JP2017179457A - Al-Mg-Si-BASED ALLOY MATERIAL - Google Patents

Al-Mg-Si-BASED ALLOY MATERIAL Download PDF

Info

Publication number
JP2017179457A
JP2017179457A JP2016067360A JP2016067360A JP2017179457A JP 2017179457 A JP2017179457 A JP 2017179457A JP 2016067360 A JP2016067360 A JP 2016067360A JP 2016067360 A JP2016067360 A JP 2016067360A JP 2017179457 A JP2017179457 A JP 2017179457A
Authority
JP
Japan
Prior art keywords
alloy
mass
less
hot rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016067360A
Other languages
Japanese (ja)
Inventor
西森 秀樹
Hideki Nishimori
秀樹 西森
眞二 籠重
Shinji Kagoshige
眞二 籠重
和章 谷口
Kazuaki Taniguchi
和章 谷口
智明 山ノ井
Tomoaki Yamanoi
智明 山ノ井
Original Assignee
昭和電工株式会社
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, Showa Denko Kk filed Critical 昭和電工株式会社
Priority to JP2016067360A priority Critical patent/JP2017179457A/en
Publication of JP2017179457A publication Critical patent/JP2017179457A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based alloy material having high strength while having high conductivity and good processability.SOLUTION: An Al-Mg-Si-based alloy material having a fiber structure consisting of the chemical components Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less and further at least one of Ti: 0.1 mass% or less and B: 0.1 mass% or less and the balance Al with inevitable impurities has a tensile strength of 170 MPa or more, a value of 0.2% bearing force divided by the tensile strength (MPa) of 0.91 to 1.00 and conductivity of 54%IACS or more.SELECTED DRAWING: Figure 1

Description

この発明は、Al−Mg―Si系合金材、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg―Si系合金材に関する。   The present invention relates to an Al—Mg—Si based alloy material, and more particularly to an Al—Mg—Si based alloy material excellent in thermal conductivity, conductivity, strength and workability.
薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。   Heating elements such as flat panel TVs, thin monitors for personal computers, laptop computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and internal covers In a member material to be built in or mounted, excellent thermal conductivity, strength, and workability for quickly radiating heat are required.
JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。   Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength. An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.
これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。   In contrast, Al—Mg—Si based alloys (6000 based alloys) have good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate excellent in conductivity and workability has been studied.
例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上である合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする圧延板の製造方法が開示されている。   For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An alloy consisting of unavoidable impurities and having a Si / Mg content ratio of 1.3 or more is made into an ingot having a thickness of 250 mm or more by semi-continuous casting, hot-rolled through preheating at a temperature of 400 to 540 ° C., 50 A method for producing a rolled sheet is disclosed, which is characterized by annealing at a temperature of 140 to 280 ° C. after cold rolling at a reduction rate of ˜85%.
特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム合金板の製造方法が記載されている。   Patent Document 2 contains Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Fe: 0.3 mass% or less, and Mn: 0.02 to 0.15% by mass, Cr: 0.02 to 0.15% of 1 type or 2 types, and the balance of Al and Ti in unavoidable impurities is restricted to 0.2% or less, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and then cold rolled. Then, a solution treatment at 500 to 570 ° C. is performed, followed by further cold rolling at a cold rolling rate of 5 to 40%, and an aging treatment for heating to 150 to 190 ° C. after the cold rolling. Made of aluminum alloy plate with excellent thermal conductivity, strength and bending workability The method has been described.
特許文献3には、Al−Mg―Si系合金鋳塊を均質化処理し、熱間粗圧延および熱間仕上げ圧延した後に冷間圧延した合金板を所要形状に加工して製造された放熱部材であって、Si:0.2〜0.8wt%、Mg:0.3〜0.9wt%、Fe:0.35wt%以下、Cu:0.20wt%以下を含有し、残部Alおよび不可避不純物からなることを特徴とするアルミニウム放熱部材が開示されている。   Patent Document 3 discloses a heat radiating member manufactured by homogenizing an Al—Mg—Si alloy ingot, processing a hot rough rolling and a hot finish rolling, and then processing a cold rolled alloy plate into a required shape. Si: 0.2-0.8 wt%, Mg: 0.3-0.9 wt%, Fe: 0.35 wt% or less, Cu: 0.20 wt% or less, the balance Al and inevitable impurities An aluminum heat dissipating member characterized by comprising:
なお、Al−Mg―Si系合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。   In the Al-Mg-Si based alloy, the thermal conductivity and electrical conductivity have a good correlation, and the aluminum alloy plate having excellent thermal conductivity has excellent electrical conductivity, not to mention the heat dissipation member material It can be used as a conductive member material.
