JP6718276B2 - Method for manufacturing Al-Mg-Si alloy plate - Google Patents

Method for manufacturing Al-Mg-Si alloy plate Download PDF

Info

Publication number
JP6718276B2
JP6718276B2 JP2016067352A JP2016067352A JP6718276B2 JP 6718276 B2 JP6718276 B2 JP 6718276B2 JP 2016067352 A JP2016067352 A JP 2016067352A JP 2016067352 A JP2016067352 A JP 2016067352A JP 6718276 B2 JP6718276 B2 JP 6718276B2
Authority
JP
Japan
Prior art keywords
mass
less
alloy plate
alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016067352A
Other languages
Japanese (ja)
Other versions
JP2017179449A (en
Inventor
眞二 籠重
眞二 籠重
和章 谷口
和章 谷口
西森 秀樹
秀樹 西森
智明 山ノ井
智明 山ノ井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2016067352A priority Critical patent/JP6718276B2/en
Publication of JP2017179449A publication Critical patent/JP2017179449A/en
Application granted granted Critical
Publication of JP6718276B2 publication Critical patent/JP6718276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、Al−Mg―Si系合金板の製造方法、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg―Si系合金板の製造方法に関する。 The present invention relates to a method for producing an Al—Mg—Si alloy sheet, and particularly to a method for producing an Al—Mg—Si alloy sheet having excellent thermal conductivity, conductivity, strength and workability.
薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Heat generators such as flat panel TVs, flat panel monitors for personal computers, laptops, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed circuit boards, and internal covers. The member material to be built-in or mounted is required to have excellent heat conductivity, strength and workability for prompt heat dissipation.
JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050 and 1070 have excellent thermal conductivity but low strength. An Al-Mg alloy (5000 series alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum series alloy.
これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 On the other hand, the Al-Mg-Si alloy (6000 alloy) has good thermal conductivity and conductivity and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate having excellent conductivity and workability has been studied.
例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl−Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする、Al−Mg−Si系合金圧延板の製造方法が開示されている。 For example, in patent document 1, 0.1-0.34 mass% of Mg, 0.2-0.8 mass% of Si, 0.22-1.0 mass% of Cu are contained, and the balance contains Al and An Al-Mg-Si based alloy, which consists of unavoidable impurities and has a Si/Mg content ratio of 1.3 or more, is semi-continuously cast into an ingot having a thickness of 250 mm or more, and preheated at a temperature of 400 to 540°C. After that, hot rolling, cold rolling at a rolling reduction of 50 to 85%, and then annealing at a temperature of 140 to 280° C. are performed, which is a method for producing an Al—Mg—Si alloy rolled sheet. It is disclosed.
特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5% by mass, Mg: 0.2 to 1.5% by mass, Fe: 0.3% by mass or less, and Mn: 0.02 to 0.02% by mass. 0.15 mass%, Cr: 0.02 to 0.15% of 1 type or 2 types, and the balance regulates Al and Ti in unavoidable impurities to 0.2% or less, or Cu: 0.01 to 1 mass% or rare earth element: 0.01 to 0.2 mass% An aluminum alloy plate having a composition containing one or two is produced by continuous casting and rolling, and then cold rolling. Then, a solution treatment at 500 to 570° C. is performed, a cold rolling is further performed at a cold rolling ratio of 5 to 40%, and an aging treatment of heating to 150 to less than 190° C. is performed after the cold rolling. And a method for producing an aluminum plate excellent in heat conductivity, strength and bending workability.
特許文献3には、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるか、もしくはさらに不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されているAl−Mg−Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg―Si系合金板の製造方法が示されている。 Patent Document 3 contains Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less, Cu: 0.5% by mass or less, and Ti: 0.1% by mass or less or B: 0.1% by mass or less, and at least one of Al and unavoidable impurities, or Mn and Cr as impurities are Mn: 0.1% by mass. %, Cr: Al-Mg-Si alloy ingot regulated to 0.1% by mass or less is hot rolled, and further includes a step of cold rolling. It shows a method for producing an Al-Mg-Si alloy plate, which is characterized by performing heat treatment by holding at 200 to 400°C for 1 hour or more after hot rolling and before completion of cold rolling.
なお、特許文献3に記載のとおり、JIS1000系から7000系のアルミニウム合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 As described in Patent Document 3, in the JIS 1000 to 7000 series aluminum alloys, the thermal conductivity and the electrical conductivity show a good correlation, and an aluminum alloy plate having excellent thermal conductivity has an excellent electrical conductivity. And can be used as a conductive member material as well as a heat dissipation member material.
特開2012−62517号公報JP, 2012-62517, A 特開2007−9262号公報JP, 2007-9262, A 特開2003−321755号公報JP, 2003-321755, A
