the ingot and intermetallic compounds precipitated during annealing reduce the dissolving quantity of Si, Mg, Cu and other elements into the parent phase to the utmost, thereby to enhance the thermal conductance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、特に電子部品冷却用ヒートシンクとして好適で、熱伝導性に優れたアルミニウム合金材に関する。
【0002】
【従来技術】
近年、ノート型パソコン,携帯電話等の電子機器に使用されるヒートシンクには、熱伝導性に優れたアルミニウム合金を、高い寸法精度の小物製品あるいは複雑形状品の製造に適したダイカスト法で鋳造・成形したものが使用されるようになった。ところが、ヒートシンク用材料として使用されている純アルミニウムやAl−Mg−Si系アルミニウム合金は、熱伝導性に優れているものの鋳造性が悪く、ヒートシンクのように薄肉で複雑形状の部品に鋳造することはできなかった。他方、鋳造性確保のためにSiやFeを多量に含有させたアルミニウム合金は、熱伝導性が低く、ヒートシンクのように高い熱伝導性が要求される部品には適していない。
【0003】
このため、Siに代えてNiを含有させ、NiとAlの間で共晶組織を形成させ、鋳造性を改善するとともに優れた熱伝導性を確保する方法が提案されている(例えば特許文献1参照。)。しかし、生産性に優れ、熱伝導性の良いダイカスト製品は得られるものの、高価なNiの使用によりコスト高になっている。
また、Al−Mg−Si系アルミニウム合金を特定の温度に加熱し、その後の冷却過程において鍛造するとともに、冷却速度を規定し、さらにその後時効硬化処理を行う方法も提案されている(例えば特許文献2参照。)。しかし、この方法では十分な熱伝導性が得られなかった。
【0004】
【特許文献1】
特開2001−294962号公報(第2−3頁、第2図)
【特許文献2】
特開2000−204457号公報(第2−3頁)
【0005】
【本発明が解決しようとする課題】
パソコン等の電子機器の高性能化や軽量化および薄肉化により、冷却性能がさらに優れた、すなわち熱伝導性がさらに優れたヒートシンクが要求されるようになった。また、製造コストの低減も図られ、寸法精度が高いものを生産性良く製造する方法が求められている。
本発明は、このような問題を解消すべく案出されたものであり、アルミニウム合金の成分組成を細かく調整して、より熱伝導性に優れ、かつ加工性に優れ、安定した品質を保てるアルミニウム合金材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の熱伝導性に優れた加工用アルミニウム合金は、その目的を達成するため、Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%,B:0.003〜0.10質量%を含み、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al以外のその他の元素の合計が0.03質量%以下であることを特徴とする。
Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%を含み、必要に応じてさらにB:0.003〜0.10質量%を含み、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al以外のその他の元素の合計が0.03質量%以下であるアルミニウム合金の鋳塊を、550〜595℃で1〜6時間保持して均熱処理し、200℃/時間以上の冷却速度で200℃以下まで冷却した後、再度加熱し、押出加工または圧延加工等の熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却した後、100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却することにより、熱伝導性に優れたアルミニウム合金熱間加工材が得られる。
上記方法で製造された熱間加工材をさらに冷間鍛造しても良い。
【0007】
【作用】
アルミニウムは純度が低くなるほど熱伝導性が低くなる。アルミニウム合金の熱伝導性は、母相中に固溶されている他の元素の量に影響されている。本発明は、他の元素のアルミニウム母相中への固溶量を極力少なくすることにより、熱伝導性を良くしたものである。