特開2012−62517号公報JP 2012-62517 A 特開2007−9262号公報JP 2007-9262 A 特開2003−226628号公報JP 2003-226628 A
加工性は引張強さと耐力の関係に影響される。耐力が引張強さに比べ低い場合は、加工硬化が起こり、多段成形加工の場合は加工性が低下する。また、Al−Mg―Si系合金板の金属組織によっても加工性は変化する。   Workability is affected by the relationship between tensile strength and yield strength. When the proof stress is lower than the tensile strength, work hardening occurs, and in the case of multi-stage forming, workability decreases. In addition, the workability changes depending on the metal structure of the Al—Mg—Si based alloy plate.
しかしながら、特許文献1では、工程条件の検討が不十分であり、耐力についても検討されていない。また、特許文献1において、張強さはSiまたはCuの寄与により改善がなされたものであり、Alの次に多い元素は、SiもしくはCuであり、Mgの含有量が比較的少なく、SiおよびMgをほぼ同じ割合で含有する合金は特許文献1の請求範囲に含まれない。   However, in patent document 1, examination of process conditions is inadequate and proof stress is not examined. In Patent Document 1, the tensile strength is improved by the contribution of Si or Cu, and the element next to Al is Si or Cu, the content of Mg is relatively small, and Si and Mg Are not included in the claims of Patent Document 1.
特許文献2では、比較的高い強度が得られるものの実施例記載の導電率は低い。   In patent document 2, although the comparatively high intensity | strength is obtained, the electroconductivity as described in an Example is low.
特許文献3において、発明1は引張強さと耐力の差が小さいが熱電導度が低く、発明2では発明1より熱電導度は高いが、引張強さと耐力の差が発明1より大きい。   In Patent Document 3, Invention 1 has a small difference in tensile strength and yield strength but has low thermal conductivity. In Invention 2, although the thermal conductivity is higher than that in Invention 1, the difference in tensile strength and yield strength is larger than that of Invention 1.
また、特許文献2および特許文献3には得られたAl−Mg―Si系合金板の金属組織に関する記載がない。   Patent Document 2 and Patent Document 3 do not describe the metal structure of the obtained Al—Mg—Si based alloy plate.
上記のように、引張強さと耐力の値が近く高い導電率を有するAl−Mg―Si系合金板を得ることは非常に困難である。   As described above, it is very difficult to obtain an Al—Mg—Si alloy plate having high electrical conductivity that is close to the values of tensile strength and proof stress.
本発明は、上述した技術背景に鑑み、0.2%耐力(MPa)を引張強さ(MPa)で除した値が高く、高い導電率、良好な加工性および高い強度を有するAl−Mg−Si系合金材を提供することを目的とする。   In view of the technical background described above, the present invention has a high value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa), and has high conductivity, good workability, and high strength. It aims at providing Si system alloy material.
上記課題は、以下の手段によって解決される。
(1)化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが170MPa以上であり、0.2%耐力(MPa)を引張強さ(MPa)で除した値が0.91以上1.00以下、導電率が54%IACS以上である繊維組織を有するAl−Mg−Si系合金材。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金材。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl−Mg−Si系合金材。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金材。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金材。
(6)引張強さが200MPa以上である前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金材。
(7)引張強さが220MPa以上である前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金材。
(8)引張強さが250MPa以上である前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金材。
The above problem is solved by the following means.
(1) Chemical composition contains Si: 0.2-0.8 mass%, Mg: 0.3-1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Furthermore, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 170 MPa or more, and 0.2% proof stress (MPa ) Divided by the tensile strength (MPa), an Al—Mg—Si based alloy material having a fiber structure of 0.91 to 1.00 and a conductivity of 54% IACS or more.
(2) The Al—Mg—Si-based alloy material according to item 1, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
(3) The Al—Mg—Si-based alloy material according to item 1 or item 2, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05% by mass or less.
(4) The Al—Mg—Si based alloy material according to any one of the preceding items 1 to 3, wherein Ag as an impurity is regulated to 0.05 mass% or less.
(5) The Al—Mg—Si based alloy material according to any one of the preceding items 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(6) The Al—Mg—Si alloy material according to any one of items 1 to 5, wherein the tensile strength is 200 MPa or more.
