JP2020033607A - Al-Mg-Si-BASED ALLOY SHEET - Google Patents
Al-Mg-Si-BASED ALLOY SHEET Download PDFInfo
- Publication number
- JP2020033607A JP2020033607A JP2018161472A JP2018161472A JP2020033607A JP 2020033607 A JP2020033607 A JP 2020033607A JP 2018161472 A JP2018161472 A JP 2018161472A JP 2018161472 A JP2018161472 A JP 2018161472A JP 2020033607 A JP2020033607 A JP 2020033607A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- hot rolling
- alloy
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 65
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 40
- 239000012535 impurity Substances 0.000 claims abstract description 24
- 239000000835 fiber Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 9
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 claims description 53
- 230000001105 regulatory effect Effects 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910019064 Mg-Si Inorganic materials 0.000 claims 1
- 229910019406 Mg—Si Inorganic materials 0.000 claims 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 abstract description 15
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 description 76
- 238000001816 cooling Methods 0.000 description 27
- 238000005096 rolling process Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 21
- 230000035882 stress Effects 0.000 description 20
- 238000005097 cold rolling Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 238000000265 homogenisation Methods 0.000 description 10
- 229910000838 Al alloy Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 238000007743 anodising Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
この発明は、Al−Mg―Si系合金板、特に熱伝導性、導電性、強度に優れたAl−Mg―Si系合金板に関する。 The present invention relates to an Al—Mg—Si alloy plate, particularly to an Al—Mg—Si alloy plate having excellent thermal conductivity, conductivity, and strength.
薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Heating elements such as chassis, metal base printed circuit boards, and inner covers for products such as flat-screen TVs, thin monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, and mobile terminals such as smartphones and mobile phones The material of the member to be incorporated or mounted is required to have excellent thermal conductivity, strength and workability for quickly dissipating heat.
JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS1100, 1050, and 1070 have excellent thermal conductivity but low strength. An Al-Mg alloy (5000-based alloy) such as JIS5052 used as a high-strength material has significantly lower thermal conductivity and conductivity than a pure aluminum-based alloy.
これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, an Al-Mg-Si alloy (6000 alloy) has good thermal conductivity and conductivity and can improve strength by age hardening. A method for obtaining an aluminum alloy plate having excellent conductivity and workability has been studied.
例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上である合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする圧延板の製造方法が開示されている。 For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, and 0.22 to 1.0% by mass of Cu, with the balance being Al and An alloy composed of unavoidable impurities and having a Si / Mg content ratio of 1.3 or more is formed into an ingot having a thickness of 250 mm or more by semi-continuous casting, and is subjected to pre-heating at a temperature of 400 to 540 ° C and hot rolling. A method of manufacturing a rolled sheet is disclosed in which cold rolling is performed at a rolling reduction of 8585%, and then annealing is performed at a temperature of 140 to 280 ° C.
特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制されるか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金板を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満で加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, and Fe: 0.3% by mass or less. 0.15% by mass, Cr: one or two of 0.02 to 0.15%, and the balance is restricted to 0.2% or less of Al and Ti in inevitable impurities, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and rolling, and then cold-rolled. Then, a solution treatment at 500 to 570 ° C. is performed, followed by a cold rolling at a cold rolling reduction of 5 to 40%, and an aging treatment of heating at 150 to less than 190 ° C. after the cold rolling. Aluminum alloy plate with excellent thermal conductivity, strength and bending workability It describes the preparation method.
特許文献3には、Al−Mg―Si系合金鋳塊を均質化処理し、熱間粗圧延および熱間仕上げ圧延した後に冷間圧延した合金板を所要形状に加工して製造された放熱部材であって、Si:0.2〜0.8wt%、Mg:0.3〜0.9wt%、Fe:0.35wt%以下、Cu:0.20wt%以下を含有し、残部Alおよび不可避不純物からなることを特徴とするアルミニウム放熱部材が開示されている。 Patent Document 3 discloses a heat-dissipating member manufactured by homogenizing an Al-Mg-Si-based alloy ingot, performing hot rough rolling and hot finish rolling, and then processing a cold-rolled alloy plate into a required shape. Containing 0.2 to 0.8 wt% of Si, 0.3 to 0.9 wt% of Mg, 0.35 wt% or less of Fe, and 0.20 wt% or less of Cu, with the balance being Al and unavoidable impurities. An aluminum heat dissipating member comprising:
なお、Al−Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In the case of the Al-Mg-Si alloy, the thermal conductivity and the electrical conductivity show a good correlation, and the aluminum alloy plate having the excellent thermal conductivity has the excellent electrical conductivity. It can be used as a conductive member material.