成分組成的には、Bを添加し、Al以外の元素、特に熱伝導を低下させるTi,V,Zr,CrをBと晶出物を形成させてアルミニウム母相中に固溶される他の元素の固溶量を低減させ、熱伝導度の低下を抑制することができる。しかも、このB系晶出物は安定しており、その後の熱処理や加工によっても母相に再固溶し難い。
また、熱処理的には、Al−Mg−Si系アルミニウム合金の熱間加工材を300〜400℃の温度範囲で焼鈍を行うことにより、母相中に固溶されているMgとSiをMgSiとして析出させ、母相中の固溶量を低減させて熱伝導度の低下を抑制するものである。
【0008】
【実施の態様】
以下、本発明が対象とするアルミニウム合金の成分・組成,製造条件等を説明する。
Si:0.25〜0.85質量%
Siは強度を向上させる合金成分であり、0.25質量%以上のSiの含有で顕著になる。しかし、0.85質量%を超える過剰量のSiが含まれると、熱伝導性の低下が著しくなる。
Mg:0.20〜0.50質量%
Mgは強度を向上させる合金成分であり、0.20質量%以上の含有量でMgの効果が顕著になる。しかし、0.50質量%を超える過剰量のMgが含まれると、熱伝導性の低下が著しくなる。
【0009】
Fe:0.10〜0.20質量%
Feは鋳造組織を均一とし、母相の強度を向上させる作用を有している。0.10質量%以上の含有量でFeの効果が顕著になる。しかし、0.20質量%を超える過剰量のFeが含まれると、熱伝導性の低下が著しくなる。しかも粗大な金属間化合物を形成し、伸びが低下し、押出性や鍛造性等の成形性も低下する。
B:0.003〜0.01質量%
Bは、Al以外の元素と晶出物を形成する。そのため、他の元素のAl母相中での固溶量が減少し、熱伝導率の低下が抑制される。0.003質量%以上の含有量でBの効果が顕著になる。しかし、0.01質量%を超える過剰量のBが含まれると、粗大な金属間化合物を形成し、伸びが低下し、押出性や鍛造性等の成形性も低下する。
【0010】
Cu,Mn,Cr,Ti,V,Zr
Cu,Mn,Cr,Ti,V,Zrはアルミニウム合金中に含有されると、熱伝導性を低下させる元素であるが、Cuは0.03質量%以下,Mnは0.005質量%以下,Crは0.03質量%以下,Tiは0.005質量%以下,Zrは0.005質量%以下であれば、熱伝導性はあまり低下しないので、これ以下の含有であれば許容される。上記数値を超えて含有すると急激に熱伝導性が低下する。
その他の元素
その他の元素もその合計が0.03質量%以下であれば、熱伝導性はほとんど低下しないので許容される。
【0011】
均質化処理:550〜595℃で1〜6時間保持し、200℃/時間以上の冷却速度で200℃以下まで冷却
均質化処理することにより、Mgの偏析がなくなり、Fe系化合物が微細に分断され、加工性が向上する。また主要元素であるMg,Si,Feの存在形態を安定化させる。
なお、鋳造時に晶出させたB系化合物はこの温度域では変化しない。
【0012】
熱間加工:熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却
均質化処理されたビレット中ではMgSiが生成されている。熱間加工ではMgSiを再固溶させるために、加工直後の形材温度が500〜600℃の範囲になるように温度制御される。加工直後の形材温度が500℃に満たないと、MgSiが十分に固溶できない。逆に600℃を超える形材温度では、加工後の再結晶粒組織が粗大化しやすく,機械的強度が低下する傾向が示される。加工後の形材は、200℃までを冷却速度50℃/分以上で冷却される。冷却速度をこのように制御するとき、加工材中に粗大なMgSiが析出することが防止され、安定した組織を得ることができる。
なお、熱間加工を押出加工とし、室温にて引張り矯正する場合には、与える歪み量は0.6%以下にすることが好ましい。0.6%を超えて歪みを与えるとその後の焼鈍時にMgSiの析出状態に変動を生じさせ、熱伝導性を低下させることになる。
【0013】
焼鈍:100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却
母相中に固溶しているSiとMgがMgSiとして析出するので、母相中の固溶量が減少し、熱伝導性が向上する。この効果は300℃以上の加熱で顕著になる。しかし、400℃を超える温度で焼鈍すると一部微細なMgSiが再固溶する。また冷却過程の冷却速度のバラツキにより析出に変動を生じ、MgSiの析出が均一とならないため熱伝導性が低下したり、バラツキが大きくなる。
冷間鍛造:
冷間で鍛造することにより、目的とする形状とすることができる。また加工硬化により、強度が向上する。
【0014】
【実施例】
実施例1:
表1に示す組成のアルミニウム合金鋳塊を、560℃で2時間保持し、均質化処理した後、250℃/時間の冷却速度で常温まで冷却した。冷却後500℃まで再加熱し、押出比10で厚さ4mm,幅60mmの平板状に押出加工した。押出直後の材料は540℃であった。100℃/分の冷却速度で室温まで冷却した。その後、180℃,350℃,410℃の3種類の温度に加熱して2時間保持する焼鈍を施した後、常温まで炉冷(30℃/時間)した。
得られた押出材の電気伝導度と機械的強度(ビッカース硬度)を測定した。なお、熱伝導度は合金が同じであれば電気伝導度と比例関係にあることがわかっている。本実施例では熱伝導度に代えて電気伝導度を測定することとし、簡易的にCuを100として測定・表示する方法で行った。IACS%(国際・焼鈍銅・標準)で表示した。電気伝導度は押出材の表面5箇所で測定し、その平均値とした。硬度は、ビッカース硬度計(5kg荷重)にて、5箇所測定し、その平均値とした。
その結果を表2に示す。
【0015】

Figure 2004217945
【0016】
Figure 2004217945
【0017】
表2に示す結果から、Bを添加した合金1,2を使用した試験番号1〜4では、B含有量の少ない合金3(この合金中のBは不純物として含まれている量であって、積極的に添加したものではない。)や不純物含有量の多い合金4を使用した試験番号5〜7より、焼鈍条件が同じであれば熱伝導度が高くなっていることがわかる。
また、焼鈍温度が350℃である試験番号1,2,5,6は、同じ合金でも焼鈍温度が180℃や410℃である試験番号3,4,7と比較して熱伝導度が低くなっていることがわかる。
【0018】
Bを積極的に添加した合金1,2を使用した試験番号1,2,3と比較して、B含有量が少ない合金3を使用した試験番号5,7で熱伝導度が低くなっている理由は、不純物元素をB系化合物として晶出させることができなったためである。なお、試験番号7では、焼鈍温度が低いためにSiとMgがMgSiとして十分に析出できなかったために、熱伝導度がより低くなっている。不純物元素含有量が多い合金4を使用した試験番号6では、B系化合物として不純物を十分に晶出しきれず、不純物元素の固溶量が多くなっているためである。
【0019】
また、同じ合金番号1の焼鈍温度350℃の試験番号1と比較して焼鈍温度180℃,410℃の試験番号3,4は、熱伝導性が悪くなっている。焼鈍温度が180℃の試験番号3では、温度が低いために母相中に固溶しているSiとMgがMgSiとして十分に析出できず、サブミクロンサイズのMg−Si系化合物として析出し、結晶格子を歪めているためである。また、焼鈍温度が420℃と高い試験番号4では、一旦析出したMgSiが再び固溶したためである。
【0020】
実施例2:
実施例1の試験番号1,2のものを、押出後室温に冷却された段階でヒートシンク形状に冷間鍛造する工程を付加したものについて、実施例1と同じ方法で電気伝導度と機械的強度を測定した。
その結果を表3に示す。
この結果からもわかるように、冷間鍛造を行っても熱伝導度は低下せず、加工硬化により機械的強度が向上している。
【0021】
Figure 2004217945
【0022】
【発明の効果】
以上に説明したように、本発明では、Al−Mg−Si系アルミニウム合金において、アルミニウム母相中に固溶する不純物元素をBの添加によりB系化合物として晶出させ、しかもアルミニウム母相中に固溶しているSiおよびMgをMgSiとして析出させて、アルミニウム母相中の他元素の固溶量を極力低減して、熱伝導性を高めることができたものである。
Bの添加で形成されたB系化合物は、熱処理や冷間鍛造によっても変化することなく、母相の不純物元素固溶量を低減できるので、本発明を適用した合金には冷間鍛造が適用できる。このため、複雑形状を有し、高い形状精度が要求されるヒートシンクを始めとした各種部品も、その熱伝導性を低下させることなく製造することができる。[0001]
[Industrial applications]
The present invention relates to an aluminum alloy material that is particularly suitable as a heat sink for cooling electronic components and has excellent thermal conductivity.