(7) The Al—Mg—Si alloy material according to any one of items 1 to 5, wherein the tensile strength is 220 MPa or more.
(8) The Al—Mg—Si alloy material according to any one of items 1 to 5, wherein the tensile strength is 250 MPa or more.
前項(1)に記載の発明によれば、化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (1), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 0.5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, consisting of the balance Al and inevitable impurities, having a high tensile strength, 0 A value obtained by dividing .2% proof stress (MPa) by tensile strength (MPa) is large, and an Al-Mg-Si alloy material having a fiber structure with high conductivity can be obtained.
前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (2), since Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less, the tensile strength is strong and the 0.2% proof stress (MPa ) Divided by the tensile strength (MPa), and an Al—Mg—Si alloy material having a fiber structure with high conductivity can be obtained.
前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (3), since Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are respectively regulated to 0.05% by mass or less, the tensile strength is strong, A value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa) is large, and an Al—Mg—Si alloy material having a fiber structure with high conductivity can be obtained.
前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (4) above, since Ag as an impurity is regulated to 0.05% by mass or less, the tensile strength is strong and the 0.2% proof stress (MPa) is reduced to the tensile strength (MPa). ) Can be made an Al—Mg—Si-based alloy material having a large fiber structure with a high electrical conductivity.
前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、引張強さが強く、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、導電率が高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (5) above, since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength is strong and the 0.2% proof stress (MPa) is A value divided by the tensile strength (MPa) is large, and an Al—Mg—Si alloy material having a fiber structure with high conductivity can be obtained.
前項(6)に記載の発明によれば、引張強さが高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (6), an Al—Mg—Si alloy material having a fiber structure with high tensile strength can be obtained.
前項(7)に記載の発明によれば、引張強さが更に高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (7), an Al—Mg—Si based alloy material having a fiber structure with higher tensile strength can be obtained.
前項(8)に記載の発明によれば、引張強さが特に高い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (8), an Al—Mg—Si alloy material having a fiber structure with particularly high tensile strength can be obtained.
本願のAl−Mg―Si系合金材の繊維組織のモデル図である。It is a model figure of the fiber structure of the Al-Mg-Si type alloy material of this application.
本願発明者は、熱間圧延、冷間圧延を順次施するAl−Mg−Si系合金材の製造方法において、熱間圧延上がりの合金材の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、0.2%耐力(MPa)を引張強さ(MPa)で除した値が大きく、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金材が得られることを見出し本願の発明に至った。   The inventor of the present application, in the method for producing an Al-Mg-Si alloy material that is sequentially subjected to hot rolling and cold rolling, reduces the surface temperature of the alloy material after hot rolling to a predetermined temperature or less, By performing heat treatment as an aging treatment after the end of rolling and before the end of cold rolling, the value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa) is large, and high electrical conductivity and good It has been found that an Al—Mg—Si alloy material having higher workability and higher strength can be obtained, leading to the invention of the present application.
以下に、本願のAl−Mg−Si系合金板材について詳細に説明する。   Hereinafter, the Al—Mg—Si based alloy sheet of the present application will be described in detail.
本願のAl−Mg−Si系合金組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。   In the Al—Mg—Si based alloy composition of the present application, the purpose of adding each element and the reason for limiting the content are as follows.
MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は0.45質量%以上0.9質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。   Mg and Si are elements necessary for strength development, and the respective contents thereof are Si: 0.2 mass% to 0.8 mass%, and Mg: 0.3 mass% to 1 mass%. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate. The Si content is preferably 0.2% by mass or more and 0.6% by mass or less, and more preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is preferably 0.45 mass% or more and 0.9 mass% or less, and more preferably 0.45 mass% or more and 0.55 mass% or less.
FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが好ましい。   Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are each regulated to 0.5% by mass or less. The Fe content is preferably regulated to 0.35% by mass or less, and more preferably from 0.1% by mass to 0.25% by mass. The Cu content is preferably 0.1% by mass or less.
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。   Ti and B have the effect of reducing crystal grains and preventing solidification cracking when casting the alloy into a slab. The effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.
また、B含有量は0.1質量%以下が好ましく、特に0.06質量%が好ましい。   Further, the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass.
また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。   In addition, various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。   Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
次に、本願規定のAl−Mg―Si系合金材を得るための処理工程について記述する。   Next, processing steps for obtaining the Al—Mg—Si based alloy material defined in the present application will be described.
常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。   The dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot. The obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.
前記均質化処理は、500℃以上で行うことが好ましい。   The homogenization treatment is preferably performed at 500 ° C. or higher.
前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。   The heating before hot rolling is carried out in order to make the crystallized substance and Mg, Si dissolve in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.
Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。   The Al-Mg-Si-based alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.
鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。   It is preferable to chamfer the ingot to remove the impurity layer in the vicinity of the surface of the ingot before casting and before heating before hot rolling. The chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.
熱間圧延前加熱後のAl−Mg―Si系合金鋳塊に熱間圧延を施す。   The Al—Mg—Si alloy ingot after heating before hot rolling is hot rolled.
熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。   Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using. In the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, the finish hot rolling can be omitted.
本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl−Mg―Si系合金材を導入し1回のパスで実施される。   In the present application, finish hot rolling is performed once by introducing an Al—Mg—Si alloy material from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.
冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl−Mg―Si系合金材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al−Mg―Si系合金材を巻き取り装置にて巻き取って熱延コイルとしてもよい。   When cold rolling is performed with a coil, an Al—Mg—Si alloy material after finish hot rolling may be wound with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, the Al-Mg-Si alloy material is taken up with a winding device after the hot rolling. It may be a hot rolled coil.
粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl−Mg―Si系合金材の冷却、もしくは粗熱間圧延のパス後とパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。   In rough hot rolling, after maintaining the state in which Mg and Si are dissolved in accordance with the solution treatment, cooling of the Al-Mg-Si alloy material by a rough hot rolling pass, or rough hot rolling is performed. The quenching effect can be obtained by the temperature drop due to forced cooling after the pass and after the pass.
本願において粗熱間圧延の複数のパスのうち、パス直前のAl−Mg―Si系合金材の表面温度が350℃以上470℃以下でありパスによるAl−Mg―Si系合金材の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl−Mg―Si系合金材の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl−Mg―Si系合金材の急冷が困難であるからである。   In the present application, among the plurality of passes of rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately before the pass is 350 ° C. or more and 470 ° C. or less, and the Al—Mg—Si alloy material is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass. The reason why the surface temperature of the Al—Mg—Si based alloy material immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that the effect of quenching by rapid cooling in rough hot rolling is small below 350 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy material with a rising path.
上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl−Mg―Si系合金材の温度降下(℃)を要した時間(分)で除した値とする。   The average cooling rate is the Al-Mg-Si alloy from the start of the control pass to the end when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass. The value is obtained by dividing the temperature drop (° C) of the material by the time (minutes) required.
制御パス後の強制冷却は、Al−Mg―Si系合金材を圧延しながら圧延後の部位に対し順次実施してもよいし、Al−Mg―Si系合金材全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。   Forced cooling after the control pass may be performed sequentially on the part after rolling while rolling the Al-Mg-Si alloy material, or after rolling the entire Al-Mg-Si alloy material. Also good. The method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.
前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al−Mg―Si系合金材の表面温度が470〜350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl−Mg―Si系合金材の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。   The control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si based alloy material immediately before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed a plurality of times. By lowering the temperature of the Al—Mg—Si alloy material to less than 350 ° C., quenching can be performed efficiently and effectively.
本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とする。   In the present application, when forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al-Mg-Si alloy material immediately after the final pass of the hot rolling is set as the temperature after the rough hot rolling, When forced cooling is performed after the final pass of rolling, the surface temperature of the Al—Mg—Si alloy material immediately after the end of forced cooling is set as the temperature after rough hot rolling.
本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl−Mg―Si系合金材の表面温度は170℃以下とすることが好ましい。熱間圧延終了直後の合金材の温度を170℃以下とすることにより有効な焼き入れ効果が得られ、その後の熱処理時により時効硬化するとともに導電率が向上する。   In the present application, when finishing hot rolling is performed, finishing hot rolling is completed. The surface temperature of the Al—Mg—Si based alloy material is preferably 170 ° C. or less. An effective quenching effect can be obtained by setting the temperature of the alloy material immediately after the end of hot rolling to 170 ° C. or less, and age hardening can be achieved during the subsequent heat treatment, and the conductivity can be improved.
熱間圧延終了直後のAl−Mg―Si系合金材の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のアルミニウム板の表面温度は150℃以下が更に好ましく、特に130℃以下が好ましい。   If the surface temperature of the Al-Mg-Si alloy material immediately after the hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if the heat treatment is performed after the hot rolling and before the cold rolling. Is insufficient. The surface temperature of the aluminum plate immediately after completion of hot rolling is more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.
なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl−Mg―Si系合金板の表面温度は280℃以下であることが好ましい。   In addition, when performing finish hot rolling after rough hot rolling, the surface temperature of the Al—Mg—Si based alloy plate immediately before finish hot rolling is: It is preferable that it is 280 degrees C or less.
また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl−Mg―Si系合金板の表面温度は280℃以下が好ましい。   Similarly, when the final hot rolling is not performed and the final pass of the rough hot rolling is not the control pass, the surface temperature of the Al—Mg—Si alloy plate immediately before the final hot hot rolling pass is 280 ° C. or less. preferable.
一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃であって圧延もしくは圧延と圧延後の強制冷却により冷却速度が50℃/分以上の冷却速度で合金板の表面温度が170℃以下となるように制御パスを実施することが好ましい。   On the other hand, when final hot rolling is not performed and the final pass of rough hot rolling is a control pass, the control pass becomes the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling Control pass so that the surface temperature of the alloy plate is 470 to 350 ° C., and the surface temperature of the alloy plate is 170 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling. It is preferable to implement.
熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金材に熱処理を施し、時効硬化させるとともに導電率を向上させる。   A heat treatment is applied to the Al—Mg—Si based alloy material after the hot rolling and before the cold rolling to age-harden and improve the conductivity.
本願において熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金材への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施することが好ましい。前記熱処理の温度は130℃以上190℃以下が更に好ましく、特に140℃以上180℃以下が好ましい。   In the present application, the heat treatment of the Al—Mg—Si alloy material after the end of hot rolling and before the end of cold rolling may be performed at a temperature of 120 ° C. or more and less than 200 ° C. in order to obtain the effects of age hardening and conductivity improvement. preferable. The temperature of the heat treatment is more preferably 130 ° C. or higher and 190 ° C. or lower, and particularly preferably 140 ° C. or higher and 180 ° C. or lower.
前記熱間圧延終了後冷間圧延終了前において120℃以上200℃未満の温度で実施するAl−Mg―Si系合金材の熱処理の時間は特に限定されないが、時効硬化および導電率向上の効果が得られるように所定の温度で時間を調節すればよく、例えば、1〜12時間の範囲で時間を調節して熱処理を実施すればよい。   The time for heat treatment of the Al—Mg—Si based alloy material performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of the hot rolling and before the end of the cold rolling is not particularly limited. What is necessary is just to adjust time at predetermined temperature so that it may be obtained, for example, heat processing may be implemented by adjusting time in the range of 1 to 12 hours.
前記熱処理の後、冷間圧延を実施することにより加工硬化し強度が更に向上する。   After the heat treatment, by cold rolling, the work hardening is achieved and the strength is further improved.
前記熱処理は時効硬化させたAl−Mg―Si系合金材の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。   The heat treatment is preferably performed after the end of hot rolling and before the start of cold rolling in order to enhance the effect of improving the strength of the age-hardened Al—Mg—Si based alloy material by cold rolling.
前記熱処理後の冷間圧延により所定の厚さのAl−Mg―Si系合金材とする。熱処理後の冷間圧延は強度向上と加工性の改善の為60%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl−Mg―Si系合金材の圧延率は更に70%以上が好ましく、特に80%以上が好ましい。   The Al—Mg—Si alloy material having a predetermined thickness is obtained by cold rolling after the heat treatment. The cold rolling after the heat treatment is preferably performed at a rolling rate of 60% or more in order to improve strength and improve workability. The rolling rate of the Al—Mg—Si alloy material by cold rolling after the heat treatment is further preferably 70% or more, and particularly preferably 80% or more.
冷間圧延後のAl−Mg―Si系合金材に必要に応じて洗浄を実施しても良い。   The Al—Mg—Si alloy material after cold rolling may be cleaned as necessary.
Al−Mg―Si系合金材の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl−Mg―Si系合金材の強度が低くなりすぎないようにする為に250℃以下で実施することが好ましく、更に220℃以下、特に180℃以下で実施することが好ましい。   When the workability of the Al—Mg—Si based alloy material is further emphasized, final annealing may be performed after cold rolling. The final annealing is preferably performed at 250 ° C. or lower, more preferably 220 ° C. or lower, particularly 180 ° C. or lower in order to prevent the strength of the Al—Mg—Si based alloy material from becoming too low.
前記最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1〜10時間の範囲で最終焼鈍の温度により選択すれば良い。   What is necessary is just to adjust the time of the said last annealing so that required workability and intensity | strength may be obtained, for example, what is necessary is just to select with the temperature of final annealing in the range of 1 to 10 hours.
なお、本願のAl−Mg―Si系合金材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程でAl−Mg―Si系合金材を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。   The production of the Al—Mg—Si based alloy material of the present application may be performed by a coil or a single plate. Further, the Al—Mg—Si based alloy material may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.
上記の製造方法によれば、高い導電率を得つつ、強度を向上させることができ、高強度であるにも関わらず加工性も優れたAl−Mg―Si系合金材が得られる。   According to the above production method, an Al—Mg—Si based alloy material that can improve strength while obtaining high electrical conductivity and is excellent in workability despite being high in strength can be obtained.
本願のAl−Mg―Si系合金材は繊維組織を有する。繊維組織は塑性加工により伸ばされた金属組織である。   The Al—Mg—Si alloy material of the present application has a fiber structure. The fiber structure is a metal structure stretched by plastic working.
図1に本願のAl−Mg―Si系合金材の繊維組織のモデル図を示す。   FIG. 1 shows a model diagram of the fiber structure of the Al—Mg—Si alloy material of the present application.
図1に示すように、本願において、観察面の法線がAl−Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるように金属組織を露出させ、光学顕微鏡で観察した観察面の金属組織の加工面法線方向の粒界が3本/100μm以上であり、加工方向の長さが300μm以上の粒界が存在する金属組織を繊維組織と規定する。なお、塑性加工が圧延の場合、加工方向は圧延方向であり、加工面は圧延面であり、観察面は圧延方向に対し平行に切断した厚さ方向の断面となる。   As shown in FIG. 1, in the present application, the metal structure is exposed so that the normal of the observation surface is perpendicular to both the processing direction vector of the Al—Mg—Si alloy material and the normal direction vector of the processing surface, A metal structure in which the grain boundary in the normal direction of the processed surface of the metal structure of the observation surface observed with an optical microscope is 3 lines / 100 μm or more and the grain boundary having a length in the processing direction of 300 μm or more is defined as a fiber structure. . When the plastic processing is rolling, the processing direction is the rolling direction, the processing surface is the rolling surface, and the observation surface is a cross section in the thickness direction cut in parallel to the rolling direction.
金属組織を露出させる方法としては、法線がAl−Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるAl−Mg―Si系合金材の面を研磨した後、研磨面を陽極酸化処理する方法を例示できる。陽極酸化処理液はバーカー氏液(3%ホウフッ化水素酸水溶液)を好適に用いることができる。   As a method of exposing the metal structure, the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processing surface is polished. Then, a method of anodizing the polished surface can be exemplified. Barker's solution (3% borohydrofluoric acid aqueous solution) can be preferably used as the anodizing solution.
本願のAl−Mg―Si系合金材の導電率は54%IACS以上、引張強さは170MPa以上と規定する。引張強さは200MPa以上が好ましく、220MPa以上が更に好ましく、特に250MPa以上、280MPa以上がよりいっそう好ましい。本願のAl−Mg―Si系合金材の0.2%耐力(MPa)を引張強さ(MPa)で除した値は、0.91以上1.00以下と規定する。本願規定の0.2%耐力(MPa)を引張強さ(MPa)で除した値および引張強さを満足し、繊維組織を有することにより優れた曲げ加工性を有するAl−Mg―Si系合金材となる。0.2%耐力(MPa)を引張強さ(MPa)で除した値は、更に0.92以上1.00以下、特に0.93以上1.00以下が好ましい。   The electrical conductivity of the Al—Mg—Si based alloy material of the present application is defined as 54% IACS or more, and the tensile strength is defined as 170 MPa or more. The tensile strength is preferably 200 MPa or more, more preferably 220 MPa or more, and particularly preferably 250 MPa or more and 280 MPa or more. The value obtained by dividing the 0.2% proof stress (MPa) of the Al—Mg—Si based alloy material of the present application by the tensile strength (MPa) is defined as 0.91 or more and 1.00 or less. Al-Mg-Si based alloy which satisfies the value obtained by dividing 0.2% proof stress (MPa) by tensile strength (MPa) and tensile strength, and has excellent bending workability by having a fiber structure. Become a material. The value obtained by dividing the 0.2% proof stress (MPa) by the tensile strength (MPa) is more preferably 0.92 or more and 1.00 or less, and particularly preferably 0.93 or more and 1.00 or less.
以下に本発明の実施例および比較例を示す。   Examples of the present invention and comparative examples are shown below.
表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。   Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method. In addition, the ingot of the chemical composition number 20 containing rare earth used the raw material containing misch metal for casting.
[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C. immediately before the pass. An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。   After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
[実施例2〜44、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2-44, Comparative Examples 1-6]
After chamfering the aluminum alloy slab described in Table 1, treatment was performed under the conditions described in Tables 2 to 6 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
実施例18では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。   In Example 18, the final pass of the rough hot rolling was used as the final pass of the hot rolling, and the finish hot rolling was not performed.
比較例1および比較例2では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例1および比較例2において、冷間圧延率は溶体化処理前後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。   In Comparative Example 1 and Comparative Example 2, a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 1 and Comparative Example 2, the cold rolling rate is the total rolling rate of the cold rolling before and after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。   The tensile strength, 0.2% yield strength, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。   Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.
導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10−2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was determined as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。   As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside The bending test by the 6.3 V block method of the JIS Z 2248 metal material bending test method was carried out with the radius set to 0, and the case where no crack was generated was evaluated as ◯, and the case where the crack was generated was evaluated as ×.
実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl−Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。   In Examples and Comparative Examples, when the metal structure of the cross section of the Al-Mg-Si alloy plate in the thickness direction cut parallel to the rolling direction is exposed, the rolling surface normal of the metal structure observed with an optical microscope The metal structure in which the grain boundary in the direction is 3 lines / 100 μm or more and the grain boundary having a length in the rolling direction of 300 μm or more is defined as the fiber structure.
金属組織を露出させる方法としては、Al−Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。   As a method of exposing the metal structure, an Al-Mg-Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.
引張強さ、0.2%耐力、0.2%耐力(MPa)を引張強さ(MPa)で除した値、導電率、および加工性の評価結果、およびAl−Mg―Si系合金板が繊維組織を有するか否かを表7および表8に示す。   Tensile strength, 0.2% proof stress, 0.2% proof stress (MPa) divided by tensile strength (MPa), conductivity and workability evaluation results, and Al—Mg—Si based alloy sheet Tables 7 and 8 show whether or not they have a fiber structure.
本願規定の化学組成、引張強さ、0.2%耐力(MPa)を引張強さ(MPa)で除した値および導電率を満足し、繊維組織を有する実施例記載のAl−Mg−Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例1および比較例2は繊維組織を有さず導電率が本願実施例に劣り、化学組成が本願規定範囲を満足しない比較例3〜比較例6は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。   The Al-Mg-Si system described in the examples satisfying the chemical composition, tensile strength, 0.2% proof stress (MPa) divided by tensile strength (MPa) and electrical conductivity, and having a fiber structure. The alloy material also has good workability. On the other hand, Comparative Example 1 and Comparative Example 2 in which solution treatment was performed during the cold rolling did not have a fiber structure, the conductivity was inferior to that of the present example, and the chemical composition did not satisfy the specified range of this example. In Comparative Example 6, at least one of the tensile strength and the electrical conductivity is inferior to that of the example, and some of them are inferior in workability.

Claims (8)

  1. 化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが170MPa以上であり、0.2%耐力(MPa)を引張強さ(MPa)で除した値が0.91以上1.00以下、導電率が54%IACS以上である繊維組織を有するAl−Mg−Si系合金材。   Chemical composition contains Si: 0.2-0.8 mass%, Mg: 0.3-1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, and also Ti: Contains at least one of 0.1% by mass or less or B: 0.1% by mass or less, consists of the balance Al and inevitable impurities, has a tensile strength of 170 MPa or more, and has a tensile strength of 0.2% (MPa). An Al—Mg—Si based alloy material having a fiber structure in which a value divided by strength (MPa) is 0.91 or more and 1.00 or less and conductivity is 54% IACS or more.
  2. 不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項1に記載のAl−Mg−Si系合金材。   2. The Al—Mg—Si based alloy material according to claim 1, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
  3. 不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項1または請求項2に記載のAl−Mg−Si系合金材。   The Al—Mg—Si based alloy material according to claim 1, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05 mass% or less.
  4. 不純物としてのAgが0.05質量%以下に規制されている請求項1ないし請求項3の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 3, wherein Ag as an impurity is regulated to 0.05 mass% or less.
  5. 不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項1ないし請求項4の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 4, wherein a total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
  6. 引張強さが200MPa以上である請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 5, wherein the tensile strength is 200 MPa or more.
  7. 引張強さが220MPa以上である請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 5, wherein the tensile strength is 220 MPa or more.
  8. 引張強さが250MPa以上である請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金材。
    The Al-Mg-Si alloy material according to any one of claims 1 to 5, wherein the tensile strength is 250 MPa or more.
JP2016067360A 2016-03-30 2016-03-30 Al-Mg-Si-BASED ALLOY MATERIAL Pending JP2017179457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067360A JP2017179457A (en) 2016-03-30 2016-03-30 Al-Mg-Si-BASED ALLOY MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067360A JP2017179457A (en) 2016-03-30 2016-03-30 Al-Mg-Si-BASED ALLOY MATERIAL

Publications (1)

Publication Number Publication Date
JP2017179457A true JP2017179457A (en) 2017-10-05

Family

ID=60003724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067360A Pending JP2017179457A (en) 2016-03-30 2016-03-30 Al-Mg-Si-BASED ALLOY MATERIAL

Country Status (1)

Country Link
JP (1) JP2017179457A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
CN108546856A (en) * 2018-05-11 2018-09-18 铜陵康达铝合金制品有限责任公司 A kind of anticorrosion aluminium
CN110257677A (en) * 2019-07-23 2019-09-20 江苏威腾电力科技有限公司 A kind of novel high thermal conductivity Al-Mg-Si alloy
CN110735069A (en) * 2019-11-19 2020-01-31 国网河南省电力公司电力科学研究院 High-conductivity medium-strength all-aluminum alloy energy-saving lead and preparation method thereof
CN111560548A (en) * 2020-06-01 2020-08-21 凯米特新材料科技有限公司 High-precision high-strength light aluminum alloy section for high-speed rail and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087198A (en) * 1998-09-16 2000-03-28 Showa Alum Corp MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JP2000226628A (en) * 1999-02-04 2000-08-15 Showa Alum Corp Aluminum radiating member and its production
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2003226926A (en) * 2001-11-30 2003-08-15 Toyota Motor Corp Aluminum alloy sheet having excellent bending workability and production method thereof
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005008926A (en) * 2003-06-18 2005-01-13 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP2015124393A (en) * 2013-12-25 2015-07-06 三菱アルミニウム株式会社 Aluminum alloy material for conductive material and production method thereof
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087198A (en) * 1998-09-16 2000-03-28 Showa Alum Corp MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JP2000226628A (en) * 1999-02-04 2000-08-15 Showa Alum Corp Aluminum radiating member and its production
JP2003226926A (en) * 2001-11-30 2003-08-15 Toyota Motor Corp Aluminum alloy sheet having excellent bending workability and production method thereof
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005008926A (en) * 2003-06-18 2005-01-13 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP2015124393A (en) * 2013-12-25 2015-07-06 三菱アルミニウム株式会社 Aluminum alloy material for conductive material and production method thereof
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
アルミニウムハンドブック(第8版), JPN6019040692, 15 February 2017 (2017-02-15), pages 18, ISSN: 0004276595 *
社団法人日本アルミニウム協会, 現場で生かす金属材料シリーズ アルミニウム, JPN6016046114, 9 November 2007 (2007-11-09), pages 185 - 194, ISSN: 0004139415 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
CN108546856A (en) * 2018-05-11 2018-09-18 铜陵康达铝合金制品有限责任公司 A kind of anticorrosion aluminium
CN110257677A (en) * 2019-07-23 2019-09-20 江苏威腾电力科技有限公司 A kind of novel high thermal conductivity Al-Mg-Si alloy
CN110735069A (en) * 2019-11-19 2020-01-31 国网河南省电力公司电力科学研究院 High-conductivity medium-strength all-aluminum alloy energy-saving lead and preparation method thereof
CN110735069B (en) * 2019-11-19 2021-06-15 国网河南省电力公司电力科学研究院 High-conductivity medium-strength all-aluminum alloy energy-saving lead and preparation method thereof
CN111560548A (en) * 2020-06-01 2020-08-21 凯米特新材料科技有限公司 High-precision high-strength light aluminum alloy section for high-speed rail and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP5158910B2 (en) Copper alloy sheet and manufacturing method thereof
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6695725B2 (en) Al-Mg-Si alloy plate
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP2020033607A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2016180130A (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME, AND LEAD FRAME
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168892A1 (en) Method for producing al-mg-si alloy plate
JP2017179450A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6833331B2 (en) Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2020033606A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609