JP6774200B2 - Manufacturing method of Al-Mg-Si based alloy plate - Google Patents

Manufacturing method of Al-Mg-Si based alloy plate Download PDF

Info

Publication number
JP6774200B2
JP6774200B2 JP2016067358A JP2016067358A JP6774200B2 JP 6774200 B2 JP6774200 B2 JP 6774200B2 JP 2016067358 A JP2016067358 A JP 2016067358A JP 2016067358 A JP2016067358 A JP 2016067358A JP 6774200 B2 JP6774200 B2 JP 6774200B2
Authority
JP
Japan
Prior art keywords
alloy plate
hot rolling
mass
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016067358A
Other languages
Japanese (ja)
Other versions
JP2017179455A (en
Inventor
西森 秀樹
秀樹 西森
眞二 籠重
眞二 籠重
和章 谷口
和章 谷口
智明 山ノ井
智明 山ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016067358A priority Critical patent/JP6774200B2/en
Priority to PCT/JP2016/088717 priority patent/WO2017168892A1/en
Priority to CN201680083568.1A priority patent/CN108884542B/en
Priority to TW106103837A priority patent/TW201738390A/en
Publication of JP2017179455A publication Critical patent/JP2017179455A/en
Application granted granted Critical
Publication of JP6774200B2 publication Critical patent/JP6774200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Metal Rolling (AREA)

Description

この発明は、Al−Mg―Si系合金板の製造方法、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg―Si系合金板の製造方法に関する。 The present invention relates to a method for producing an Al—Mg—Si based alloy plate, particularly a method for producing an Al—Mg—Si based alloy plate having excellent thermal conductivity, conductivity, strength and workability.

薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Heat generators such as flat-screen TVs, flat-screen monitors for personal computers, laptop computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal-based printed circuit boards, and internal covers. The member material to be built in or mounted is required to have excellent thermal conductivity, strength and workability for quick heat dissipation.

JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS1100, 1050, and 1070 have excellent thermal conductivity, but have low strength. Al-Mg alloys (5000 series alloys) such as JIS5052 used as high-strength materials are significantly inferior in thermal conductivity and conductivity to pure aluminum alloys.

これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, the Al-Mg-Si alloy (6000 alloy) has good thermal conductivity and conductivity, and the strength can be improved by aging curing. Therefore, the strength and heat of the Al-Mg-Si alloy are used. A method for obtaining an aluminum alloy plate having excellent conductivity and workability is being studied.

例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl−Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする、Al−Mg−Si系合金圧延板の製造方法が開示されている。 For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An Al-Mg-Si alloy composed of unavoidable impurities and having a Si / Mg content ratio of 1.3 or more is semi-continuously cast into an ingot having a thickness of 250 mm or more and preheated at a temperature of 400 to 540 ° C. A method for producing an Al—Mg—Si alloy rolled plate, which comprises hot rolling, cold rolling at a rolling reduction of 50 to 85%, and then annealing at a temperature of 140 to 280 ° C. It is disclosed.

特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0.02 to 0.02 to It contains one or two kinds of 0.15% by mass and Cr: 0.02 to 0.15%, and the balance is Al and Ti in unavoidable impurities is regulated to 0.2% or less, or to this. An aluminum alloy plate having a composition containing 1 or 2 types of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and rolling, and then cold-rolled. Then, a solution treatment at 500 to 570 ° C. is performed, followed by a cold rolling at a cold rolling rate of 5 to 40%, and after the cold rolling, an aging treatment is performed in which the material is heated to less than 150 to 190 ° C. A method for producing an aluminum alloy plate having excellent thermal conductivity, strength and bending workability is described.

特許文献3には、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるか、もしくはさらに不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されているAl−Mg−Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg―Si系合金板の製造方法が示されている。 Patent Document 3 contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, Cu: 0.5% by mass or less, and further. It contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and is composed of the balance Al and unavoidable impurities, or Mn and Cr as impurities are Mn: 0.1% by mass. % Or less, Cr: 0.1% by mass or less is a method for producing an alloy plate, which comprises a step of hot rolling an Al—Mg—Si based alloy ingot and further cold rolling. A method for producing an Al—Mg—Si based alloy plate, which comprises performing a heat treatment by holding at 200 to 400 ° C. for 1 hour or more after the inter-rolling until the end of the cold rolling is shown.

なお、特許文献3に記載のとおり、JIS1000系から7000系のアルミニウム合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 As described in Patent Document 3, in the JIS1000 series to 7000 series aluminum alloys, the thermal conductivity and the conductivity show a good correlation, and the aluminum alloy plate having excellent thermal conductivity has excellent conductivity. Can be used as a conductive member material as well as a heat radiating member material.

特開2012−62517号公報Japanese Unexamined Patent Publication No. 2012-62517 特開2007−9262号公報Japanese Unexamined Patent Publication No. 2007-9262 特開2003−321755号公報Japanese Unexamined Patent Publication No. 2003-321755

しかしながら、特許文献1記載の製造方法で得られる合金圧延板の引張強さの改善は合金組成によるところが大きく、工程条件の検討が不十分である。また、特許文献1規定の合金圧延板の化学組成は、比較的Cuを多く含むものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なくSiおよびMgをほぼ同じ割合で含有する合金は含まれない。 However, the improvement in the tensile strength of the rolled alloy plate obtained by the manufacturing method described in Patent Document 1 is largely due to the alloy composition, and the study of the process conditions is insufficient. Further, the chemical composition of the alloy rolled plate specified in Patent Document 1 contains a relatively large amount of Cu, and the element next to Al is Si or Cu, and the content of Mg is relatively small, Si and Mg. Does not include alloys containing approximately the same proportion.

特許文献2では、比較的高い強度を有するアルミニウム合金板が得られるものの実施例記載の導電率は特許文献1記載の合金板より低い。また、特許文献2において高い強度が得られるのは、冷間圧延の途中のアルミニウム合金板に500℃以上の高温の熱処理とその後の急冷からなる溶体化処理を施した後、冷間圧延を更に実施した後時効処理を行うからであるが、溶体化処理によりコストが高くなる。 In Patent Document 2, although an aluminum alloy plate having relatively high strength can be obtained, the conductivity described in Examples is lower than that of the alloy plate described in Patent Document 1. Further, in Patent Document 2, high strength can be obtained by subjecting an aluminum alloy plate in the middle of cold rolling to a solution treatment consisting of a high temperature heat treatment of 500 ° C. or higher and then quenching, and then cold rolling. This is because the post-aging treatment is performed, but the solution treatment increases the cost.

特許文献3では、特許文献1より高い強度のAl−Mg―Si系合金板が得られるが、熱間圧延の最終パス(特許文献3では熱間仕上げ圧延に相当)の検討がなされておらず、工程条件の検討は十分とは言い難い。 In Patent Document 3, an Al—Mg—Si based alloy plate having a higher strength than that in Patent Document 1 can be obtained, but the final path of hot rolling (corresponding to hot finish rolling in Patent Document 3) has not been examined. , It is hard to say that the examination of process conditions is sufficient.

本発明は、上述した技術背景に鑑み、熱間圧延より後の工程において溶体化処理を適用せずに、高い導電率と良好な加工性を有しつつ更に強度を改善することができるAl−Mg−Si系合金板の製造方法を提供することを目的とする。 In view of the above-mentioned technical background, the present invention can further improve the strength while having high conductivity and good processability without applying a solution treatment in a step after hot rolling. An object of the present invention is to provide a method for producing an Mg—Si based alloy plate.

上記課題は、以下の手段によって解決される。
(1)Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が230℃以下であり、熱間圧延終了後であって冷間圧延終了前に200℃以上400℃以下の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金板の製造方法。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl−Mg−Si系合金板の製造方法。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(6)熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(7)熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が200℃以下である前項1ないし前項6の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(8)熱処理温度が200℃以上300℃以下である前項1ないし前項7の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(9)熱処理後の冷間圧延の圧延率が20%以上である前項1ないし前項8の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(10)冷間圧延後に最終焼鈍を実施する前項1ないし前項9の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(11)最終焼鈍の温度が200℃以下である前項10に記載のAl−Mg−Si系合金板の製造方法。
(12)熱間圧延の複数のパスのうち、パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃でありパスによるAl−Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する前項1ないし前項11の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
The above problem is solved by the following means.
(1) Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, Cu: 0.5% by mass or less, and Ti: 0. . Hot rolling and cold rolling are sequentially carried out on an Al—Mg—Si alloy ingot containing at least 1 mass% or less or B: 0.1 mass% or less and composed of the balance Al and unavoidable impurities. A method for manufacturing an alloy plate, in which the surface temperature of the Al-Mg-Si alloy plate immediately after the completion of hot rolling is 230 ° C. or lower, and 200 ° C. or higher after the completion of hot rolling and before the completion of cold rolling. A method for producing an Al-Mg-Si alloy plate that is heat-treated at a temperature of 400 ° C. or lower.
(2) The method for producing an Al—Mg—Si based alloy plate according to item 1 above, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less.
(3) The Al—Mg—Si alloy plate according to the above item 1 or 2, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05% by mass or less, respectively. Production method.
(4) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 3, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(5) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
(6) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 5, wherein the heat treatment is carried out after the completion of hot rolling and before the start of cold rolling.
(7) The method for producing an Al-Mg-Si alloy plate according to any one of Items 1 to 6 above, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the completion of hot rolling is 200 ° C. or less. ..
(8) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 7, wherein the heat treatment temperature is 200 ° C. or higher and 300 ° C. or lower.
(9) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 8, wherein the rolling ratio of cold rolling after heat treatment is 20% or more.
(10) The method for producing an Al—Mg—Si based alloy plate according to any one of the above items 1 to 9, wherein the final annealing is performed after cold rolling.
(11) The method for producing an Al—Mg—Si based alloy plate according to item 10 above, wherein the final annealing temperature is 200 ° C. or lower.
(12) Of the plurality of hot rolling passes, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the pass cools the Al—Mg—Si alloy plate or the pass. The method for producing an Al—Mg—Si alloy plate according to any one of the above items 1 to 11, wherein the pass in which the average cooling rate by forced cooling after the pass is 50 ° C./min or more is carried out at least once.

前項(1)に記載の発明によれば、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が230℃以下であり、熱間圧延終了後であって冷間圧延終了前に200℃以上400℃未満の温度で熱処理を行うため、熱間圧延による有効な焼き入れ効果が得られ、熱処理時により導電率を向上させ、その後の冷間圧延により加工硬化させることにより、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the preceding paragraph (1), Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, and Cu: 0.5% by mass. Hot in an Al—Mg—Si alloy ingot containing the following, and further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and consisting of the balance Al and unavoidable impurities. A method for manufacturing an alloy plate in which rolling and cold rolling are sequentially carried out. The surface temperature of the Al-Mg-Si alloy plate immediately after the completion of hot rolling is 230 ° C. or less, and after the completion of hot rolling. Since heat treatment is performed at a temperature of 200 ° C. or higher and lower than 400 ° C. before the end of cold rolling, an effective quenching effect can be obtained by hot rolling, conductivity is improved during heat treatment, and processing and hardening are performed by subsequent cold rolling. By doing so, it is possible to produce an Al—Mg—Si based alloy plate having high values of tensile strength and conductivity and good workability.

前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the previous section (2), since Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less, the tensile strength and the conductivity are high and the workability is high. It is possible to produce an Al-Mg-Si based alloy plate having a good quality.

前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the preceding paragraph (3), Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05% by mass or less, respectively, so that the tensile strength and the conductivity are restricted. It is possible to manufacture an Al-Mg-Si based alloy plate having a high value and good workability.

前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the previous section (4), since Ag as an impurity is regulated to 0.05% by mass or less, Al-Mg- showing high values of tensile strength and conductivity and good workability. A Si-based alloy plate can be manufactured.

前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the preceding paragraph (5), since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength and conductivity are high and the workability is good. Al-Mg-Si based alloy plate can be manufactured.

前項(6)に記載の発明によれば、熱処理を熱間圧延終了後であって冷間圧延の開始前に実施するため、その後の冷間圧延により加工硬化させることにより、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the previous section (6), since the heat treatment is performed after the completion of hot rolling and before the start of cold rolling, work hardening is performed by subsequent cold rolling to obtain tensile strength and conductivity. An Al-Mg-Si based alloy plate having a high rate and good workability can be produced.

前項(7)に記載の発明によれば、熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が200℃以下であるため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in the preceding paragraph (7), since the surface temperature of the Al—Mg—Si alloy plate immediately after the completion of hot rolling is 200 ° C. or lower, the quenching effect by hot rolling can be enhanced.

前項(8)に記載の発明によれば、熱処理温度が200℃以上300℃以下であるため、確実に導電率と強度を向上させることができる。 According to the invention described in the previous item (8), since the heat treatment temperature is 200 ° C. or higher and 300 ° C. or lower, the conductivity and strength can be reliably improved.

前項(9)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl−Mg−Si系合金板の強度を向上させるとともに良好な加工性を得ることができる。 According to the invention described in the previous section (9), since the rolling ratio of cold rolling after heat treatment is 20% or more, the strength of the Al—Mg—Si alloy plate is improved by cold rolling and good processing is performed. You can get sex.

前項(10)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、Al−Mg−Si系合金板の加工性が良好なものとなる。 According to the invention described in the previous item (10), since the final annealing is performed after cold rolling, the workability of the Al—Mg—Si alloy plate is good.

前項(11)に記載の発明によれば、最終焼鈍の温度が200℃以下であるため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the previous section (11), since the final annealing temperature is 200 ° C. or lower, an Al—Mg—Si alloy plate having high tensile strength and conductivity and good workability can be manufactured. can do.

前項(12)に記載の発明によれば、熱間圧延の複数のパスのうち、パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃でありパスによるAl−Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施するため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in the previous section (12), among the plurality of hot rolling passes, the surface temperature of the Al-Mg-Si alloy plate immediately before the pass is 470 to 350 ° C. Since the cooling of the system alloy plate or the pass in which the average cooling rate by the pass and the forced cooling after the pass is 50 ° C./min or more is carried out at least once, the quenching effect by hot rolling can be enhanced.

本願発明者は、熱間圧延、冷間圧延を順次施するAl−Mg−Si系合金板の製造方法において、熱間圧延上がりの合金板の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に熱処理を施すことにより、高い導電率と良好な加工性を有しつつ高い強度を有するAl−Mg−Si系合金板が得られることを見出し本願の発明に至った。 In the method for producing an Al-Mg-Si based alloy plate in which hot rolling and cold rolling are sequentially performed, the inventor of the present application sets the surface temperature of the alloy plate after hot rolling to a predetermined temperature or lower and is hot. It has been found that an Al-Mg-Si alloy plate having high conductivity and high strength can be obtained by performing a heat treatment after the end of rolling and before the end of cold rolling. It led to the invention.

以下に、本願のAl−Mg−Si系合金板の製造方法について詳細に説明する。 The method for producing the Al—Mg—Si based alloy plate of the present application will be described in detail below.

本願のAl−Mg−Si系合金組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。 In the Al—Mg—Si based alloy composition of the present application, the purpose of adding each element and the reason for limiting the content are as follows.

MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は、0.4質量%以上1.0質量%以下が好ましく、0.45質量%以上0.9質量%以下が更に好ましく、特に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for developing strength, and their respective contents are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, when the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases, the productivity decreases, and the molding processability of the obtained aluminum alloy plate also increases. become worse. The Si content is preferably 0.2% by mass or more and 0.6% by mass or less, and more preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is preferably 0.4% by mass or more and 1.0% by mass or less, more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less. preferable.

FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.2質量%以下であることが好ましく、更に0.1質量%以下が好ましい。 Fe and Cu are necessary components for molding, but if they are contained in a large amount, the corrosion resistance is lowered. In the present application, the Fe content and the Cu content are each regulated to 0.5% by mass or less. The Fe content is preferably regulated to 0.35% by mass or less, and more preferably 0.1% by mass or more and 0.25% by mass or less. The Cu content is preferably 0.2% by mass or less, and more preferably 0.1% by mass or less.

TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。 Ti and B have the effect of refining the crystal grains and preventing solidification cracking when the alloy is cast into the slab. The effect is obtained by the addition of at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized products having a large size are produced, so that the processability, thermal conductivity and conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, more preferably 0.005% by mass or more and 0.05% by mass or less.

また、B含有量は0.1質量%以下が好ましく、特に0.06質量%が好ましい。 The B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass.

また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 Further, although various impurity elements are inevitably contained in the alloy element, Mn and Cr reduce the conductivity and conductivity, and the amount of Zn is small because the corrosion resistance of the alloy material is lowered as the content is increased. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Examples of other impurity elements other than the above include, but are not limited to, Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earths, etc., and among these other impurity elements, rare earths Other than the above, the content of each element is preferably 0.05% by mass or less. Among the above other impurity elements, the rare earth element may contain one or more kinds of elements, or may be derived from a casting raw material contained in the state of mischmetal, but contains the total amount of rare earth elements. The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

次に、本願規定のAl−Mg―Si系合金板を得るための処理工程について記述する。 Next, a processing step for obtaining the Al—Mg—Si based alloy plate specified in the present application will be described.

常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si based alloy ingot. It is preferable that the obtained alloy ingot is homogenized as a step prior to heating before hot rolling.

前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500 ° C. or higher.

前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The heating before hot rolling is carried out in order to solid-solve the crystals, Mg and Si in the Al—Mg—Si alloy ingot to form a uniform structure, but if the temperature is too high, the part in the ingot is partially heated. It is preferable to carry out the process at 450 ° C. or higher and 580 ° C. or lower, and particularly preferably at 500 ° C. or higher and 580 ° C. or lower.

Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 The Al—Mg—Si alloy ingot may be homogenized and then cooled and preheated before hot rolling, or homogenized and preheated before hot rolling may be continuously performed. In the preferable temperature range of the homogenization treatment and the pre-hot rolling heating, the homogenization treatment and the pre-hot rolling heating may be combined and heated at the same temperature.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting, before hot rolling, before heating, it is preferable to face-cut the ingot in order to remove the impurity layer near the surface of the ingot. The face cutting may be performed after casting and before homogenization treatment, or after homogenization treatment and before hot rolling and before heating.

熱間圧延前加熱後のAl−Mg―Si系合金鋳塊に熱間圧延を施す。 Before hot rolling Hot rolling is performed on the Al—Mg—Si alloy ingot after heating.

熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling consists of rough hot rolling and finishing hot rolling. After performing rough hot rolling consisting of multiple passes using a rough hot rolling machine, a finishing hot rolling machine different from the rough hot rolling machine Is used for finishing hot rolling. In the present application, when the final pass in the rough hot rolling mill is the final pass for hot rolling, the finishing hot rolling can be omitted.

本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl−Mg―Si系合金板を導入し1回のパスで実施される。 In the present application, finish hot rolling is performed once by introducing an Al-Mg—Si alloy plate from one direction using a rolling mill in which one set of upper and lower work rolls or two or more sets of work rolls are continuously installed. It is carried out with the pass of.

冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl−Mg―Si系合金板を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al−Mg―Si系合金板を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When cold rolling is carried out with a coil, the Al—Mg—Si based alloy plate after the finish hot rolling may be wound by a winding device to form a hot-rolled coil. When the final hot rolling is omitted and the final pass of the rough hot rolling is the final pass of the hot rolling, the Al—Mg—Si alloy plate is wound by a winding device after the rough hot rolling. It may be a hot-rolled coil.

粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl−Mg―Si系合金板の冷却、もしくは粗熱間圧延のパス後とパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。 In rough hot rolling, after the state in which Mg and Si are solid-solved according to the solution heat treatment is maintained, the Al-Mg—Si alloy plate is cooled by the rough hot rolling pass, or the rough hot rolling is performed. The effect of quenching can be obtained by the temperature drop after the pass and due to the forced cooling after the pass.

本願において粗熱間圧延の複数のパスのうち、パス直前のAl−Mg―Si系合金板の表面温度が350℃以上470℃以下でありパスによるAl−Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl−Mg―Si系合金板の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl−Mg―Si系合金板の急冷が困難であるからである。 In the present application, among the plurality of passes of rough hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 350 ° C. or higher and 470 ° C. or lower, and the Al—Mg—Si alloy plate is cooled by the pass, or A pass and a pass in which the average cooling rate by forced cooling after the pass is 50 ° C./min or more is called a control pass. The surface temperature of the Al-Mg-Si alloy plate immediately before the control pass was set to 350 ° C or higher and 470 ° C or lower because the effect of quenching by quenching in rough hot rolling is small below 350 ° C and the temperature is higher than 470 ° C. This is because it is difficult to quench the Al-Mg-Si alloy plate after passing.

上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl−Mg―Si系合金板の温度降下(℃)を要した時間(分)で除した値とする。 The average cooling rate is the Al-Mg—Si alloy from the start to the end of the control path when forced cooling is not performed in the control path, and from the start to the end of forced cooling when forced cooling is performed after the control pass. It shall be the value obtained by dividing the temperature drop (° C) of the plate by the required time (minutes).

制御パス後の強制冷却は、Al−Mg―Si系合金板を圧延しながら圧延後の部位に対し順次実施してもよいし、Al−Mg―Si系合金板全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 The forced cooling after the control pass may be carried out sequentially on the rolled portion while rolling the Al—Mg—Si alloy plate, or after rolling the entire Al—Mg—Si alloy plate. May be good. The method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.

前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al−Mg―Si系合金板の表面温度が470〜350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl−Mg―Si系合金板の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。 The control pass is preferably performed at least once, and may be performed a plurality of times. When the control path is executed a plurality of times, it is possible to select whether or not to perform forced cooling after the control path for each control path. Immediately before the pass If the surface temperature of the Al-Mg—Si alloy plate is 470 to 350 ° C and the cooling rate is 50 ° C / min or more, the control pass can be performed multiple times, but one control pass is required. By lowering the temperature of the Al—Mg—Si based alloy plate to less than 350 ° C., quenching can be performed efficiently and effectively.

本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl−Mg―Si系合金板の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl−Mg―Si系合金板の表面温度を粗熱間圧延上がり温度とする。 In the present application, when forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al—Mg—Si based alloy plate immediately after the final pass of the hot rolling is set as the rough hot rolling rising temperature, and the rough hot rolling. When forced cooling is performed after the final pass of rolling, the surface temperature of the Al—Mg—Si based alloy plate immediately after the completion of forced cooling is set as the crude hot rolling rise temperature.

本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl−Mg―Si系合金板の表面温度は230℃以下とする。熱間圧延終了直後の合金板の温度を230℃以下とすることにより有効な焼き入れ効果が得られる。 In the present application, when the finish hot rolling is carried out, the finish hot rolling is completed, and when the finish hot rolling is not carried out, the end of the final pass of the rough hot rolling is regarded as the end of the hot rolling, and immediately after the end of the hot rolling. The surface temperature of the Al—Mg—Si based alloy plate shall be 230 ° C. or lower. An effective quenching effect can be obtained by setting the temperature of the alloy plate immediately after the completion of hot rolling to 230 ° C. or lower.

熱間圧延終了直後のAl−Mg―Si系合金板の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のAl−Mg―Si系合金板の表面温度は200℃以下が好ましく、更に150℃以下が好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy plate immediately after the end of hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after the end of hot rolling and before the end of cold rolling. Is insufficient. The surface temperature of the Al—Mg—Si alloy plate immediately after the completion of hot rolling is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 130 ° C. or lower.

なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl−Mg―Si系合金板の表面温度は270℃以下であることが好ましい。 When performing hot rolling after rough hot rolling, the surface temperature of the Al-Mg—Si alloy plate immediately before hot rolling is set in order to obtain the quenching effect due to the pass of hot rolling. It is preferably 270 ° C. or lower.

また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl−Mg―Si系合金板の表面温度は270℃以下が好ましい。 Similarly, when the final pass of rough hot rolling is not the control pass without performing finish hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the final pass of rough hot rolling is 270 ° C or lower. preferable.

一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃であって圧延もしくは圧延と圧延後の強制冷却により冷却速度が50℃/分以上の冷却速度で合金板の表面温度が230℃以下となるように制御パスを実施する。 On the other hand, when the final pass of rough hot rolling is the control pass without performing finish hot rolling, the control pass is the final pass of hot rolling, so the Al-Mg-Si system immediately before the final pass of hot rolling. Control path so that the surface temperature of the alloy plate is 470-350 ° C and the surface temperature of the alloy plate is 230 ° C or less at a cooling rate of 50 ° C / min or more by rolling or rolling and forced cooling after rolling. To carry out.

熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板に対し、MgSiを微細かつ均一に析出させるとともに、Al−Mg―Si系合金板中に存在する加工歪を減少させる目的で熱処理を施す。 Mg 2 Si is finely and uniformly precipitated on the Al—Mg—Si alloy plate after the completion of hot rolling and before the completion of cold rolling, and the machining strain existing in the Al—Mg—Si alloy plate is reduced. Heat treatment is performed for the purpose of making it.

本願において熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板への熱処理は導電率向上の効果を得るために200℃以上400℃以下の温度で実施する。熱処理温度が200℃未満では導電率向上に限界があり、熱処理温度が400℃を超えると、粗大析出物が形成され最終製品の高い強度や良好な成形加工性が得られない。更に、450℃以上になると再結晶粒の粗大化により最終製品の成形加工性に悪影響を及ぼす。前記熱処理の温度は200℃以上300℃以下が好ましく、更に210℃以上280℃以下が好ましい。 In the present application, the heat treatment of the Al—Mg—Si alloy plate after the completion of hot rolling and before the completion of cold rolling is carried out at a temperature of 200 ° C. or higher and 400 ° C. or lower in order to obtain the effect of improving the conductivity. If the heat treatment temperature is less than 200 ° C., there is a limit to the improvement of conductivity, and if the heat treatment temperature exceeds 400 ° C., coarse precipitates are formed and high strength and good molding processability of the final product cannot be obtained. Further, when the temperature is 450 ° C. or higher, the coarseness of the recrystallized grains adversely affects the moldability of the final product. The temperature of the heat treatment is preferably 200 ° C. or higher and 300 ° C. or lower, and more preferably 210 ° C. or higher and 280 ° C. or lower.

前記熱間圧延終了後冷間圧延終了前において実施するAl−Mg―Si系合金板の熱処理の時間は特に限定されないが、導電率向上のために所定の温度で時間を調節すればよく、例えば、1〜12時間の範囲で時間を調節して熱処理を実施すればよい。 The time of the heat treatment of the Al—Mg—Si alloy plate to be carried out after the completion of the hot rolling and before the completion of the cold rolling is not particularly limited, but the time may be adjusted at a predetermined temperature in order to improve the conductivity, for example. , The heat treatment may be carried out by adjusting the time in the range of 1 to 12 hours.

前記熱処理の後、冷間圧延を実施することに加工硬化し強度が更に向上する。 After the heat treatment, cold rolling is performed to work harden and further improve the strength.

前記熱処理はAl−Mg―Si系合金板の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。 The heat treatment is preferably carried out after the end of hot rolling and before the start of cold rolling in order to enhance the effect of improving the strength of the Al—Mg—Si based alloy plate by cold rolling.

前記熱処理後の冷間圧延により所定の厚さのAl−Mg―Si系合金板とする。熱処理後の冷間圧延は強度向上の為20%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl−Mg―Si系合金板の圧延率は更に30%以上が好ましく、特に60%以上が好ましい。 After the heat treatment, cold rolling is performed to obtain an Al—Mg—Si based alloy plate having a predetermined thickness. Cold rolling after the heat treatment is preferably carried out at a rolling ratio of 20% or more in order to improve the strength. The rolling ratio of the Al—Mg—Si alloy plate by cold rolling after the heat treatment is more preferably 30% or more, and particularly preferably 60% or more.

冷間圧延後のAl−Mg―Si系合金板に必要に応じて洗浄を実施しても良い。 If necessary, the Al—Mg—Si alloy plate after cold rolling may be washed.

Al−Mg―Si系合金板の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl−Mg―Si系合金板の強度が低くなりすぎないようにする為に200℃以下で実施することが好ましく、更に180℃以下、特に160℃以下で実施することが好ましい。 When the workability of the Al—Mg—Si alloy plate is more important, final annealing may be performed after cold rolling. The final annealing is preferably carried out at 200 ° C. or lower, and more preferably 180 ° C. or lower, particularly 160 ° C. or lower, in order to prevent the strength of the Al—Mg—Si alloy plate from becoming too low.

前記Al−Mg―Si系合金板の最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1〜10時間の範囲で最終焼鈍の温度により選択すれば良い。 The final annealing time of the Al—Mg—Si alloy plate may be adjusted so as to obtain the required workability and strength, and may be selected, for example, in the range of 1 to 10 hours depending on the final annealing temperature.

なお、本願のAl−Mg―Si系合金板の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程で合金板を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。 The Al—Mg—Si alloy plate of the present application may be produced by a coil or a single plate. Further, the alloy plate may be cut in an arbitrary step after cold rolling and the step after cutting may be performed on a single plate, or slits may be formed depending on the application.

以下に本発明の実施例および比較例を示す。 Examples and comparative examples of the present invention are shown below.

表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。 Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by a DC casting method. For the ingot having a chemical composition number 20 containing rare earths, a raw material containing mischmetal was used for casting.

[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃5hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度460℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度242℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 1]
The aluminum alloy slab having the chemical composition No. 1 in Table 1 was face-cut. Next, the alloy slab after face cutting was subjected to a homogenization treatment at 570 ° C. for 5 hours in a heating furnace, and then the temperature was changed in the same furnace to perform hot rolling preheating at 540 ° C. for 4 hours. Before hot rolling After heating, the slab at 540 ° C. was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during rough hot rolling is 25 mm, the final pass of rough hot rolling is carried out from the alloy plate temperature of 460 ° C immediately before the pass to an average cooling rate of 80 ° C / min. An alloy plate having a rolled-up temperature of 242 ° C and a thickness of 12 mm was used. In the final pass of rough hot rolling, the alloy plate was moved while rolling, and forced cooling by water cooling was performed by sequentially spraying water on the alloy plate from above and below to the portion of the alloy plate after rolling.

粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度240℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は130℃であった。仕上げ熱間圧延後の合金板に215℃2hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After the rough hot rolling, the alloy plate was subjected to the finish hot rolling from the temperature immediately before the finish hot rolling at 240 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy plate immediately after hot rolling was 130 ° C. After the alloy plate after the finish hot rolling was heat-treated at 215 ° C. for 2 hours, cold rolling with a rolling ratio of 98% was carried out to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.

Figure 0006774200
Figure 0006774200

[実施例2〜41、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷、粗熱間圧延最終パス完了後に送風冷却する空冷、および強制冷却無しの中から選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2-41, Comparative Examples 1-6]
After surface-cutting the aluminum alloy slabs shown in Table 1, the treatment was performed under the conditions shown in Tables 2 to 6 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and pre-hot rolling heating were continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling was performed while rolling. The selection was made from water cooling in which the alloy plate was moved and water was sequentially sprayed onto the alloy plate from above and below on the part of the alloy plate after rolling, air cooling in which air cooling was performed after the final pass of rough hot rolling was completed, and no forced cooling. In some examples, final annealing was performed after cold rolling.

実施例14では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 14, the final pass of the rough hot rolling was set as the final pass of the hot rolling, and the finishing hot rolling was not carried out.

Figure 0006774200
Figure 0006774200

Figure 0006774200
Figure 0006774200

Figure 0006774200
Figure 0006774200

Figure 0006774200
Figure 0006774200

Figure 0006774200
Figure 0006774200

得られた合金板の引張強さ、導電率、加工性を以下の方法により評価した。 The tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.

引張強さは、JIS5号試験片について、常温で常法により測定した。 The tensile strength was measured by a conventional method at room temperature for the JIS No. 5 test piece.

導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10−2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The conductivity was determined as internationally adopted have been annealed standard soft copper (volume resistivity 1.7241 × 10 -2 μΩm) relative value when the conductivity was set to 100% IACS of (% IACS).

加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 For workability, the bending angle is 90 °, the thickness of each alloy plate is bent inside radius when the thickness of the alloy plate is 0.4 mm or more, and the bending inside when the thickness of the alloy plate is less than 0.4 mm. A bending test was carried out by the 6.3 V block method of the JIS Z 2248 metal material bending test method with the radius set to 0, and those without cracks were evaluated as ◯, and those with cracks were evaluated as ×.

引張強さ、導電率、および加工性の評価結果を表2〜表6に示す。 The evaluation results of tensile strength, conductivity, and workability are shown in Tables 2 to 6.

本願規定の化学組成を有し、熱間圧延終了直後の合金板の表面温度が230℃以下であり熱間圧延終了後冷間圧延終了前の熱処理温度が200℃以上400℃以下の範囲内である実施例では、引張強さおよび導電率が高い値を示し加工性も良好であるのに対し、本願規定の化学組成、熱間圧延終了直後の合金板の表面温度もしくは熱間圧延終了後冷間圧延終了前の熱処理温度の少なくとも一つが本願規定範囲を満足しない比較例は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。 It has the chemical composition specified in the present application, the surface temperature of the alloy plate immediately after the end of hot rolling is 230 ° C or less, and the heat treatment temperature after the end of hot rolling and before the end of cold rolling is within the range of 200 ° C or more and 400 ° C or less. In one example, the tensile strength and conductivity are high and the workability is good, whereas the chemical composition specified in the present application, the surface temperature of the alloy plate immediately after the end of hot rolling, or the cooling after the end of hot rolling. In the comparative example in which at least one of the heat treatment temperatures before the end of inter-rolling does not satisfy the specified range of the present application, at least either the tensile strength or the conductivity is inferior to that of the examples, and some are inferior in processability.

Claims (12)

Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、熱間圧延前加熱を500℃以上580℃以下で実施し、熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が230℃以下であり、熱間圧延より後の工程において溶体化処理を実施することなく、熱間圧延終了後であって冷間圧延終了前に200℃以上400℃以下の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。 Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, Cu: 0.5% by mass or less, and Ti: 0.1% by mass. % Or less or B: 0.1% by mass or less of an alloy plate in which hot rolling and cold rolling are sequentially carried out on an Al—Mg—Si based alloy ingot containing at least one kind and consisting of the balance Al and unavoidable impurities. In the manufacturing method, heating before hot rolling is carried out at 500 ° C. or higher and 580 ° C. or lower, and the surface temperature of the Al—Mg—Si alloy plate immediately after the completion of hot rolling is 230 ° C. or lower, which is higher than that of hot rolling. A method for producing an Al—Mg—Si alloy plate, which is heat-treated at a temperature of 200 ° C. or higher and 400 ° C. or lower after the completion of hot rolling and before the completion of cold rolling without performing solution treatment in a later step. .. 不可避不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項1に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to claim 1, wherein Mn, Cr, and Zn as unavoidable impurities are each regulated to 0.1% by mass or less. 不可避不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項1または請求項2に記載のAl−Mg−Si系合金板の製造方法。 The Al—Mg—Si alloy plate according to claim 1 or 2, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as unavoidable impurities are regulated to 0.05% by mass or less, respectively. Production method. 不可避不純物としてのAgが0.05質量%以下に規制されている請求項1ないし請求項3の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 3, wherein Ag as an unavoidable impurity is regulated to 0.05% by mass or less. 不可避不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項1ないし請求項4の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 4, wherein the total content of rare earth elements as unavoidable impurities is regulated to 0.1% by mass or less. 熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 5, wherein the heat treatment is carried out after the completion of hot rolling and before the start of cold rolling. 熱間圧延終了直後のAl−Mg−Si系合金板の表面温度が200℃以下である請求項1ないし請求項6の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si-based alloy plate according to any one of claims 1 to 6, wherein the surface temperature of the Al-Mg-Si-based alloy plate immediately after the completion of hot rolling is 200 ° C. or lower. 熱処理温度が200℃以上300℃以下である請求項1ないし請求項7の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 7, wherein the heat treatment temperature is 200 ° C. or higher and 300 ° C. or lower. 熱処理後の冷間圧延の圧延率が20%以上である請求項1ないし請求項8の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 8, wherein the rolling ratio of cold rolling after heat treatment is 20% or more. 冷間圧延後に最終焼鈍を実施する請求項1ないし請求項9の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 9, wherein final annealing is performed after cold rolling. 最終焼鈍の温度が200℃以下である請求項10に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al—Mg—Si based alloy plate according to claim 10, wherein the final annealing temperature is 200 ° C. or lower. 熱間圧延の複数のパスのうち、パス直前のAl−Mg-Si系合金板の表面温度が470〜350℃でありパスによるAl−Mg-Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する請求項1ないし請求項11の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 Of the multiple passes of hot rolling, the surface temperature of the Al-Mg-Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al-Mg-Si alloy plate is cooled by the pass, or after the pass and the pass. The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 11, wherein a pass in which the average cooling rate by forced cooling is 50 ° C./min or more is carried out at least once.
JP2016067358A 2016-03-30 2016-03-30 Manufacturing method of Al-Mg-Si based alloy plate Active JP6774200B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016067358A JP6774200B2 (en) 2016-03-30 2016-03-30 Manufacturing method of Al-Mg-Si based alloy plate
PCT/JP2016/088717 WO2017168892A1 (en) 2016-03-30 2016-12-26 Method for producing al-mg-si alloy plate
CN201680083568.1A CN108884542B (en) 2016-03-30 2016-12-26 Method for producing Al-Mg-Si alloy sheet
TW106103837A TW201738390A (en) 2016-03-30 2017-02-06 Method for producing al-mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067358A JP6774200B2 (en) 2016-03-30 2016-03-30 Manufacturing method of Al-Mg-Si based alloy plate

Publications (2)

Publication Number Publication Date
JP2017179455A JP2017179455A (en) 2017-10-05
JP6774200B2 true JP6774200B2 (en) 2020-10-21

Family

ID=60005655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067358A Active JP6774200B2 (en) 2016-03-30 2016-03-30 Manufacturing method of Al-Mg-Si based alloy plate

Country Status (1)

Country Link
JP (1) JP6774200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179454A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686657B1 (en) * 2002-03-01 2007-02-27 쇼와 덴코 가부시키가이샤 PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP5113318B2 (en) * 2004-04-13 2013-01-09 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP2017179454A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Also Published As

Publication number Publication date
JP2017179455A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
CN108699641B (en) Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6695725B2 (en) Al-Mg-Si alloy plate
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6774196B2 (en) Al-Mg-Si based alloy material
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP7262947B2 (en) Al-Mg-Si alloy plate
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6774197B2 (en) Al-Mg-Si based alloy material
JP2021105198A (en) Rolled aluminum alloy material having excellent thermal conductivity, conductivity and strength and method for producing the same
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
TW201742931A (en) Method for producing Al-Mg-Si alloy plate
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2020033606A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6833331B2 (en) Al-Mg-Si based alloy plate
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2020033609A (en) Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250