加工性は引張強さと耐力の関係に影響される。耐力が引張強さに比べ低い場合は、加工硬化が起こり、多段成形加工の場合は加工性が低下する。また、Al−Mg―Si系合金板の金属組織によっても加工性は変化する。 Workability is affected by the relationship between tensile strength and proof stress. If the proof stress is lower than the tensile strength, work hardening occurs, and in the case of multi-stage molding, the workability is reduced. The workability also changes depending on the metal structure of the Al-Mg-Si alloy sheet.
しかしながら、特許文献1では、工程条件の検討が不十分であり、耐力についても検討されていない。また、特許文献1において、張強さはSiまたはCuの寄与により改善がなされたものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なく、SiおよびMgをほぼ同じ割合で含有する合金は特許文献1の請求範囲に含まれない。また板材としての特性、板厚の記載が特許文献1の請求範囲にはない。 However, in Patent Document 1, the study of the process conditions is insufficient, and the yield strength is not studied. Further, in Patent Document 1, the tensile strength is improved by the contribution of Si or Cu, and the element next to Al is Si or Cu, the content of Mg is relatively small, and Si and Mg Are not included in the claims of Patent Document 1. Further, the description of the properties and thickness of the plate material is not in the claims of Patent Document 1.
特許文献2では、比較的高い強度が得られるものの実施例記載の導電率は低い。 In Patent Document 2, although a relatively high strength is obtained, the conductivity described in Examples is low.
特許文献3では、実施例に記載された発明品1は引張強さと耐力の差が小さいが熱電導度が低く、発明品2では発明品1より熱電導度は高いが、引張強さと耐力の差が発明品1より大きい。 In Patent Document 3, the invention 1 described in Examples has a small difference in tensile strength and proof stress, but low thermal conductivity, and the invention 2 has a higher thermal conductivity than the invention 1 but has a low tensile strength and proof stress. The difference is greater than Invention 1.
また、特許文献2および特許文献3には得られたAl−Mg―Si系合金板の金属組織に関する記載がない。 Further, Patent Documents 2 and 3 do not describe the metal structure of the obtained Al—Mg—Si alloy plate.
上記のように、特許文献1〜3では、引張強さと耐力の値が近く高い導電率を有するAl−Mg―Si系合金板を得ることは非常に困難である。 As described above, in Patent Literatures 1 to 3, it is very difficult to obtain an Al-Mg-Si-based alloy plate having high electrical conductivity, which is close to the values of tensile strength and proof stress.
本発明は、上述した技術背景に鑑み、0.2%耐力(MPa)を引張強さ(MPa)で除した値が高く、高い導電率、および高い強度を有するAl−Mg−Si系合金板を提供することを目的とする。 In view of the technical background described above, the present invention has a high value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa), and has high conductivity and high strength. The purpose is to provide.
上記課題は、以下の手段によって解決される。
(1)化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが170MPa以上であり、0.2%耐力(MPa)を引張強さ(MPa)で除した値が0.91以上1.00以下、導電率が50%<導電率<54%(IACS)、板厚は3mm≦板厚≦9mmである繊維組織を有するAl−Mg−Si系合金板。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金板。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl−Mg−Si系合金材。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金板。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金板。
The above problem is solved by the following means.
(1) The chemical composition contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, and Cu: 0.5% by mass or less, Further, it contains at least one kind of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is composed of Al and unavoidable impurities, the tensile strength is 170 MPa or more, and the 0.2% proof stress (MPa) ) Divided by the tensile strength (MPa) is 0.91 or more and 1.00 or less, the electrical conductivity is 50% <the electrical conductivity <54% (IACS), and the thickness is 3 mm ≦ the thickness ≦ 9 mm. An Al-Mg-Si alloy plate having:
(2) The Al-Mg-Si alloy plate according to the above item 1, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less.
(3) The Al-Mg-Si alloy material according to the above item 1 or 2, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are each regulated to 0.05% by mass or less.
(4) The Al-Mg-Si alloy plate according to any one of the above items 1 to 3, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(5) The Al-Mg-Si alloy plate according to any one of the above items 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
前項(1)に記載の発明によれば、化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有する板厚が3mm≦板厚≦9mmのAl−Mg−Si系合金板となしうる。 According to the invention described in the above item (1), the chemical composition is as follows: Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, and Cu: 0%. 0.5% by mass or less, and further contains at least one kind of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and unavoidable impurities. .2% yield strength (MPa) divided by tensile strength (MPa) is large, and an Al—Mg—Si alloy plate having a fiber structure with high conductivity and a thickness of 3 mm ≦ plate thickness ≦ 9 mm can be formed. .
前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金板となしうる。 According to the invention described in the above item (2), since Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less, the tensile strength is high and the 0.2% proof stress (MPa) ) By the tensile strength (MPa) is large, and an Al—Mg—Si alloy plate having a fiber structure with high conductivity can be obtained.
前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金板となしうる。 According to the invention described in the above item (3), Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05% by mass or less. A value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa) is large, and an Al-Mg-Si alloy plate having a fiber structure with high conductivity can be obtained.
前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金板となしうる。 According to the invention described in the above item (4), Ag as an impurity is regulated to 0.05% by mass or less, so that the tensile strength is strong, and the 0.2% proof stress (MPa) is changed to the tensile strength (MPa). ), The Al—Mg—Si alloy plate having a fiber structure with high conductivity can be obtained.
前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金板となしうる。 According to the invention described in the above item (5), since the total content of the rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength is strong and the 0.2% proof stress (MPa) is reduced. An Al-Mg-Si-based alloy plate having a large value divided by the tensile strength (MPa) and having a fiber structure with high conductivity can be obtained.
本願発明者は、熱間圧延、冷間圧延を順次実施するAl−Mg−Si系合金板の製造方法において、熱間圧延上がりの合金板の表面温度を所定の温度以下とすることで、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、高い導電率と高い強度を有するAl−Mg−Si系合金板が得られることを見出し本発明に至った。 The inventor of the present application has set the surface temperature of a hot-rolled alloy sheet to a predetermined temperature or less in a method for producing an Al-Mg-Si alloy sheet in which hot rolling and cold rolling are sequentially performed. The present invention was found that a value obtained by dividing the .2% proof stress (MPa) by the tensile strength (MPa) was large, and an Al—Mg—Si alloy plate having high conductivity and high strength was obtained.
以下に、本願のAl−Mg−Si系合金板について詳細に説明する。 Hereinafter, the Al-Mg-Si-based alloy plate of the present application will be described in detail.
本願のAl−Mg−Si系合金板の組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。 In the composition of the Al-Mg-Si alloy plate of the present invention, the purpose of addition of each element and the reason for limiting the content are as follows.
MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は0.45質量%以上0.9質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for the development of strength, and the content of each is set to 0.2% by mass to 0.8% by mass of Si, and 0.3% by mass to 1% by mass of Mg. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, when the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases, the productivity decreases, and the formability of the obtained aluminum plate is poor. Become. The Si content is preferably from 0.2% by mass to 0.6% by mass, more preferably from 0.32% by mass to 0.60% by mass. The Mg content is preferably from 0.45 mass% to 0.9 mass%, more preferably from 0.45 mass% to 0.55 mass%.
FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが好ましい。 Fe and Cu are necessary components for molding, but if they are contained in large amounts, the corrosion resistance is reduced. In the present application, the Fe content and the Cu content are each regulated to 0.5% by mass or less. The Fe content is preferably regulated to 0.35% by mass or less, and more preferably 0.1% to 0.25% by mass. The Cu content is preferably 0.1% by mass or less.
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、サイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。また、B含有量は0.1質量%以下が好ましく、特に0.06質量%以下が好ましい。 Ti and B are effective in reducing crystal grains and preventing solidification cracking when casting an alloy into a slab. The above effect is obtained by adding at least one of Ti and B, and both may be added. However, when contained in a large amount, a large amount of crystallized matter is generated, so that the processability, thermal conductivity and electrical conductivity of the product are reduced. The Ti content is preferably 0.1% by mass or less, more preferably 0.005% by mass or more and 0.05% by mass or less. Further, the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass or less.
また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 In addition, various impurity elements are inevitably contained in the alloy element, but Mn and Cr decrease the conductivity and conductivity, and when the content of Zn is increased, the corrosion resistance of the alloy material is reduced. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earths, and the like, but are not limited thereto. Other than the above, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth element may contain one or more kinds of elements, and may be derived from a casting raw material contained in a misch metal state. The amount is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.
次に、本願規定のAl−Mg―Si系合金板を得るための処理工程について記述する。 Next, processing steps for obtaining the Al-Mg-Si alloy plate specified in the present application will be described.
常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The melting component is adjusted by a conventional method to obtain an Al-Mg-Si alloy ingot. It is preferable to apply a homogenization treatment to the obtained alloy ingot as a step before heating before hot rolling.
前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500 ° C. or higher.
前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると共晶融解が生じるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The heating before the hot rolling is performed in order to form a uniform structure by dissolving the crystallized material, Mg, and Si in the Al-Mg-Si alloy ingot, but if the temperature is too high, eutectic melting occurs. Therefore, the heat treatment is preferably performed at 450 ° C. to 580 ° C., particularly preferably at 500 ° C. to 580 ° C.
Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After performing the homogenization treatment on the Al-Mg-Si-based alloy ingot, the ingot may be cooled and subjected to heating before hot rolling, or the homogenization treatment and the heating before hot rolling may be continuously performed, In the preferred temperature range of the homogenization treatment and the heating before hot rolling, heating may be performed at the same temperature as both the homogenization treatment and the heating before hot rolling.
鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting, before hot rolling and before heating, it is preferable to subject the ingot to face milling in order to remove an impurity layer near the surface of the ingot. The facing may be performed after the casting and before the homogenization treatment, or may be performed after the homogenization treatment and before the hot rolling and the heating.
熱間圧延前加熱後のAl−Mg―Si系合金鋳塊に熱間圧延を施す。 The hot-rolled Al-Mg-Si alloy ingot is subjected to hot rolling before heating.
熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling consists of rough hot rolling and finish hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill. And finish hot rolling is performed. In the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, finish hot rolling can be omitted.
本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl−Mg―Si系合金材を導入し1回のパスで実施される。 In the present application, the finish hot rolling is performed by introducing an Al-Mg-Si-based alloy material from one direction using a rolling mill in which one set of upper and lower work rolls or two or more sets of work rolls are continuously installed. Will be implemented in the pass.
冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl−Mg―Si系合金材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al−Mg―Si系合金材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When performing cold rolling with a coil, the Al—Mg—Si alloy material after the finish hot rolling may be wound by a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is the final pass of hot rolling, after the rough hot rolling, the Al-Mg-Si alloy material is wound by a winding device. It may be a hot-rolled coil.
粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl−Mg―Si系合金材の冷却、もしくは粗熱間圧延のパスとパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。 In the rough hot rolling, after maintaining the solid solution of Mg and Si according to the solution treatment, cooling of the Al-Mg-Si alloy material by the course of the rough hot rolling or the rough hot rolling. The effect of quenching can be obtained by the temperature drop by the pass and the forced cooling after the pass.
本願において粗熱間圧延の複数のパスのうち、パス直前Al−Mg―Si系合金材の表面温度が350℃以上470℃以下でありパスによるAl−Mg―Si系合金材の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl−Mg―Si系合金材の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl−Mg―Si系合金材の急冷が困難であるからである。 In the present application, among the plurality of passes of the rough hot rolling, the surface temperature of the Al-Mg-Si alloy material immediately before the pass is 350 ° C or more and 470 ° C or less, and the Al-Mg-Si alloy material is cooled by the pass or the pass is cooled. A path in which the average cooling rate by forced cooling after the pass is 50 ° C./min or more is referred to as a control path. The reason that the surface temperature of the Al—Mg—Si alloy material immediately before the control pass is 350 ° C. or more and 470 ° C. or less is that when it is less than 350 ° C., the effect of quenching by rapid cooling in rough hot rolling is small, and the temperature is higher than 470 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si-based alloy material rising in the pass.
上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl−Mg―Si系合金材の温度降下(℃)を要した時間(分)で除した値とする。 The average cooling rate is an Al-Mg-Si alloy from the start to the end of the control pass when the forced cooling is not performed in the control pass, and from the start to the end of the forced cooling when the forced cooling is performed after the control pass. It is the value obtained by dividing the temperature drop (° C) of the material by the required time (minutes).
制御パス後の強制冷却は、Al−Mg―Si系合金材を圧延しながら圧延後の部位に対し順次実施してもよいし、Al−Mg―Si系合金材全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 The forced cooling after the control pass may be performed sequentially on the rolled portion while rolling the Al-Mg-Si alloy material, or may be performed after rolling the entire Al-Mg-Si alloy material. Is also good. The method of forced cooling is not limited, but may be water cooling, air cooling, or use of a coolant.
前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al−Mg―Si系合金材の表面温度が470〜350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl−Mg―Si系合金材の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。 The control pass is preferably performed at least once, and may be performed a plurality of times. When a control pass is performed a plurality of times, it is possible to select whether or not to perform forced cooling after each pass. If the surface temperature of the Al-Mg-Si alloy material immediately before the pass is 470 to 350 ° C and the cooling rate is 50 ° C / min or more, the control pass can be performed a plurality of times, but with one control pass. By lowering the temperature of the Al-Mg-Si alloy material to less than 350 ° C, quenching can be performed efficiently and effectively.
本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とする。 In the present application, when the forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al-Mg-Si alloy material immediately after the final pass of the hot rolling is defined as the rough hot rolling rising temperature, When the forced cooling is performed after the final pass of the rolling, the surface temperature of the Al-Mg-Si alloy material immediately after the completion of the forced cooling is set as the rough hot rolling rising temperature.
本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl−Mg―Si系合金材の表面温度は170℃以下とすることが好ましい。 If the finish hot rolling is performed in the present application, the finish hot rolling is completed, and if the finish hot rolling is not performed, the end of the final pass of the rough hot rolling is regarded as the end of the hot rolling, and immediately after the end of the hot rolling. It is preferable that the surface temperature of the Al—Mg—Si alloy material is 170 ° C. or less.
熱間圧延終了直後の合金材の温度を170℃以下とすることにより有効な焼き入れ効果が得られる。 By setting the temperature of the alloy material immediately after hot rolling to 170 ° C. or less, an effective quenching effect can be obtained.
熱間圧延終了直後のAl−Mg―Si系合金材の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のアルミニウム板の表面温度は150℃以下が更に好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy material immediately after the completion of hot rolling is too high, the effect of quenching is insufficient, and the strength is improved even if heat treatment is performed after completion of hot rolling and before completion of cold rolling. Becomes insufficient. The surface temperature of the aluminum plate immediately after the completion of the hot rolling is more preferably 150 ° C or lower, and particularly preferably 130 ° C or lower.
なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl−Mg―Si系合金板の表面温度は280℃以下であることが好ましい。 In the case of performing the finish hot rolling after the rough hot rolling, in order to obtain a quenching effect by the pass of the finish hot rolling, the surface temperature of the Al-Mg-Si based alloy plate immediately before the finish hot rolling is The temperature is preferably 280 ° C. or lower.
また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl−Mg―Si系合金板の表面温度は280℃以下が好ましい。 Similarly, when the final pass of the rough hot rolling is not the control pass without performing the finish hot rolling, the surface temperature of the Al—Mg—Si alloy sheet immediately before the final pass of the rough hot rolling is 280 ° C. or less. preferable.
一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃であって、圧延もしくは圧延と圧延後の強制冷却により50℃/分以上の冷却速度で合金板の表面温度が170℃以下となるように制御パスを実施することが好ましい。 On the other hand, when the final pass of the rough hot rolling is the control pass without performing the finish hot rolling, the control pass is the final pass of the hot rolling, so the Al-Mg-Si system immediately before the final pass of the hot rolling is used. A control pass is performed so that the surface temperature of the alloy sheet is 470 to 350 ° C and the surface temperature of the alloy sheet is 170 ° C or less at a cooling rate of 50 ° C / min or more by rolling or forced cooling after rolling and rolling. Is preferred.
なお、本願のAl−Mg―Si系合金材の製造はコイルで行ってもよく、単板で行ってもよい。 The production of the Al—Mg—Si alloy material of the present application may be performed using a coil or a single plate.
上記の製造方法によれば、高い導電率を維持しつつ、強度を向上させた Al−Mg―Si系合金板が得られる。 According to the above-described manufacturing method, an Al-Mg-Si-based alloy plate having improved strength while maintaining high conductivity can be obtained.
本願のAl−Mg―Si系合金材は繊維組織を有する。繊維組織は塑性加工により伸ばされた金属組織である。 The Al-Mg-Si alloy material of the present application has a fiber structure. The fiber structure is a metal structure elongated by plastic working.
図1に本願のAl−Mg―Si系合金板の繊維組織のモデル図を示す。 FIG. 1 shows a model diagram of the fiber structure of the Al—Mg—Si alloy plate of the present invention.
図1に示すように、本願において、観察面の法線がAl−Mg―Si系合金板の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるように金属組織を露出させ、光学顕微鏡で観察した観察面の金属組織の加工面法線方向の粒界が3本/100μm以上であり、加工方向の長さが300μm以上の粒界が存在する金属組織を繊維組織と規定する。なお、塑性加工が圧延の場合、加工方向は圧延方向であり、加工面は圧延面であり、観察面は圧延方向に対し平行に切断した厚さ方向の断面となる。 As shown in FIG. 1, in the present application, the metal structure is exposed such that the normal line of the observation surface is perpendicular to both the processing direction vector of the Al—Mg—Si alloy plate and the normal direction vector of the processing surface. A metal structure having a grain boundary in the normal direction of the working surface of the metal structure on the observation surface observed by an optical microscope of 3 grains / 100 μm or more and a grain boundary having a length of 300 μm or more in the working direction is defined as a fiber structure. . In the case where the plastic working is rolling, the working direction is the rolling direction, the working surface is a rolled surface, and the observation surface is a cross section in the thickness direction cut parallel to the rolling direction.
金属組織を露出させる方法としては、法線がAl−Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるAl−Mg―Si系合金材の面を研磨した後、研磨面を陽極酸化処理する方法を例示できる。陽極酸化処理液はバーカー氏液(3%ホウフッ化水素酸水溶液)を好適に用いることができる。 As a method of exposing the metal structure, the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processed surface is polished. After that, a method of anodizing the polished surface can be exemplified. As the anodizing solution, Barker's solution (3% aqueous borofluoric acid solution) can be suitably used.
本願のAl−Mg―Si系合金板の導電率は50%<導電率<54%(IACS)、板厚は3mm≦板厚≦9mm、引張強さは170MPa以上と規定する。本願のAl−Mg―Si系合金材の0.2%耐力(MPa)を引張強さ(MPa)で除した値は、0.91以上1.00以下と規定する。本願規定の0.2%耐力(MPa)を引張強さ(MPa)で除した値および引張強さを満足し、繊維組織を有するAl−Mg―Si系合金板となる。0.2%耐力(MPa)を引張強さ(MPa)で除した値は、更に0.92以上1.00以下、特に0.93以上1.00以下が好ましい。 The conductivity of the Al—Mg—Si alloy plate of the present application is specified as 50% <conductivity <54% (IACS), the plate thickness is 3 mm ≦ the plate thickness ≦ 9 mm, and the tensile strength is 170 MPa or more. The value obtained by dividing the 0.2% proof stress (MPa) of the Al-Mg-Si alloy material of the present application by the tensile strength (MPa) is specified to be 0.91 or more and 1.00 or less. An Al—Mg—Si alloy sheet having a fiber structure that satisfies the value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa) and the tensile strength specified in the present application is obtained. The value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa) is more preferably 0.92 or more and 1.00 or less, particularly preferably 0.93 or more and 1.00 or less.
以下に本発明の実施例および比較例を示す。 Hereinafter, examples and comparative examples of the present invention will be described.
表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。
[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃で厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by DC casting. In addition, for the ingot of chemical composition No. 20 containing rare earth, a raw material containing misch metal was used for casting.
[Example 1]
The aluminum alloy slab having the chemical composition No. 1 in Table 1 was subjected to facing. Next, the alloy slab after the face milling was subjected to a homogenization treatment at 570 ° C. for 3 hours in a heating furnace, and then the temperature was changed in the same furnace to perform pre-heating at 540 ° C. for 4 hours before hot rolling. After heating before hot rolling, the slab at 540 ° C. was taken out of the heating furnace, and rough hot rolling was started. After the thickness of the alloy sheet during the rough hot rolling becomes 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from an alloy sheet temperature of 451 ° C. immediately before the pass, and An alloy plate having a thickness of 12 mm was formed at a temperature of 222 ° C. after the hot rolling. In the final pass of the rough hot rolling, the alloy plate was moved while being rolled, and forced cooling was performed by water cooling in which water was sprayed onto the alloy plate sequentially from above and below the rolled alloy plate.
粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。 After the rough hot rolling, the alloy sheet was subjected to finish hot rolling from a temperature immediately before the finish hot rolling of 220 ° C. to obtain an alloy sheet having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C.
[実施例2〜32、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表5に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。
[Examples 2 to 32, Comparative Examples 1 to 6]
After subjecting the aluminum alloy slab shown in Table 1 to beveling, treatment was performed under the conditions shown in Tables 2 to 5 to obtain an aluminum alloy plate. In all the examples and comparative examples, the homogenization treatment and the heating before hot rolling were continuously performed in the same furnace as in Example 1, and the forced cooling after the final pass of the rough hot rolling was performed while rolling. Either water cooling, in which the alloy sheet was moved and water was sprayed onto the alloy sheet sequentially from above and below the alloy sheet after rolling, or air cooling, in which blast cooling was performed after completion of the final pass of the rough hot rolling, was selected.
実施例18では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 18, the final pass of the rough hot rolling was the final pass of the hot rolling, and the finishing hot rolling was not performed.
比較例1および比較例2では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例1および比較例2において、冷間圧延率は溶体化処理前後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Examples 1 and 2, a solution treatment was performed in which a heat treatment was performed at 550 ° C. for 1 minute during cold rolling and then cooled at a rate of 5 ° C./sec or more. In Comparative Example 1 and Comparative Example 2, the cold rolling reduction is the total rolling reduction of the cold rolling before and after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. Was carried out so that the cold-rolling ratio of the sample was 30%.
得られた合金板の引張強さ、0.2%耐力、導電率、繊維組織を有するか否かを以下の方法により評価した。 The tensile strength, 0.2% proof stress, electrical conductivity, and whether or not the obtained alloy sheet had a fiber structure were evaluated by the following methods.
引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 The tensile strength and 0.2% proof stress of a JIS No. 5 test piece were measured at room temperature by a conventional method.
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was determined as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 -2 μΩm) adopted internationally was taken as 100% IACS.
実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl−Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。 In Examples and Comparative Examples, when exposing a metal structure of a cross section of an Al-Mg-Si based alloy plate in a thickness direction cut in parallel to a rolling direction, a normal to a rolling surface of the metal structure observed by an optical microscope The metal structure in which the number of grain boundaries in the direction was 3/100 μm or more and the length of the rolling direction was 300 μm or more was defined as a fiber structure.
金属組織を露出させる方法としては、Al−Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。 As a method of exposing the metal structure, a cross section of an Al-Mg-Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buff polishing and finish polishing, and then washed with water and dried. Further, a method of performing anodizing treatment in Barker's solution (3% aqueous borofluoric acid solution) at a bath temperature of 28 ° C., an applied voltage of 30 V, and an applied time of 90 seconds was applied.
引張強さ、0.2%耐力、0.2%耐力(MPa)を引張強さ(MPa)で除した値、導電率、および加工性の評価結果、およびAl−Mg―Si系合金板が繊維組織を有するか否かを表6および表7に示す。 The tensile strength, 0.2% proof stress, the value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa), the evaluation results of the electrical conductivity and workability, and the Al-Mg-Si based alloy plate Tables 6 and 7 show whether or not they have a fiber structure.
各実施例は、いずれも本願規定の化学組成、引張強さ、0.2%耐力(MPa)を引張強さ(MPa)で除した値、導電率、及び板厚を満足し、繊維組織を有するAl−Mg−Si系合金板であり加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例1および比較例2は繊維組織を有さず導電率が実施例に劣り、化学組成が本願規定範囲を満足しない比較例3〜比較例6は、引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。 Each of the examples satisfies the chemical composition, tensile strength, value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa), electrical conductivity, and plate thickness, and the fiber structure of each of the Examples Al-Mg-Si alloy plate with good workability. On the other hand, Comparative Examples 1 and 2 in which the solution treatment was performed during the cold rolling had no fiber structure and conductivity was inferior to those of Examples, and Comparative Examples 3 to 3 in which the chemical composition did not satisfy the range specified in the present application. In Example 6, at least one of the tensile strength and the electrical conductivity is inferior to the examples, and some of them are inferior in workability.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018161472A JP7262947B2 (en) | 2018-08-30 | 2018-08-30 | Al-Mg-Si alloy plate |
CN201910787655.0A CN110872665B (en) | 2018-08-30 | 2019-08-26 | Al-Mg-Si alloy plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018161472A JP7262947B2 (en) | 2018-08-30 | 2018-08-30 | Al-Mg-Si alloy plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020033607A true JP2020033607A (en) | 2020-03-05 |
JP7262947B2 JP7262947B2 (en) | 2023-04-24 |
Family
ID=69667166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018161472A Active JP7262947B2 (en) | 2018-08-30 | 2018-08-30 | Al-Mg-Si alloy plate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7262947B2 (en) |
CN (1) | CN110872665B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113493877A (en) * | 2020-03-18 | 2021-10-12 | 郭涛 | Aluminum alloy for producing wind power tower cylinder ladder stand stepping stick |
CN111560548A (en) * | 2020-06-01 | 2020-08-21 | 凯米特新材料科技有限公司 | High-precision high-strength light aluminum alloy section for high-speed rail and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015057513A (en) * | 2013-08-09 | 2015-03-26 | 株式会社神戸製鋼所 | Aluminum alloy sheet for bus bar and manufacturing method thereof |
JP2015124393A (en) * | 2013-12-25 | 2015-07-06 | 三菱アルミニウム株式会社 | Aluminum alloy material for conductive material and production method thereof |
JP2017179457A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY MATERIAL |
JP2017179449A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
JP2020033606A (en) * | 2018-08-30 | 2020-03-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003074750A1 (en) * | 2002-03-01 | 2003-09-12 | Showa Denko K.K. | PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL |
JP5055881B2 (en) * | 2006-08-02 | 2012-10-24 | 日本軽金属株式会社 | Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material |
CN103119184B (en) * | 2010-09-08 | 2015-08-05 | 美铝公司 | The 6XXX aluminium alloy improved and production method thereof |
JP5925667B2 (en) * | 2012-11-19 | 2016-05-25 | 株式会社神戸製鋼所 | Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof |
CN103060633A (en) * | 2012-12-28 | 2013-04-24 | 福建省闽发铝业股份有限公司 | A manufacturing method for an aluminum alloy with high conductivity |
CN105008566B (en) * | 2013-02-25 | 2017-07-25 | 株式会社Uacj | Tank body aluminium alloy plate and its manufacture method |
JP6462662B2 (en) * | 2014-03-06 | 2019-01-30 | 古河電気工業株式会社 | Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method |
CN105420556B (en) * | 2015-11-19 | 2017-08-18 | 国家电网公司 | Extra-high voltage aluminium alloy conductor |
JP6112437B1 (en) * | 2016-10-31 | 2017-04-12 | 住友電気工業株式会社 | Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal |
CN107043878B (en) * | 2017-05-10 | 2018-06-29 | 广东伟业铝厂集团有限公司 | Aluminum alloy materials and its production technology, the electric conductor of high-strength high-conductivity |
-
2018
- 2018-08-30 JP JP2018161472A patent/JP7262947B2/en active Active
-
2019
- 2019-08-26 CN CN201910787655.0A patent/CN110872665B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015057513A (en) * | 2013-08-09 | 2015-03-26 | 株式会社神戸製鋼所 | Aluminum alloy sheet for bus bar and manufacturing method thereof |
JP2015124393A (en) * | 2013-12-25 | 2015-07-06 | 三菱アルミニウム株式会社 | Aluminum alloy material for conductive material and production method thereof |
JP2017179457A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | Al-Mg-Si-BASED ALLOY MATERIAL |
JP2017179449A (en) * | 2016-03-30 | 2017-10-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
JP2020033606A (en) * | 2018-08-30 | 2020-03-05 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
Also Published As
Publication number | Publication date |
---|---|
CN110872665B (en) | 2022-03-25 |
CN110872665A (en) | 2020-03-10 |
JP7262947B2 (en) | 2023-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108699641B (en) | Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet | |
JP2017179457A (en) | Al-Mg-Si-BASED ALLOY MATERIAL | |
JP2020033605A (en) | Al-Mg-Si-BASED ALLOY SHEET | |
JP6774196B2 (en) | Al-Mg-Si based alloy material | |
JP6695725B2 (en) | Al-Mg-Si alloy plate | |
JP7442304B2 (en) | Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method | |
JP2017179454A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP6774199B2 (en) | Manufacturing method of Al-Mg-Si based alloy plate | |
JP6718276B2 (en) | Method for manufacturing Al-Mg-Si alloy plate | |
JP2020033604A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP7262947B2 (en) | Al-Mg-Si alloy plate | |
JPH0790520A (en) | Production of high-strength cu alloy sheet bar | |
JP2017179456A (en) | Al-Mg-Si-BASED ALLOY MATERIAL | |
JP2017179452A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP6774197B2 (en) | Al-Mg-Si based alloy material | |
CN108884542B (en) | Method for producing Al-Mg-Si alloy sheet | |
JP2021105198A (en) | Rolled aluminum alloy material having excellent thermal conductivity, conductivity and strength and method for producing the same | |
WO2017168891A1 (en) | Method for producing al-mg-si alloy plate | |
JP2017179444A (en) | Al-Mg-Si-BASED ALLOY SHEET | |
JP2020033609A (en) | Al-Mg-Si-BASED ALLOY SHEET | |
JP2020033606A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET | |
JP6774198B2 (en) | Al-Mg-Si based alloy plate | |
JP6774200B2 (en) | Manufacturing method of Al-Mg-Si based alloy plate | |
JP6718275B2 (en) | Method for manufacturing Al-Mg-Si alloy plate | |
JP2017179451A (en) | MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210520 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20211028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7262947 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |