JP7262947B2 - Al-Mg-Si alloy plate - Google Patents

Al-Mg-Si alloy plate Download PDF

Info

Publication number
JP7262947B2
JP7262947B2 JP2018161472A JP2018161472A JP7262947B2 JP 7262947 B2 JP7262947 B2 JP 7262947B2 JP 2018161472 A JP2018161472 A JP 2018161472A JP 2018161472 A JP2018161472 A JP 2018161472A JP 7262947 B2 JP7262947 B2 JP 7262947B2
Authority
JP
Japan
Prior art keywords
mass
less
hot rolling
rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018161472A
Other languages
Japanese (ja)
Other versions
JP2020033607A (en
Inventor
眞二 籠重
Original Assignee
堺アルミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺アルミ株式会社 filed Critical 堺アルミ株式会社
Priority to JP2018161472A priority Critical patent/JP7262947B2/en
Priority to CN201910787655.0A priority patent/CN110872665B/en
Publication of JP2020033607A publication Critical patent/JP2020033607A/en
Application granted granted Critical
Publication of JP7262947B2 publication Critical patent/JP7262947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Description

この発明は、Al-Mg―Si系合金板、特に熱伝導性、導電性、強度に優れたAl-Mg―Si系合金板に関する。 The present invention relates to an Al--Mg--Si based alloy plate, particularly to an Al--Mg--Si based alloy plate having excellent thermal conductivity, electrical conductivity and strength.

薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Flat-screen TVs, flat-screen monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed circuit boards, and heat generating elements such as internal covers The member materials to be incorporated or attached are required to have excellent thermal conductivity, strength and workability for rapid heat dissipation.

JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052等のAl-Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050 and 1070 are excellent in thermal conductivity but low in strength. Al--Mg alloys (5000 series alloys) such as JIS5052, which are used as high-strength materials, are significantly inferior in thermal conductivity and electrical conductivity to pure aluminum alloys.

これに対しAl-Mg-Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al-Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, Al-Mg-Si alloys (6000 series alloys) have good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate having excellent conductivity and workability has been investigated.

例えば、特許文献1には、Mgを0.1~0.34質量%、Siを0.2~0.8質量%、Cuを0.22~1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上である合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400~540℃の温度で予備加熱を経て熱間圧延、50~85%の圧下率で冷間圧延を施した後、140~280℃の温度で焼鈍をすることを特徴とする圧延板の製造方法が開示されている。 For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An alloy containing unavoidable impurities and having a Si/Mg content ratio of 1.3 or more is semi-continuously cast into an ingot having a thickness of 250 mm or more, preheated at a temperature of 400 to 540 ° C., hot rolled, and 50 A method for producing a rolled sheet is disclosed, which comprises cold rolling at a rolling reduction of ∼85%, followed by annealing at a temperature of 140 to 280°C.

特許文献2には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02~0.15質量%、Cr:0.02~0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制されるか、もしくはこれにCu:0.01~1質量%か希土類元素:0.01~0.2質量%の1種または2種を含有する組成を有するアルミニウム合金板を連続鋳造圧延により作製し、その後冷間圧延し、次いで500~570℃の溶体化処理を行い、続いてさらに冷間圧延率5~40%で冷間圧延を行い、冷間圧延後150~190℃未満で加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0.02 to 0.15% by mass, containing one or two of Cr: 0.02 to 0.15%, the balance being Al and Ti in the inevitable impurities being regulated to 0.2% or less, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and rolling, and then cold rolled. Then, solution treatment is performed at 500 to 570 ° C., cold rolling is performed at a cold rolling rate of 5 to 40%, and aging treatment is performed by heating at 150 to less than 190 ° C. after cold rolling. A method for producing an aluminum alloy plate characterized by excellent thermal conductivity, strength and bending workability is described.

特許文献3には、Al-Mg―Si系合金鋳塊を均質化処理し、熱間粗圧延および熱間仕上げ圧延した後に冷間圧延した合金板を所要形状に加工して製造された放熱部材であって、Si:0.2~0.8wt%、Mg:0.3~0.9wt%、Fe:0.35wt%以下、Cu:0.20wt%以下を含有し、残部Alおよび不可避不純物からなることを特徴とするアルミニウム放熱部材が開示されている。 Patent Document 3 discloses a heat dissipating member manufactured by homogenizing an Al-Mg-Si alloy ingot, performing hot rough rolling and hot finish rolling, and then cold rolling the alloy plate into a desired shape. It contains Si: 0.2 to 0.8 wt%, Mg: 0.3 to 0.9 wt%, Fe: 0.35 wt% or less, Cu: 0.20 wt% or less, and the balance is Al and inevitable impurities An aluminum heat dissipating member is disclosed which is characterized by comprising:

なお、Al-Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In addition, in the Al-Mg-Si alloy, the thermal conductivity and the electrical conductivity show a good correlation, and the aluminum alloy plate having excellent thermal conductivity has excellent electrical conductivity. It can be used as a conductive member material.

特開2012-62517号公報JP 2012-62517 A 特開2007-9262号公報JP-A-2007-9262 特開2000-226628号公報JP-A-2000-226628

加工性は引張強さと耐力の関係に影響される。耐力が引張強さに比べ低い場合は、加工硬化が起こり、多段成形加工の場合は加工性が低下する。また、Al-Mg―Si系合金板の金属組織によっても加工性は変化する。 Workability is affected by the relationship between tensile strength and yield strength. When the proof stress is lower than the tensile strength, work hardening occurs, and workability decreases in the case of multi-step molding. The workability also changes depending on the metallographic structure of the Al--Mg--Si alloy plate.

しかしながら、特許文献1では、工程条件の検討が不十分であり、耐力についても検討されていない。また、特許文献1において、張強さはSiまたはCuの寄与により改善がなされたものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なく、SiおよびMgをほぼ同じ割合で含有する合金は特許文献1の請求範囲に含まれない。また板材としての特性、板厚の記載が特許文献1の請求範囲にはない。 However, in Patent Literature 1, the examination of the process conditions is insufficient, and the yield strength is not examined. In addition, in Patent Document 1, the tensile strength is improved by the contribution of Si or Cu, the next most element after Al is Si or Cu, the content of Mg is relatively low, and Si and Mg is not included in the scope of the patent document 1. In addition, the claims of Patent Document 1 do not include the characteristics of the plate material and the thickness of the plate.

特許文献2では、比較的高い強度が得られるものの実施例記載の導電率は低い。 In Patent Document 2, although relatively high strength can be obtained, the electrical conductivity described in the examples is low.

特許文献3では、実施例に記載された発明品1は引張強さと耐力の差が小さいが熱電導度が低く、発明品2では発明品1より熱電導度は高いが、引張強さと耐力の差が発明品1より大きい。 In Patent Document 3, invention 1 described in the example has a small difference in tensile strength and yield strength but low thermal conductivity, and invention 2 has a higher thermal conductivity than invention 1, but a difference in tensile strength and yield strength. The difference is greater than invention 1.

また、特許文献2および特許文献3には得られたAl-Mg―Si系合金板の金属組織に関する記載がない。 Moreover, Patent Documents 2 and 3 do not describe the metal structure of the obtained Al--Mg--Si alloy plate.

上記のように、特許文献1~3では、引張強さと耐力の値が近く高い導電率を有するAl-Mg―Si系合金板を得ることは非常に困難である。 As described above, in Patent Documents 1 to 3, it is very difficult to obtain an Al--Mg--Si alloy plate having a high electrical conductivity with values of tensile strength and yield strength close to each other.

本発明は、上述した技術背景に鑑み、0.2%耐力(MPa)を引張強さ(MPa)で除した値が高く、高い導電率、および高い強度を有するAl-Mg-Si系合金板を提供することを目的とする。 In view of the above-described technical background, the present invention provides an Al-Mg-Si alloy plate having a high value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa), high electrical conductivity, and high strength. intended to provide

上記課題は、以下の手段によって解決される。
(1)化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが170MPa以上であり、0.2%耐力(MPa)を引張強さ(MPa)で除した値が0.91以上1.00以下、導電率が50%<導電率<54%(IACS)、板厚は3mm≦板厚≦9mmである繊維組織を有するAl-Mg-Si系合金板。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl-Mg-Si系合金板。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl-Mg-Si系合金材。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl-Mg-Si系合金板。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl-Mg-Si系合金板。
The above problems are solved by the following means.
(1) The chemical composition contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, and Cu: 0.5% by mass or less, Furthermore, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and the balance is Al and inevitable impurities, and has a tensile strength of 170 MPa or more and a 0.2% yield strength (MPa ) divided by the tensile strength (MPa) is 0.91 or more and 1.00 or less, the conductivity is 50% < conductivity < 54% (IACS), and the plate thickness is 3 mm ≤ plate thickness ≤ 9 mm. Al-Mg-Si alloy plate having.
(2) The Al--Mg--Si alloy plate as described in (1) above, wherein each of Mn, Cr, and Zn as impurities is restricted to 0.1% by mass or less.
(3) The Al--Mg--Si alloy material according to (1) or (2) above, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each restricted to 0.05% by mass or less.
(4) The Al--Mg--Si alloy sheet according to any one of the preceding items 1 to 3, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(5) The Al--Mg--Si alloy plate according to any one of (1) to (4) above, wherein the total content of rare earth elements as impurities is regulated to 0.1% by mass or less.

前項(1)に記載の発明によれば、化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有する板厚が3mm≦板厚≦9mmのAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (1), the chemical composition is Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0 .5% by mass or less, further contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and the balance is Al and inevitable impurities. .2% proof stress (MPa) divided by tensile strength (MPa) is large, the Al-Mg-Si alloy plate having a plate thickness of 3 mm ≤ plate thickness ≤ 9 mm having a fiber structure with high conductivity can be obtained. .

前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (2), Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less, so that the tensile strength is high and the 0.2% yield strength (MPa ) divided by the tensile strength (MPa), an Al--Mg--Si alloy plate having a fibrous structure with high electrical conductivity can be obtained.

前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (3), Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are each regulated to 0.05% by mass or less, so the tensile strength is high, An Al--Mg--Si alloy plate having a large value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa) and having a fiber structure with high electrical conductivity can be obtained.

前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (4), since Ag as an impurity is regulated to 0.05% by mass or less, the tensile strength is high, and the 0.2% proof stress (MPa) is the tensile strength (MPa ), and an Al--Mg--Si alloy plate having a fibrous structure with high electrical conductivity can be obtained.

前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (5), since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength is high and the 0.2% proof stress (MPa) is achieved. An Al--Mg--Si alloy plate having a fibrous structure having a large value divided by the tensile strength (MPa) and high electrical conductivity can be obtained.

本願のAl-Mg―Si系合金板の繊維組織のモデル図である。1 is a model diagram of a fiber structure of an Al--Mg--Si alloy plate of the present application; FIG.

本願発明者は、熱間圧延、冷間圧延を順次実施するAl-Mg-Si系合金板の製造方法において、熱間圧延上がりの合金板の表面温度を所定の温度以下とすることで、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、高い導電率と高い強度を有するAl-Mg-Si系合金板が得られることを見出し本発明に至った。 The inventors of the present application have found that, in a method for manufacturing an Al-Mg-Si alloy plate in which hot rolling and cold rolling are successively performed, the surface temperature of the alloy plate after hot rolling is set to a predetermined temperature or less, thereby reducing the The present inventors have found that an Al--Mg--Si alloy sheet having a large value obtained by dividing .2% proof stress (MPa) by tensile strength (MPa), high electrical conductivity, and high strength can be obtained, leading to the present invention.

以下に、本願のAl-Mg-Si系合金板について詳細に説明する。 The Al--Mg--Si alloy plate of the present application will be described in detail below.

本願のAl-Mg-Si系合金板の組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。 In the composition of the Al--Mg--Si alloy plate of the present application, the purpose of adding each element and the reason for limiting the content are as follows.

MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は0.45質量%以上0.9質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for developing strength, and the content of each of Si is 0.2 mass % or more and 0.8 mass % or less, and Mg is 0.3 mass % or more and 1 mass % or less. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases, resulting in a decrease in productivity and poor formability of the resulting aluminum plate. Become. The Si content is preferably 0.2% by mass or more and 0.6% by mass or less, and more preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is preferably 0.45% by mass or more and 0.9% by mass or less, and more preferably 0.45% by mass or more and 0.55% by mass or less.

FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが好ましい。 Fe and Cu are components necessary for molding, but when contained in a large amount, the corrosion resistance is lowered. In the present application, the Fe content and the Cu content are each restricted to 0.5% by mass or less. The Fe content is preferably restricted to 0.35% by mass or less, more preferably 0.1% by mass or more and 0.25% by mass or less. The Cu content is preferably 0.1% by mass or less.

TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、サイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。また、B含有量は0.1質量%以下が好ましく、特に0.06質量%以下が好ましい。 Ti and B have the effect of refining crystal grains and preventing solidification cracks when the alloy is cast into slabs. The above effect is obtained by adding at least one of Ti and B, and both may be added. However, if it is contained in a large amount, a large amount of large-sized crystallized substances are formed, and the workability, thermal conductivity and electrical conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, more preferably 0.005% by mass or more and 0.05% by mass or less. Also, the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass or less.

また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 In addition, various impurity elements are inevitably contained in alloy elements, but Mn and Cr reduce the conductivity and electrical conductivity, and Zn decreases the corrosion resistance of the alloy material when the content is high, so it is necessary to reduce it. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.

上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Impurity elements other than those mentioned above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, and rare earth elements, but are not limited to these. Other than that, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth elements may contain one or more elements, or may be derived from the raw material for casting contained in the state of misch metal, but the total content of the rare earth elements is The amount is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.

次に、本願規定のAl-Mg―Si系合金板を得るための処理工程について記述する。 Next, the processing steps for obtaining the Al--Mg--Si alloy plate specified in the present application will be described.

常法にて溶解成分調整し、Al-Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The dissolved components are adjusted by a conventional method to obtain an Al--Mg--Si alloy ingot. It is preferable to subject the obtained alloy ingot to a homogenization treatment as a step prior to the heating before hot rolling.

前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500° C. or higher.

前記熱間圧延前加熱はAl-Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると共晶融解が生じるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The heating before hot rolling is carried out in order to dissolve the crystallized substances, Mg, and Si in the Al--Mg--Si alloy ingot to form a uniform structure, but if the temperature is too high, eutectic melting will occur. Therefore, it is preferable to carry out the heating at 450° C. or higher and 580° C. or lower, and particularly preferably at 500° C. or higher and 580° C. or lower.

Al-Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 The Al—Mg—Si alloy ingot may be homogenized and then cooled and then heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously. The homogenization treatment and the heating before hot rolling may be performed at the same temperature within the preferable temperature range for the homogenization treatment and the heating before hot rolling.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 In order to remove an impurity layer near the surface of the ingot after casting and before heating before hot rolling, the ingot is preferably chamfered. Chamfering may be performed after casting and before homogenization, or after homogenization and before hot rolling.

熱間圧延前加熱後のAl-Mg―Si系合金鋳塊に熱間圧延を施す。 The Al—Mg—Si alloy ingot after heating before hot rolling is subjected to hot rolling.

熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling consists of rough hot rolling and finish hot rolling. Finish hot rolling is performed using In the present application, when the final pass in the roughing hot rolling mill is the final pass of hot rolling, the finishing hot rolling can be omitted.

本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl-Mg―Si系合金材を導入し1回のパスで実施される。 In the present application, finish hot rolling is performed by introducing an Al-Mg-Si alloy material from one direction using a rolling mill in which one set of upper and lower work rolls or two or more sets of work rolls are continuously installed. is carried out on the path of

冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl-Mg―Si系合金材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al-Mg―Si系合金材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When the cold rolling is performed in a coil, the Al--Mg--Si alloy material after finish hot rolling may be wound up by a winding device to form a hot-rolled coil. When finish hot rolling is omitted and the final pass of rough hot rolling is the final pass of hot rolling, after rough hot rolling, the Al-Mg-Si alloy material is wound with a winding device. It may be used as a hot-rolled coil.

粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl-Mg―Si系合金材の冷却、もしくは粗熱間圧延のパスとパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。 In rough hot rolling, after maintaining the state in which Mg and Si are dissolved according to solution treatment, the Al-Mg-Si alloy material is cooled by a pass of rough hot rolling, or after rough hot rolling. The effect of quenching can be obtained by the temperature drop due to the forced cooling after the pass and the pass.

本願において粗熱間圧延の複数のパスのうち、パス直前Al-Mg―Si系合金材の表面温度が350℃以上470℃以下でありパスによるAl-Mg―Si系合金材の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl-Mg―Si系合金材の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl-Mg―Si系合金材の急冷が困難であるからである。 In the present application, among the multiple passes of rough hot rolling, the surface temperature of the Al-Mg-Si alloy material immediately before the pass is 350 ° C. or more and 470 ° C. or less, and the Al-Mg-Si alloy material is cooled by the pass, or the pass A pass with an average cooling rate of 50° C./min or more due to forced cooling after the pass is called a control pass. The reason why the surface temperature of the Al-Mg-Si alloy material immediately before the control pass is 350 ° C. or higher and 470 ° C. or lower is that below 350 ° C., the effect of quenching by rapid cooling in rough hot rolling is small, and the temperature higher than 470 ° C. This is because it is difficult to rapidly cool the Al--Mg--Si alloy material that has passed through.

上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl-Mg―Si系合金材の温度降下(℃)を要した時間(分)で除した値とする。 The above average cooling rate is from the start to the end of the control pass when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass. It is the value obtained by dividing the temperature drop (°C) of the material by the required time (minutes).

制御パス後の強制冷却は、Al-Mg―Si系合金材を圧延しながら圧延後の部位に対し順次実施してもよいし、Al-Mg―Si系合金材全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 Forced cooling after the control pass may be performed sequentially on the rolled portions while rolling the Al—Mg—Si alloy material, or may be performed after rolling the entire Al—Mg—Si alloy material. good too. The method of forced cooling is not limited, but may be water cooling, air cooling, or use of coolant.

前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al-Mg―Si系合金材の表面温度が470~350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl-Mg―Si系合金材の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。 The control path is preferably performed at least once, and may be performed multiple times. When performing multiple control passes, it is possible to select whether or not to perform forced cooling after each control pass. If the surface temperature of the Al—Mg—Si alloy material immediately before the pass is 470 to 350° C. and the cooling rate is 50° C./min or more, the control pass can be performed multiple times. By lowering the temperature of the Al—Mg—Si alloy material to less than 350° C., quenching can be efficiently and effectively performed.

本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl-Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl-Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とする。 In the present application, when forced cooling is not performed after the final pass of rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately after the final pass of hot rolling is the temperature after rough hot rolling. When forced cooling is performed after the final pass of rolling, the surface temperature of the Al--Mg--Si alloy material immediately after the end of forced cooling is taken as the temperature after rough hot rolling.

本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl-Mg―Si系合金材の表面温度は170℃以下とすることが好ましい。 In the present application, when finish hot rolling is performed, hot rolling is completed at the end of finish hot rolling, and when finish hot rolling is not performed, hot rolling is completed at the end of the final pass of rough hot rolling. The surface temperature of the Al--Mg--Si alloy material is preferably 170.degree. C. or lower.

熱間圧延終了直後の合金材の温度を170℃以下とすることにより有効な焼き入れ効果が得られる。 An effective quenching effect can be obtained by setting the temperature of the alloy material to 170° C. or lower immediately after hot rolling.

熱間圧延終了直後のAl-Mg―Si系合金材の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のアルミニウム板の表面温度は150℃以下が更に好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy material immediately after hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after hot rolling and before cold rolling. is insufficient. The surface temperature of the aluminum plate immediately after hot rolling is more preferably 150° C. or lower, particularly preferably 130° C. or lower.

なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl-Mg―Si系合金板の表面温度は280℃以下であることが好ましい。 When finish hot rolling is performed after rough hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before finish hot rolling is set to It is preferably 280° C. or less.

また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl-Mg―Si系合金板の表面温度は280℃以下が好ましい。 Similarly, when finish hot rolling is not performed and the final pass of rough hot rolling is not a control pass, the surface temperature of the Al--Mg--Si alloy plate immediately before the final pass of rough hot rolling is 280° C. or less. preferable.

一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl-Mg―Si系合金板の表面温度が470~350℃であって、圧延もしくは圧延と圧延後の強制冷却により50℃/分以上の冷却速度で合金板の表面温度が170℃以下となるように制御パスを実施することが好ましい。 On the other hand, when the final pass of rough hot rolling is the control pass without finishing hot rolling, the control pass is the final pass of hot rolling. The surface temperature of the alloy plate is 470 to 350°C, and the control pass is performed so that the surface temperature of the alloy plate is 170°C or less at a cooling rate of 50°C/min or more by forced cooling after rolling or rolling and rolling. preferably.

なお、本願のAl-Mg―Si系合金材の製造はコイルで行ってもよく、単板で行ってもよい。 The Al--Mg--Si based alloy material of the present application may be produced in a coil or in a single plate.

上記の製造方法によれば、高い導電率を維持しつつ、強度を向上させた Al-Mg―Si系合金板が得られる。 According to the manufacturing method described above, an Al--Mg--Si alloy plate having improved strength while maintaining high electrical conductivity can be obtained.

本願のAl-Mg―Si系合金材は繊維組織を有する。繊維組織は塑性加工により伸ばされた金属組織である。 The Al--Mg--Si alloy material of the present application has a fibrous structure. A fiber structure is a metal structure elongated by plastic working.

図1に本願のAl-Mg―Si系合金板の繊維組織のモデル図を示す。 FIG. 1 shows a model diagram of the fiber structure of the Al--Mg--Si alloy plate of the present application.

図1に示すように、本願において、観察面の法線がAl-Mg―Si系合金板の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるように金属組織を露出させ、光学顕微鏡で観察した観察面の金属組織の加工面法線方向の粒界が3本/100μm以上であり、加工方向の長さが300μm以上の粒界が存在する金属組織を繊維組織と規定する。なお、塑性加工が圧延の場合、加工方向は圧延方向であり、加工面は圧延面であり、観察面は圧延方向に対し平行に切断した厚さ方向の断面となる。 As shown in FIG. 1, in the present application, the metal structure is exposed so that the normal of the observation surface is perpendicular to both the processing direction vector of the Al-Mg-Si alloy plate and the normal direction vector of the processing surface, The grain boundary in the normal direction of the working surface of the metal structure of the observation surface observed with an optical microscope is 3 / 100 µm or more, and the metal structure in which the grain boundary with a length of 300 µm or more in the processing direction exists is defined as the fiber structure. . When the plastic working is rolling, the working direction is the rolling direction, the working surface is the rolling surface, and the observation surface is a cross section in the thickness direction cut parallel to the rolling direction.

金属組織を露出させる方法としては、法線がAl-Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるAl-Mg―Si系合金材の面を研磨した後、研磨面を陽極酸化処理する方法を例示できる。陽極酸化処理液はバーカー氏液(3%ホウフッ化水素酸水溶液)を好適に用いることができる。 As a method of exposing the metal structure, the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processing surface is polished. After that, a method of anodizing the polished surface can be exemplified. Barker's solution (3% hydroborofluoric acid aqueous solution) can be preferably used as the anodizing treatment solution.

本願のAl-Mg―Si系合金板の導電率は50%<導電率<54%(IACS)、板厚は3mm≦板厚≦9mm、引張強さは170MPa以上と規定する。本願のAl-Mg―Si系合金材の0.2%耐力(MPa)を引張強さ(MPa)で除した値は、0.91以上1.00以下と規定する。本願規定の0.2%耐力(MPa)を引張強さ(MPa)で除した値および引張強さを満足し、繊維組織を有するAl-Mg―Si系合金板となる。0.2%耐力(MPa)を引張強さ(MPa)で除した値は、更に0.92以上1.00以下、特に0.93以上1.00以下が好ましい。 The Al--Mg--Si alloy plate of the present application is defined to have a conductivity of 50%<conductivity<54% (IACS), a plate thickness of 3 mm≦plate thickness≦9 mm, and a tensile strength of 170 MPa or more. The value obtained by dividing the 0.2% proof stress (MPa) of the Al--Mg--Si alloy material of the present application by the tensile strength (MPa) is defined as 0.91 or more and 1.00 or less. An Al--Mg--Si alloy plate having a fibrous structure which satisfies the value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa) and the tensile strength specified in the present application. The value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa) is preferably 0.92 or more and 1.00 or less, particularly 0.93 or more and 1.00 or less.

以下に本発明の実施例および比較例を示す。 Examples of the present invention and comparative examples are shown below.

表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。
[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃で厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs with different chemical compositions shown in Table 1 were obtained by DC casting. For the ingot of chemical composition number 20 containing rare earth elements, a raw material containing misch metal was used for casting.
[Example 1]
The aluminum alloy slab of chemical composition number 1 in Table 1 was subjected to facing. Next, the alloy slab after facing was subjected to homogenization treatment at 570° C. for 3 hours in a heating furnace, and then heated at 540° C. for 4 hours before hot rolling in the same furnace while changing the temperature. The slab at 540° C. after heating before hot rolling was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during rough hot rolling reaches 25 mm, the final pass of rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C. immediately before the pass, and rough heat. An alloy plate having a thickness of 12 mm was obtained at a rolling temperature of 222°C. In the final pass of the rough hot rolling, the alloy sheet was moved while rolling, and forced cooling by water cooling was performed by sequentially spraying water from above and below on the alloy sheet after rolling.

粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。 After the rough hot rolling, the alloy sheet was subjected to finish hot rolling at a temperature of 220° C. just before finish hot rolling to obtain an alloy sheet having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after finish hot rolling was 111°C.

Figure 0007262947000001
Figure 0007262947000001

[実施例2~32、比較例1~6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2~表5に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。
[Examples 2 to 32, Comparative Examples 1 to 6]
After facing the aluminum alloy slabs shown in Table 1, they were treated under the conditions shown in Tables 2 to 5 to obtain aluminum alloy plates. As in Example 1, in all examples and comparative examples, homogenization treatment and heating before hot rolling were performed continuously in the same furnace, and forced cooling after the final pass of rough hot rolling was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate from above and below successively to the parts of the alloy plate after rolling or air cooling in which air cooling is performed after completion of the final pass of rough hot rolling was selected.

実施例18では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 18, the final pass of rough hot rolling was the final pass of hot rolling, and finish hot rolling was not performed.

比較例1および比較例2では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例1および比較例2において、冷間圧延率は溶体化処理前後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Examples 1 and 2, a heat treatment was performed at 550° C. for 1 minute during cold rolling, and then a solution treatment was performed in which cooling was performed at a rate of 5° C./second or more. In Comparative Examples 1 and 2, the cold rolling rate is the total rolling rate of cold rolling before and after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. was carried out so that the cold rolling rate of was 30%.

Figure 0007262947000002
Figure 0007262947000002

Figure 0007262947000003
Figure 0007262947000003

Figure 0007262947000004
Figure 0007262947000004

Figure 0007262947000005
Figure 0007262947000005

得られた合金板の引張強さ、0.2%耐力、導電率、繊維組織を有するか否かを以下の方法により評価した。 The tensile strength, 0.2% yield strength, electrical conductivity, and fiber structure of the obtained alloy plate were evaluated by the following methods.

引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 Tensile strength and 0.2% yield strength were measured on JIS No. 5 test pieces at normal temperature by a conventional method.

導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (%IACS) when the electrical conductivity of an internationally adopted standard annealed annealed copper (volumetric low efficiency of 1.7241×10 −2 μΩm) was defined as 100%IACS.

実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl-Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。 In the examples and comparative examples, when the metal structure of the cross section of the Al-Mg-Si alloy plate in the thickness direction cut parallel to the rolling direction is exposed, the normal line of the rolled surface of the metal structure observed with an optical microscope. A metal structure having grain boundaries of 3 grain boundaries per 100 µm or more in the rolling direction and having a length of 300 µm or more in the rolling direction was defined as a fiber structure.

金属組織を露出させる方法としては、Al-Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。 As a method for exposing the metal structure, the cross section of the Al-Mg-Si alloy plate cut parallel to the rolling direction is polished with emery paper, rough buffed and finished, washed with water and dried. Furthermore, a method of anodizing in Barker's solution (3% hydroborofluoric acid aqueous solution) under conditions of bath temperature: 28° C., applied voltage: 30 V, and applied time: 90 seconds was applied.

引張強さ、0.2%耐力、0.2%耐力(MPa)を引張強さ(MPa)で除した値、導電率、および加工性の評価結果、およびAl-Mg―Si系合金板が繊維組織を有するか否かを表6および表7に示す。 Evaluation results of tensile strength, 0.2% yield strength, 0.2% yield strength (MPa) divided by tensile strength (MPa), conductivity, and workability, and Al-Mg-Si alloy plate Tables 6 and 7 show whether or not there is a fibrous structure.

Figure 0007262947000006
Figure 0007262947000006

Figure 0007262947000007
Figure 0007262947000007

各実施例は、いずれも本願規定の化学組成、引張強さ、0.2%耐力(MPa)を引張強さ(MPa)で除した値、導電率、及び板厚を満足し、繊維組織を有するAl-Mg-Si系合金板であり加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例1および比較例2は繊維組織を有さず導電率が実施例に劣り、化学組成が本願規定範囲を満足しない比較例3~比較例6は、引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。 Each example satisfies the chemical composition, tensile strength, value obtained by dividing 0.2% yield strength (MPa) by tensile strength (MPa), electrical conductivity, and plate thickness specified in the present application, and has a fiber structure. It is an Al-Mg-Si based alloy plate with excellent workability. On the other hand, Comparative Examples 1 and 2, in which solution treatment was performed during cold rolling, did not have a fibrous structure and were inferior in electrical conductivity to Examples, and in Comparative Examples 3 and 3, which did not satisfy the range specified in the present application for chemical compositions. Example 6 is inferior to the examples in at least one of tensile strength and electrical conductivity, and some are inferior in workability.

Claims (1)

化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、
不可避不純物としてのMn 、Cr、およびZnがそれぞれ0.1質量%以下、Ni、V、Ga、Pb、Sn、BiおよびZrがそれぞれ0.05質量%以下、Agが0.05質量%以下、希土類元素の合計含有量が0.1質量%以下、に規制されており、
引張強さが170MPa以上であり、0.2%耐力(MPa)を引張強さ(MPa)で除した値が0.91以上1.00以下、導電率が50%<導電率<54%(IACS)、板厚は3mm≦板厚≦9mmであり、
法線が圧延方向ベクトルおよび圧延面の法線方向ベクトルの両方に垂直となるように金属組織を露出させた観察面において、圧延方向に延びる長さが300μm以上の粒界が圧延面法線方向3本/100μm以上存在する繊維組織を有するAl-Mg-Si系合金板。
The chemical composition contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and Ti: 0.1% by mass or less or B: containing at least one of 0.1% by mass or less, the balance being Al and inevitable impurities,
Mn, Cr, and Zn as inevitable impurities are each 0.1% by mass or less, Ni, V, Ga, Pb, Sn, Bi and Zr are each 0.05% by mass or less, Ag is 0.05% by mass or less, The total content of rare earth elements is regulated to 0.1% by mass or less,
The tensile strength is 170 MPa or more, the value obtained by dividing the 0.2% yield strength (MPa) by the tensile strength (MPa) is 0.91 or more and 1.00 or less, and the conductivity is 50% < conductivity < 54% ( IACS), the plate thickness is 3 mm ≤ plate thickness ≤ 9 mm,
In the observation surface where the metal structure is exposed so that the normal is perpendicular to both the rolling direction vector and the normal direction vector of the rolling surface, grain boundaries with a length of 300 μm or more extending in the rolling direction are normal to the rolling surface An Al--Mg--Si alloy plate having a fiber structure with 3 fibers/100 μm or more in the direction.
JP2018161472A 2018-08-30 2018-08-30 Al-Mg-Si alloy plate Active JP7262947B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018161472A JP7262947B2 (en) 2018-08-30 2018-08-30 Al-Mg-Si alloy plate
CN201910787655.0A CN110872665B (en) 2018-08-30 2019-08-26 Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161472A JP7262947B2 (en) 2018-08-30 2018-08-30 Al-Mg-Si alloy plate

Publications (2)

Publication Number Publication Date
JP2020033607A JP2020033607A (en) 2020-03-05
JP7262947B2 true JP7262947B2 (en) 2023-04-24

Family

ID=69667166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161472A Active JP7262947B2 (en) 2018-08-30 2018-08-30 Al-Mg-Si alloy plate

Country Status (2)

Country Link
JP (1) JP7262947B2 (en)
CN (1) CN110872665B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493877A (en) * 2020-03-18 2021-10-12 郭涛 Aluminum alloy for producing wind power tower cylinder ladder stand stepping stick
CN111560548A (en) * 2020-06-01 2020-08-21 凯米特新材料科技有限公司 High-precision high-strength light aluminum alloy section for high-speed rail and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057513A (en) 2013-08-09 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for bus bar and manufacturing method thereof
JP2015124393A (en) 2013-12-25 2015-07-06 三菱アルミニウム株式会社 Aluminum alloy material for conductive material and production method thereof
JP2017179457A (en) 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179449A (en) 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033606A (en) 2018-08-30 2020-03-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184375B1 (en) * 2002-03-01 2014-12-17 Showa Denko K.K. Al-Mg-Si alloy material and plate
JP5055881B2 (en) * 2006-08-02 2012-10-24 日本軽金属株式会社 Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material
MX2013002636A (en) * 2010-09-08 2013-05-09 Alcoa Inc Improved aluminum-lithium alloys, and methods for producing the same.
JP5925667B2 (en) * 2012-11-19 2016-05-25 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof
CN103060633A (en) * 2012-12-28 2013-04-24 福建省闽发铝业股份有限公司 A manufacturing method for an aluminum alloy with high conductivity
WO2014129385A1 (en) * 2013-02-25 2014-08-28 株式会社Uacj Aluminum alloy plate for can body and production method therefor
EP3115473B1 (en) * 2014-03-06 2020-07-15 Furukawa Electric Co. Ltd. Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
CN105420556B (en) * 2015-11-19 2017-08-18 国家电网公司 Extra-high voltage aluminium alloy conductor
JP6112437B1 (en) * 2016-10-31 2017-04-12 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
CN107043878B (en) * 2017-05-10 2018-06-29 广东伟业铝厂集团有限公司 Aluminum alloy materials and its production technology, the electric conductor of high-strength high-conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057513A (en) 2013-08-09 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for bus bar and manufacturing method thereof
JP2015124393A (en) 2013-12-25 2015-07-06 三菱アルミニウム株式会社 Aluminum alloy material for conductive material and production method thereof
JP2017179457A (en) 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179449A (en) 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033606A (en) 2018-08-30 2020-03-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Also Published As

Publication number Publication date
CN110872665B (en) 2022-03-25
JP2020033607A (en) 2020-03-05
CN110872665A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
CN108699641B (en) Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6774196B2 (en) Al-Mg-Si based alloy material
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP7262947B2 (en) Al-Mg-Si alloy plate
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774197B2 (en) Al-Mg-Si based alloy material
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2020033606A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2020033609A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179450A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7262947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02