上記のとおりAl−Mg―Si系合金板の改良がなされてきたが、アルミニウム合金部材材料を用いる製品の高性能化、小型化、薄型化に伴い、高い導電率と加工性に加え従来よりも更に高い強度を有することがAl−Mg−Si系合金板に求められているのに対し、上記特許文献1、特許文献2および特許文献3記載の方法では高い導電率と加工性を維持しつつ必要な強度を得ることが困難であった。 As described above, the Al-Mg-Si alloy plate has been improved, but with the high performance, miniaturization, and thinning of products using aluminum alloy member materials, in addition to high conductivity and workability, more than before. While it is required for the Al—Mg—Si alloy plate to have higher strength, the methods described in Patent Document 1, Patent Document 2 and Patent Document 3 described above maintain high conductivity and workability. It was difficult to obtain the required strength.
本発明は、上述した技術背景に鑑み、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金板の製造方法を提供することを目的とする。 The present invention has been made in view of the above technical background, and an object of the present invention is to provide a method for producing an Al-Mg-Si alloy plate having high electrical conductivity and good workability, and further having high strength.
上記課題は、以下の手段によって解決される。
(1)Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金板の製造方法。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl−Mg−Si系合金板の製造方法。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(6)熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(7)熱処理後冷間圧延の圧延率が20%以上である前項1ないし前項6の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(8)冷間圧延後に最終焼鈍を実施する前項1ないし前項7の何れか1項に記載のAl−Mg−Si系合金板の製造方法。
(9)最終焼鈍の温度が180℃以下である前項8に記載のAl−Mg−Si系合金板の製造方法。
The above problem can be solved by the following means.
(1) Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and further Ti:0. 0.1 mass% or less or B: 0.1 mass% or less of at least one kind, and hot-rolling and cold-rolling are sequentially performed on an Al-Mg-Si alloy ingot containing the balance Al and unavoidable impurities. It is a manufacturing method of an alloy plate, Comprising: It is a manufacturing method of an Al-Mg-Si type alloy plate which heat-processes after completion|finish of hot rolling and before completion of cold rolling at the temperature of 120 to 200 degreeC.
(2) The method for producing an Al—Mg—Si alloy plate according to the above item 1, wherein Mn, Cr, and Zn as impurities are regulated to 0.1 mass% or less.
(3) Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are regulated to 0.05 mass% or less, respectively, of the Al-Mg-Si alloy plate according to the above 1 or 2. Production method.
(4) The method for producing an Al-Mg-Si alloy plate according to any one of the preceding items 1 to 3, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(5) The method for producing an Al-Mg-Si alloy plate according to any one of the items 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
(6) The method for producing an Al-Mg-Si alloy plate according to any one of the items 1 to 5, wherein the heat treatment is performed after the hot rolling is completed and before the cold rolling is started.
(7) The method for producing an Al-Mg-Si alloy sheet according to any one of the above items 1 to 6, wherein the rolling ratio of the cold rolling after the heat treatment is 20% or more.
(8) The method for producing an Al-Mg-Si alloy sheet according to any one of the items 1 to 7, wherein final annealing is performed after cold rolling.
(9) The method for producing an Al-Mg-Si alloy sheet according to the above item 8, wherein the temperature of the final annealing is 180°C or lower.
前項(1)に記載の発明によれば、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl−Mg−Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (1), Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass. It contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and is hot in an Al-Mg-Si alloy ingot containing the balance Al and unavoidable impurities. A method for manufacturing an alloy sheet in which rolling and cold rolling are sequentially carried out, wherein heat treatment is performed at a temperature of 120°C or higher and lower than 200°C after completion of hot rolling and before completion of cold rolling. By hardening and improving conductivity, and work hardening and improving workability by cold rolling, it is possible to manufacture an Al-Mg-Si alloy plate exhibiting high tensile strength and conductivity and good workability.
前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (2), since Mn, Cr, and Zn as impurities are regulated to 0.1% by mass or less, respectively, the tensile strength and the electrical conductivity show high values, and the workability is high. A good Al-Mg-Si alloy plate can be manufactured.
前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (3), since Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05% by mass or less, respectively, tensile strength and conductivity Is high and the workability is good, and an Al-Mg-Si alloy plate can be manufactured.
前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above paragraph (4), since Ag as an impurity is regulated to 0.05% by mass or less, Al—Mg— having a high tensile strength and a high conductivity and good workability. A Si-based alloy plate can be manufactured.
前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above paragraph (5), since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength and the conductivity are high and the workability is good. It is possible to manufacture various Al-Mg-Si alloy plates.
前項(6)に記載の発明によれば、熱処理を熱間圧延終了後であって冷間圧延の開始前に実施するため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above item (6), since the heat treatment is performed after the hot rolling is completed and before the cold rolling is started, the age hardening and the electric conductivity improvement during the heat treatment, and the work hardening by the cold rolling are performed. By improving the workability, it is possible to manufacture an Al-Mg-Si alloy plate having high tensile strength and high conductivity and good workability.
前項(7)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl−Mg−Si系合金板の強度を向上させるとともに良好な加工性を得ることができる。 According to the invention described in the above item (7), since the rolling ratio of the cold rolling after the heat treatment is 20% or more, the strength of the Al-Mg-Si alloy plate is improved by the cold rolling and good working is performed. You can get sex.
前項(8)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、Al−Mg−Si系合金板の加工性が良好なものとなる。 According to the invention described in the above item (8), since the final annealing is performed after cold rolling, the workability of the Al-Mg-Si alloy plate becomes good.
前項(9)に記載の発明によれば、最終焼鈍の温度が180℃以下であるため、引張強さおよび導電率が高い値を示し加工性が良好なAl−Mg−Si系合金板を製造することができる。 According to the invention described in the above paragraph (9), since the temperature of the final annealing is 180° C. or lower, an Al—Mg—Si alloy plate exhibiting high tensile strength and high conductivity and good workability is manufactured. can do.
本願発明者は、熱間圧延、冷間圧延を順次施するAl−Mg−Si系合金板の製造方法において、熱間圧延上がりの合金板の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金板が得られることを見出し本願の発明に至った。 In the method for producing an Al-Mg-Si alloy sheet in which hot rolling and cold rolling are sequentially performed, the present inventor sets the surface temperature of the alloy sheet after hot rolling to a predetermined temperature or lower, and By performing a heat treatment as an aging treatment after the completion of rolling and before the completion of cold rolling, an Al-Mg-Si alloy plate having high electrical conductivity and good workability as well as higher strength can be obtained. This has led to the invention of the present application.
以下に、本願のAl−Mg−Si系合金板の製造方法について詳細に説明する。 Below, the manufacturing method of the Al-Mg-Si type|system|group alloy plate of this application is demonstrated in detail.
本願のAl−Mg−Si系合金組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。 In the Al—Mg—Si alloy composition of the present application, the purpose of adding each element and the reasons for limiting the content are as follows.
MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は0.45質量%以上0.9質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for developing strength, and the respective contents are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. If the Si content is less than 0.2 mass% or the Mg content is less than 0.3 mass%, sufficient strength cannot be obtained. On the other hand, when the Si content exceeds 0.8 mass% and the Mg content exceeds 1 mass %, the rolling load in the hot rolling increases, the productivity decreases, and the formability of the obtained aluminum alloy sheet also increases. Deteriorate. The Si content is preferably 0.2% by mass or more and 0.6% by mass or less, and more preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is preferably 0.45 mass% or more and 0.9 mass% or less, more preferably 0.45 mass% or more and 0.55 mass% or less.
FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが好ましい。 Fe and Cu are necessary components for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are both regulated to 0.5 mass% or less. The Fe content is preferably regulated to 0.35% by mass or less, and more preferably 0.1% by mass or more and 0.25% by mass or less. The Cu content is preferably 0.1% by mass or less.
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。 Ti and B have the effect of refining the crystal grains and preventing solidification cracking when the alloy is cast into a slab. The effect is obtained by adding at least one of Ti and B, and both may be added. However, when contained in a large amount, many crystallized substances having large size are generated, and thus the workability, thermal conductivity and electrical conductivity of the product are lowered. The Ti content is preferably 0.1 mass% or less, more preferably 0.005 mass% or more and 0.05 mass% or less.
また、B含有量は0.1質量%以下が好ましく、特に0.06質量%が好ましい。 Further, the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass.
また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 Further, although various impurity elements are unavoidably contained in the alloy element, Mn and Cr reduce conductivity and conductivity, and Zn is less contained because the alloy content decreases in corrosion resistance as the content increases. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, and rare earths, but are not limited to these, and rare earth elements among these other impurity elements are included. Other than the above, the content of each element is preferably 0.05% by mass or less. Among the above-mentioned other impurity elements, the rare earth element may contain one or more elements, and may be derived from the casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.
次に、本願規定のAl−Mg―Si系合金材を得るための処理工程について記述する。 Next, the processing steps for obtaining the Al-Mg-Si based alloy material specified in the present application will be described.
常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The melting components are adjusted by a conventional method to obtain an Al-Mg-Si alloy ingot. It is preferable that the obtained alloy ingot is subjected to homogenization treatment as a step before heating before hot rolling.
前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500° C. or higher.
前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The pre-hot-rolling heating is carried out in order to form a uniform structure by solidifying the crystallized substances and Mg and Si in the Al-Mg-Si alloy ingot, but if the temperature is too high, a part of It is preferable to carry out at 450° C. or higher and 580° C. or lower, and particularly preferably 500° C. or higher and 580° C. or lower, as there is a possibility that specific melting will occur.
Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After performing homogenization treatment on the Al-Mg-Si alloy ingot, cooling may be performed before hot rolling, or homogenization treatment and heating before hot rolling may be performed continuously, The homogenization treatment and the pre-hot rolling heating may be performed at the same temperature in the preferable temperature range of the homogenization treatment and the hot rolling pre-heating.
鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均均質化処理であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting, before hot rolling and before heating, it is preferable to chamfer the ingot to remove the impurity layer near the surface of the ingot. The chamfering may be carried out after casting and after homogenization treatment, or after homogenization treatment and before heating before hot rolling.
本願において熱間圧延終了直後のAl−Mg―Si系合金板の表面温度は170℃以下であることが好ましい。熱間圧延終了直後の合金板の温度を170℃以下とすることにより焼き入れ効果が高められ、その後の熱処理時により時効硬化するとともに導電率が向上する。 In the present application, the surface temperature of the Al—Mg—Si alloy plate immediately after the hot rolling is preferably 170° C. or lower. By setting the temperature of the alloy sheet immediately after the hot rolling to 170° C. or lower, the quenching effect is enhanced, and the subsequent heat treatment causes age hardening and electrical conductivity improvement.
熱間圧延直後のAl−Mg―Si系合金板の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度が向上し難くなる。熱間圧延終了直後のアルミニウム板の表面温度は更に150℃以下が好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy plate immediately after hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after completion of hot rolling and before completion of cold rolling. It will be difficult. The surface temperature of the aluminum plate immediately after the completion of hot rolling is preferably 150°C or lower, and particularly preferably 130°C or lower.
熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板に熱処理を施し、時効硬化させるとともに導電率を向上させる。 After completion of hot rolling and before completion of cold rolling, the Al—Mg—Si alloy plate is heat-treated to age-harden and improve conductivity.
本願において熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金板への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施する。前記熱処理の温度は130℃以上190℃以下が好ましく、更に140℃以上180℃以下が好ましい。 In the present application, the heat treatment of the Al—Mg—Si alloy plate after the completion of hot rolling and before the completion of cold rolling is performed at a temperature of 120° C. or higher and lower than 200° C. in order to obtain the effects of age hardening and conductivity improvement. The temperature of the heat treatment is preferably 130°C or higher and 190°C or lower, more preferably 140°C or higher and 180°C or lower.
前記熱間圧延終了後冷間圧延終了前において120℃以上200℃未満の温度で実施するAl−Mg―Si系合金板の熱処理の時間は特に限定されないが、時効硬化および導電率向上の効果が得られるように所定の温度で時間を調節すればよく、例えば、1〜12時間の範囲で時間を調節して熱処理を実施すればよい。 The time for heat treatment of the Al-Mg-Si alloy plate to be carried out at a temperature of 120°C or higher and lower than 200°C after the end of hot rolling and before the end of cold rolling is not particularly limited, but the effects of age hardening and conductivity improvement are obtained. The time may be adjusted at a predetermined temperature so as to obtain the heat treatment, and for example, the heat treatment may be performed by adjusting the time in the range of 1 to 12 hours.
前記熱処理の後、冷間圧延を実施することにより加工硬化し強度が更に向上する。 After the heat treatment, cold rolling is performed to work-harden and further improve the strength.
前記熱処理は時効硬化させたAl−Mg―Si系合金板の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。 The heat treatment is preferably performed after the hot rolling and before the cold rolling in order to enhance the strength improving effect of the age-hardened Al-Mg-Si alloy sheet by the cold rolling.
前記熱処理後の冷間圧延により所定の厚さのAl−Mg―Si系合金板とする。熱処理後の冷間圧延は強度向上と加工性の改善の為20%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl−Mg―Si系合金板の圧延率は更に30%以上が好ましく、特に60%以上が好ましい。 After the heat treatment, cold rolling is performed to obtain an Al-Mg-Si alloy plate having a predetermined thickness. Cold rolling after heat treatment is preferably carried out at a rolling rate of 20% or more in order to improve strength and workability. The rolling rate of the Al—Mg—Si alloy plate by cold rolling after the heat treatment is more preferably 30% or more, and particularly preferably 60% or more.
冷間圧延後のAl−Mg―Si系合金板に必要に応じて洗浄を実施しても良い。 The Al—Mg—Si alloy plate after cold rolling may be washed as necessary.
Al−Mg―Si系合金板の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl−Mg―Si系合金板の強度が低くなりすぎないようにする為に180℃以下で実施することが好ましく、更に160℃以下、特に140℃以下で実施することが好ましい。 When the workability of the Al-Mg-Si alloy plate is further emphasized, final annealing may be performed after cold rolling. The final annealing is preferably performed at 180° C. or less, more preferably 160° C. or less, and particularly preferably 140° C. or less so that the strength of the Al—Mg—Si alloy plate does not become too low.
前記180℃以下の温度で実施するAl−Mg―Si系合金板の最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1〜10時間の範囲で最終焼鈍の温度により選択すれば良い。 The time for the final annealing of the Al-Mg-Si alloy plate to be carried out at a temperature of 180°C or lower may be adjusted so that the required workability and strength can be obtained. For example, the final annealing is performed in the range of 1 to 10 hours. It may be selected according to the temperature.
なお、本願のAl−Mg―Si系合金板の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程で合金板を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。 The Al—Mg—Si alloy plate of the present invention may be manufactured using a coil or a single plate. Further, the alloy sheet may be cut in any step after the cold rolling and the step after cutting may be performed as a single sheet, or slits may be formed depending on the application.
以下に本発明の実施例および比較例を示す。 Examples and comparative examples of the present invention will be shown below.
表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。 Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method. As for the ingot of chemical composition number 20 containing rare earth, a raw material containing misch metal was used for casting.
[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で560℃6hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃5hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を実施し、厚さ7.0mmの合金板を得た。熱間圧延終了直後の合金板の温度は111℃であった。熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the alloy slab after the chamfering was subjected to a homogenizing treatment at 560° C. for 6 hours in a heating furnace, and then the temperature was changed in the same furnace to perform heating at 540° C. for 5 hours before hot rolling. After heating before hot rolling, the slab at 540° C. was taken out of the heating furnace, and rough hot rolling was performed to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the hot rolling was 111°C. The alloy plate after hot rolling was heat-treated at 170° C. for 5 hours, and then cold rolled at a rolling ratio of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
[実施例2〜41、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2 to 41, Comparative Examples 1 to 6]
After the aluminum alloy slabs shown in Table 1 were chamfered, they were treated under the conditions shown in Tables 2 to 6 to obtain aluminum alloy plates. As in Example 1, the homogenization treatment and the heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples. Further, in some examples, final annealing was performed after cold rolling.
得られた合金板の引張強さ、導電率、加工性を以下の方法により評価した。 The tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
引張強さは、JIS5号試験片について、常温で常法により測定した。 The tensile strength of JIS No. 5 test piece was measured at room temperature by a conventional method.
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10−2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was determined as a relative value (%IACS) when the electrical conductivity of internationally adopted annealing standard annealed copper (volume low efficiency 1.7241×10 −2 μΩm) was 100%IACS.
加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。
引張強さ、導電率、および加工性の評価結果を表2〜表7に示す。
As for workability, the bending angle is 90°, the inner thickness of each alloy plate is the bending inner radius when the alloy plate thickness is 0.4 mm or more, and the inner bending radius is when the alloy plate thickness is less than 0.4 mm. The radius was set to 0, and the bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was implemented, and the thing which did not crack was evaluated as (circle), and the thing which cracked was evaluated as x.
Tables 2 to 7 show the evaluation results of tensile strength, conductivity, and workability.
本願規定の化学組成を有し、熱間圧延終了後冷間圧延終了前の熱処理温度が120℃以上200℃未満の範囲内である実施例では、引張強さおよび導電率が高い値を示し加工性も良好であるのに対し、本願規定の化学組成もしくは熱間圧延終了後冷間圧延終了前の熱処理温度の少なくともどちらかが本願規定範囲を満足しない比較例は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。
In the examples having the chemical composition specified in the present application and the heat treatment temperature after the end of hot rolling and before the end of cold rolling are within the range of 120°C or higher and lower than 200°C, the tensile strength and the electrical conductivity show high values. In contrast, the comparative example in which at least one of the chemical composition specified in the present application or the heat treatment temperature after the hot rolling and before the end of the cold rolling does not satisfy the specified range of the present application is at least the tensile strength or the electrical conductivity. Some of them are inferior to the examples, and some are inferior in workability.

Claims (9)

  1. Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなる鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、熱間圧延終了直後の合金板の表面温度を170℃以下とし、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl−Mg−Si系合金板の製造方法。 Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and Ti: 0.1% by mass. % or less, or B: containing 0.1 wt% or less of at least one, hot rolled to ingot the balance being Al and unavoidable impurities, a process for the preparation of the alloy plate for sequentially carrying out the cold rolling, heat The surface temperature of the alloy plate immediately after the completion of hot rolling is 170° C. or lower, and the heat treatment is performed at a temperature of 120° C. or higher and lower than 200° C. after completion of hot rolling and before completion of cold rolling. Manufacturing method.
  2. 不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項1に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 1, wherein Mn, Cr, and Zn as impurities are regulated to 0.1% by mass or less.
  3. 不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項1または請求項2に記載のAl−Mg−Si系合金板の製造方法。 Manufacture of an Al-Mg-Si alloy plate according to claim 1 or 2, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05% by mass or less, respectively. Method.
  4. 不純物としてのAgが0.05質量%以下に規制されている請求項1ないし請求項3の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 3, wherein Ag as an impurity is regulated to 0.05% by mass or less.
  5. 不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項1ないし請求項4の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
  6. 熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 1, wherein the heat treatment is performed after the hot rolling is completed and before the cold rolling is started.
  7. 熱処理後冷間圧延の圧延率が20%以上である請求項1ないし請求項6の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 1 to 6, wherein a rolling ratio of cold rolling after heat treatment is 20% or more.
  8. 冷間圧延後に最終焼鈍を実施する請求項1ないし請求項7の何れか1項に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 1, wherein final annealing is performed after cold rolling.
  9. 最終焼鈍の温度が180℃以下である請求項8に記載のAl−Mg−Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to claim 8, wherein the final annealing temperature is 180°C or lower.
JP2016067352A 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate Active JP6718276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067352A JP6718276B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067352A JP6718276B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Publications (2)

Publication Number Publication Date
JP2017179449A JP2017179449A (en) 2017-10-05
JP6718276B2 true JP6718276B2 (en) 2020-07-08

Family

ID=60005505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067352A Active JP6718276B2 (en) 2016-03-30 2016-03-30 Method for manufacturing Al-Mg-Si alloy plate

Country Status (1)

Country Link
JP (1) JP6718276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179451A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179451A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Also Published As

Publication number Publication date
JP2017179449A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
CN108699641B (en) Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN1086207C (en) Grain refined tin brass
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
CN112055756A (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179493A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2020033607A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168892A1 (en) Method for producing al-mg-si alloy plate
JP2017179450A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6833331B2 (en) Al-Mg-Si based alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02