[0002]
[Prior art]
In recent years, heat sinks used in electronic devices such as notebook computers and mobile phones are cast and cast from an aluminum alloy with excellent thermal conductivity by die casting, which is suitable for the production of small products with high dimensional accuracy or products with complex shapes. Molded ones came to be used. However, pure aluminum and Al-Mg-Si-based aluminum alloys used as heat sink materials have excellent heat conductivity but poor castability, and must be cast into thin and complex parts like heat sinks. Could not. On the other hand, aluminum alloys containing a large amount of Si or Fe for ensuring castability have low thermal conductivity and are not suitable for components requiring high thermal conductivity such as heat sinks.
[0003]
For this reason, a method has been proposed in which Ni is contained in place of Si to form a eutectic structure between Ni and Al, thereby improving castability and ensuring excellent thermal conductivity (for example, Patent Document 1). reference.). However, although a die-cast product excellent in productivity and excellent in thermal conductivity can be obtained, the cost is increased due to the use of expensive Ni.
Further, a method has been proposed in which an Al-Mg-Si-based aluminum alloy is heated to a specific temperature, forged in a subsequent cooling process, a cooling rate is specified, and an age hardening treatment is performed thereafter (for example, Patent Document 1). 2). However, this method did not provide sufficient thermal conductivity.
[0004]
[Patent Document 1]
JP 2001-294962 A (Page 2-3, FIG. 2)
[Patent Document 2]
JP-A-2000-204457 (pages 2-3)
[0005]
[Problems to be solved by the present invention]
As electronic devices such as personal computers have been improved in performance, reduced in weight and reduced in thickness, there has been a demand for heat sinks having even better cooling performance, that is, more excellent thermal conductivity. In addition, manufacturing costs have been reduced, and a method of manufacturing a product having high dimensional accuracy with high productivity has been required.
The present invention has been devised in order to solve such a problem, and by finely adjusting the component composition of an aluminum alloy, aluminum having excellent thermal conductivity, excellent workability, and stable quality can be maintained. It is intended to provide an alloy material.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the aluminum alloy for processing having excellent thermal conductivity according to the present invention has a content of Si: 0.25 to 0.85% by mass, Mg: 0.20 to 0.50% by mass, and Fe: 0. 10 to 0.20% by mass, B: 0.003 to 0.10% by mass, Cu: 0.03% by mass or less, Mn: 0.005% by mass or less, Cr: 0.03% by mass or less, Ti : 0.005% by mass or less, V: 0.005% by mass or less, Zr: 0.005% by mass or less, and the total of other elements other than Al is 0.03% by mass or less. I do.
Si: 0.25 to 0.85% by mass, Mg: 0.20 to 0.50% by mass, Fe: 0.10 to 0.20% by mass, and if necessary, B: 0.003 to 0% Cu: 0.03% by mass or less, Mn: 0.005% by mass or less, Cr: 0.03% by mass or less, Ti: 0.005% by mass or less, V: 0.005% by mass In the following, an ingot of an aluminum alloy which is regulated to Zr: 0.005% by mass or less and the total of other elements other than Al is 0.03% by mass or less is held at 550 to 595 ° C for 1 to 6 hours. After soaking, it is cooled to 200 ° C. or less at a cooling rate of 200 ° C./hour or more, and then heated again, and the temperature of the hot worked material immediately after hot working such as extrusion or rolling becomes 500 to 600 ° C. And hot-worked material obtained is cooled at 50 ° C / min or more. After cooling to 200 ° C. or less at a temperature of 300 ° C./hour or less, heating to 300 to 400 ° C. at a temperature rising rate of 100 ° C./hour or less, and maintaining at that temperature range for 0.5 to 4 hours, at a rate of 50 ° C./hour or less By cooling to 100 ° C. or lower, an aluminum alloy hot worked material having excellent thermal conductivity can be obtained.
The hot worked material produced by the above method may be further cold forged.
[0007]
[Action]
The lower the purity of aluminum, the lower the thermal conductivity. The thermal conductivity of an aluminum alloy is affected by the amount of other elements dissolved in the matrix. The present invention has improved thermal conductivity by minimizing the amount of other elements dissolved in the aluminum matrix.
In terms of the component composition, B is added to form an element other than Al, in particular, Ti, V, Zr, or Cr, which lowers the thermal conductivity, with B to form a crystallized product and to be dissolved in the aluminum matrix. It is possible to reduce the solid solution amount of the element and suppress a decrease in thermal conductivity. Moreover, the B-based crystallized product is stable, and hardly re-dissolves in the parent phase even by subsequent heat treatment or processing.
In addition, in terms of heat treatment, a hot work material of an Al-Mg-Si-based aluminum alloy is annealed at a temperature in the range of 300 to 400 ° C, so that Mg and Si dissolved in the matrix are dissolved in Mg 2. It precipitates as Si and reduces the amount of solid solution in the mother phase to suppress a decrease in thermal conductivity.
[0008]
Embodiment
Hereinafter, the components and compositions of the aluminum alloy targeted by the present invention, the manufacturing conditions, and the like will be described.
Si: 0.25 to 0.85 mass%
Si is an alloy component for improving the strength, and becomes remarkable when the content of Si is 0.25% by mass or more. However, when an excessive amount of Si exceeding 0.85% by mass is included, the thermal conductivity is significantly reduced.
Mg: 0.20 to 0.50 mass%
Mg is an alloy component for improving the strength, and the effect of Mg becomes remarkable at a content of 0.20% by mass or more. However, when an excessive amount of Mg exceeding 0.50% by mass is included, the thermal conductivity is significantly reduced.
[0009]
Fe: 0.10 to 0.20 mass%
Fe has the function of making the casting structure uniform and improving the strength of the parent phase. At a content of 0.10% by mass or more, the effect of Fe becomes remarkable. However, when an excessive amount of Fe exceeding 0.20% by mass is included, the thermal conductivity is significantly reduced. Moreover, a coarse intermetallic compound is formed, elongation is reduced, and moldability such as extrudability and forgeability is also reduced.
B: 0.003 to 0.01% by mass
B forms crystallized substances with elements other than Al. Therefore, the amount of other elements dissolved in the Al matrix is reduced, and a decrease in thermal conductivity is suppressed. The effect of B becomes remarkable at a content of 0.003% by mass or more. However, when an excessive amount of B exceeding 0.01% by mass is contained, a coarse intermetallic compound is formed, elongation is reduced, and moldability such as extrudability and forgeability is also reduced.
[0010]
Cu, Mn, Cr, Ti, V, Zr
Cu, Mn, Cr, Ti, V, and Zr are elements that reduce the thermal conductivity when contained in the aluminum alloy, but Cu is 0.03% by mass or less, Mn is 0.005% by mass or less, If the content of Cr is 0.03% by mass or less, the content of Ti is 0.005% by mass or less, and the content of Zr is 0.005% by mass or less, the thermal conductivity does not decrease so much. When the content exceeds the above value, the thermal conductivity is rapidly reduced.
Other elements If the total of other elements is not more than 0.03% by mass, the thermal conductivity hardly decreases, and thus is acceptable.
[0011]
Homogenization treatment: Maintained at 550-595 ° C for 1-6 hours, and cooled to 200 ° C or less at a cooling rate of 200 ° C / hour or more . Are finely divided and workability is improved. It also stabilizes the existing form of the main elements Mg, Si and Fe.
The B-based compound crystallized during casting does not change in this temperature range.
[0012]
Hot working: Hot working is performed so that the temperature of the hot worked material immediately after hot working becomes 500 to 600 ° C, and the obtained hot worked material is cooled to 50 ° C / min or more to 200 ° C or less. cooling <br/> the homogenized billet of Mg 2 Si is produced. In the hot working, in order to re-dissolve Mg 2 Si, the temperature of the profile immediately after the working is controlled so as to be in the range of 500 to 600 ° C. If the profile temperature immediately after processing is less than 500 ° C., Mg 2 Si cannot be sufficiently dissolved. Conversely, at a profile temperature exceeding 600 ° C., the recrystallized grain structure after processing tends to become coarse and the mechanical strength tends to decrease. The shaped material after processing is cooled to 200 ° C. at a cooling rate of 50 ° C./min or more. When the cooling rate is controlled in this manner, coarse Mg 2 Si is prevented from being precipitated in the work material, and a stable structure can be obtained.
In the case where the hot working is performed by extrusion and the tension is corrected at room temperature, the amount of strain to be applied is preferably set to 0.6% or less. If the strain exceeds 0.6%, the precipitation state of Mg 2 Si will fluctuate during the subsequent annealing, and the thermal conductivity will be reduced.
[0013]
Annealing: Heating to 300 to 400 ° C. at a temperature rising rate of 100 ° C./hour or less, holding for 0.5 to 4 hours in the temperature range, and cooling to 100 ° C. or less at a rate of 50 ° C./hour or less. > Si and Mg dissolved in the mother phase precipitate as Mg 2 Si, so that the amount of solid solution in the mother phase is reduced, and the thermal conductivity is improved. This effect becomes significant with heating at 300 ° C. or higher. However, when annealing is performed at a temperature exceeding 400 ° C., fine Mg 2 Si is partially dissolved again. In addition, variations in the cooling rate during the cooling process cause fluctuations in the precipitation, and the deposition of Mg 2 Si is not uniform, so that the thermal conductivity is reduced or the dispersion is increased.
Cold forging:
By cold forging, the desired shape can be obtained. Further, the strength is improved by work hardening.
[0014]
【Example】
Example 1
The aluminum alloy ingot having the composition shown in Table 1 was kept at 560 ° C. for 2 hours, homogenized, and then cooled to room temperature at a cooling rate of 250 ° C./hour. After cooling, it was reheated to 500 ° C. and extruded into a flat plate having a thickness of 4 mm and a width of 60 mm at an extrusion ratio of 10. The material immediately after extrusion was at 540 ° C. It was cooled to room temperature at a cooling rate of 100 ° C./min. Then, after annealing at 180 ° C., 350 ° C., and 410 ° C. and holding for 2 hours, the furnace was cooled to room temperature (30 ° C./hour).
The electrical conductivity and mechanical strength (Vickers hardness) of the obtained extruded material were measured. It is known that the thermal conductivity is proportional to the electrical conductivity when the alloy is the same. In the present embodiment, the electric conductivity was measured instead of the heat conductivity, and the measurement and display were performed simply by setting Cu to 100. IACS% (international, annealed copper, standard). The electric conductivity was measured at five places on the surface of the extruded material, and the average value was used. The hardness was measured at five places with a Vickers hardness meter (5 kg load), and the average value was used.
Table 2 shows the results.
[0015]
Figure 2004217945
[0016]
Figure 2004217945
[0017]
From the results shown in Table 2, in Test Nos. 1 to 4 using alloys 1 and 2 to which B was added, alloy 3 having a small B content (B in this alloy was an amount contained as an impurity, Test Nos. 5 to 7 using alloy 4 having a high impurity content indicate that the thermal conductivity was high if the annealing conditions were the same.
Further, in Test Nos. 1, 2, 5, and 6 in which the annealing temperature was 350 ° C., the thermal conductivity was lower than in Test Nos. 3, 4, and 7 in which the annealing temperature was 180 ° C. or 410 ° C. even for the same alloy. You can see that it is.
[0018]
Compared with Test Nos. 1, 2, and 3 using Alloys 1 and 2 to which B was positively added, Test Nos. 5 and 7 using Alloy 3 having a low B content had lower thermal conductivity. The reason is that the impurity element cannot be crystallized as a B-based compound. In Test No. 7, since the annealing temperature was low, Si and Mg could not be sufficiently precipitated as Mg 2 Si, so that the thermal conductivity was lower. This is because, in Test No. 6 in which the alloy 4 having a high impurity element content was used, the impurities could not be sufficiently crystallized as the B-based compound, and the solid solution amount of the impurity elements was large.
[0019]
In addition, the thermal conductivity of Test Nos. 3 and 4 at the annealing temperatures of 180 ° C. and 410 ° C. is lower than that of Test No. 1 at the annealing temperature of 350 ° C. of the same Alloy No. 1. In Test No. 3 in which the annealing temperature was 180 ° C., Si and Mg dissolved in the matrix could not be sufficiently precipitated as Mg 2 Si due to the low temperature, and precipitated as submicron-sized Mg—Si-based compounds. This is because the crystal lattice is distorted. Further, in Test No. 4 in which the annealing temperature was as high as 420 ° C., Mg 2 Si once precipitated was dissolved again.
[0020]
Example 2:
Test Nos. 1 and 2 of Example 1 were added with a step of cold forging into a heat sink at the stage where they were cooled to room temperature after extrusion, and the electrical conductivity and mechanical strength were obtained in the same manner as in Example 1. Was measured.
Table 3 shows the results.
As can be seen from this result, the thermal conductivity does not decrease even when cold forging is performed, and the mechanical strength is improved by work hardening.
[0021]
Figure 2004217945
[0022]
【The invention's effect】
As described above, according to the present invention, in an Al-Mg-Si-based aluminum alloy, an impurity element which forms a solid solution in an aluminum matrix is crystallized as a B-based compound by adding B, and furthermore, in the aluminum matrix. The solid solution of Si and Mg was precipitated as Mg 2 Si, and the amount of other elements in the aluminum matrix in solid solution was reduced as much as possible, thereby improving the thermal conductivity.
The B-based compound formed by the addition of B can reduce the amount of impurity elements dissolved in the parent phase without being changed by heat treatment or cold forging. Therefore, cold forging is applied to the alloy to which the present invention is applied. it can. Therefore, various components such as a heat sink having a complicated shape and requiring high shape accuracy can be manufactured without lowering the thermal conductivity.

Claims (4)

Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%,B:0.003〜0.10質量%を含み、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al以外のその他の元素の合計が0.03質量%以下であることを特徴とする熱伝導性に優れた加工用アルミニウム合金。Si: 0.25 to 0.85% by mass, Mg: 0.20 to 0.50% by mass, Fe: 0.10 to 0.20% by mass, B: 0.003 to 0.10% by mass, Cu: 0.03% by mass or less, Mn: 0.005% by mass or less, Cr: 0.03% by mass or less, Ti: 0.005% by mass or less, V: 0.005% by mass or less, Zr: 0.005% An aluminum alloy for processing having excellent thermal conductivity, wherein the aluminum alloy is regulated to not more than% by mass and the total of other elements other than Al is not more than 0.03% by mass. Si:0.25〜0.85質量%,Mg:0.20〜0.50質量%,Fe:0.10〜0.20質量%を含み、Cu:0.03質量%以下,Mn:0.005質量%以下,Cr:0.03質量%以下,Ti:0.005質量%以下,V:0.005質量%以下,Zr:0.005質量%以下に規制され、Al以外のその他の元素の合計が0.03質量%以下であるアルミニウム合金の鋳塊を、550〜595℃で1〜6時間保持して均熱処理し、200℃/時間以上の冷却速度で200℃以下まで冷却した後、再度加熱し、熱間加工直後の熱間加工材の温度が500〜600℃となるように熱間加工し、得られた熱間加工材を50℃/分以上の冷却速度で200℃以下まで冷却した後、100℃/時間以下の昇温速度で300〜400℃まで加熱し、その温度範囲で0.5〜4時間保持した後、50℃/時間以下の速度で100℃以下まで冷却することを特徴とする熱伝導性に優れたアルミニウム合金加工材の製造方法。Si: 0.25 to 0.85% by mass, Mg: 0.20 to 0.50% by mass, Fe: 0.10 to 0.20% by mass, Cu: 0.03% by mass or less, Mn: 0 0.005% by mass or less, Cr: 0.03% by mass or less, Ti: 0.005% by mass or less, V: 0.005% by mass or less, Zr: 0.005% by mass or less, other than Al An aluminum alloy ingot having a total element content of 0.03% by mass or less was soaked at 550 to 595 ° C for 1 to 6 hours, and was cooled to 200 ° C or less at a cooling rate of 200 ° C / hour or more. Then, it is heated again, and hot-worked immediately after the hot-working so that the temperature of the hot-worked material becomes 500 to 600 ° C, and the obtained hot-worked material is cooled to 200 ° C at a cooling rate of 50 ° C / min or more. After cooling to below 300 ° C / hour at a rate of 100 ° C / hour or less. Heating, after holding 0.5-4 hours at that temperature range, method for producing an aluminum alloy workpiece having excellent thermal conductivity, characterized in that cooling to 100 ° C. or less at a rate 50 ° C. / hour. アルミニウム合金の鋳塊が、さらにB:0.003〜0.10質量%を含むものである請求項2に記載の熱伝導性に優れたアルミニウム合金加工材の製造方法。3. The method for producing a processed aluminum alloy material having excellent thermal conductivity according to claim 2, wherein the ingot of the aluminum alloy further contains B: 0.003 to 0.10% by mass. 請求項2または3に記載の方法で製造された熱間加工材をさらに冷間鍛造することを特徴とする熱伝導性に優れたアルミニウム合金加工材の製造方法。A method for producing an aluminum alloy workpiece having excellent thermal conductivity, further comprising cold forging the hot workpiece produced by the method according to claim 2.
JP2003002920A 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more Expired - Fee Related JP3951921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002920A JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002920A JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Publications (2)

Publication Number Publication Date
JP2004217945A true JP2004217945A (en) 2004-08-05
JP3951921B2 JP3951921B2 (en) 2007-08-01

Family

ID=32894333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002920A Expired - Fee Related JP3951921B2 (en) 2003-01-09 2003-01-09 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Country Status (1)

Country Link
JP (1) JP3951921B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049500A1 (en) * 2007-09-29 2009-04-23 Shenzhen Fyytone Precision Technology Co., Ltd An al alloy with high thermal and electric conductivity and high strength, manufacturing method and application thereof
CN102011035A (en) * 2010-12-04 2011-04-13 江苏南瑞淮胜电缆有限公司 Heat-resistant all aluminum alloy conductor and manufacturing method thereof
JP2012172164A (en) * 2011-02-18 2012-09-10 Sankyo Material Inc Aluminum alloy extrusion formed material and manufacturing method thereof
JP2017179448A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179449A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049500A1 (en) * 2007-09-29 2009-04-23 Shenzhen Fyytone Precision Technology Co., Ltd An al alloy with high thermal and electric conductivity and high strength, manufacturing method and application thereof
CN102011035A (en) * 2010-12-04 2011-04-13 江苏南瑞淮胜电缆有限公司 Heat-resistant all aluminum alloy conductor and manufacturing method thereof
JP2012172164A (en) * 2011-02-18 2012-09-10 Sankyo Material Inc Aluminum alloy extrusion formed material and manufacturing method thereof
JP2017179448A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179449A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Also Published As

Publication number Publication date
JP3951921B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
KR20060130658A (en) Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same
JP2007009262A (en) Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP2005264174A (en) Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
KR20080023192A (en) Method for making aluminum alloy sheets for forming
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JPWO2008105066A1 (en) Aluminum alloy material for heat conduction
JP2017179445A (en) Al-Mg-Si-BASED ALLOY SHEET
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JP3951921B2 (en) Manufacturing method of aluminum alloy processed material of 58.1IACS% or more
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JP2012188680A (en) Titanium copper for electronic component
TW201738390A (en) Method for producing al-mg-Si alloy plate
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JPH0138866B2 (en)
JP2014201787A (en) High strength aluminum extrusion alloy and manufacturing method therefor
JP2001003131A (en) Aluminum alloy material excellent in low temperature creep characteristics, its manufacture, and aluminum alloy product
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2020033609A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees