WO2017168890A1 - Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate - Google Patents

Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate Download PDF

Info

Publication number
WO2017168890A1
WO2017168890A1 PCT/JP2016/088715 JP2016088715W WO2017168890A1 WO 2017168890 A1 WO2017168890 A1 WO 2017168890A1 JP 2016088715 W JP2016088715 W JP 2016088715W WO 2017168890 A1 WO2017168890 A1 WO 2017168890A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
alloy plate
hot rolling
based alloy
Prior art date
Application number
PCT/JP2016/088715
Other languages
French (fr)
Japanese (ja)
Inventor
眞二 籠重
和章 谷口
西森 秀樹
智明 山ノ井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016067349A external-priority patent/JP6774198B2/en
Priority claimed from JP2016067350A external-priority patent/JP6833331B2/en
Priority claimed from JP2016067354A external-priority patent/JP2017179451A/en
Priority claimed from JP2016067346A external-priority patent/JP6774197B2/en
Priority claimed from JP2016067345A external-priority patent/JP6774196B2/en
Priority claimed from JP2016067353A external-priority patent/JP2017179450A/en
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201680082917.8A priority Critical patent/CN108699641B/en
Publication of WO2017168890A1 publication Critical patent/WO2017168890A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • This invention is an Al—Mg—Si based alloy material, particularly an Al—Mg—Si based alloy material excellent in thermal conductivity, conductivity, strength and workability, and excellent in thermal conductivity, conductivity, strength and workability. Further, the present invention relates to an Al—Mg—Si based alloy plate having a thickness of less than 0.9 mm and a method for producing an Al—Mg—Si based alloy plate.
  • Flat panel TVs thin monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and heating elements such as internal covers
  • excellent thermal conductivity, strength, and workability for quickly radiating heat are required.
  • Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength.
  • An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.
  • an Al—Mg—Si alloy (6000 alloy) has good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening.
  • a method for obtaining an aluminum alloy plate excellent in conductivity and workability has been studied.
  • Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, and 0.22 to 1.0% by mass of Cu, with the balance being Al and
  • An Al—Mg—Si alloy composed of inevitable impurities and having a Si / Mg content ratio of 1.3 or more is made into an ingot of thickness 250 mm or more by semi-continuous casting and preheated at a temperature of 400 to 540 ° C.
  • Patent Document 2 contains Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Fe: 0.3 mass% or less, and Mn: 0.02 to 0.15% by mass, Cr: 0.02 to 0.15% of one or two types, and the balance is Al and Ti in unavoidable impurities is regulated to 0.2% or less, or
  • An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and rolling and then cold-rolling. Next, a solution treatment at 500 to 570 ° C. is performed, followed by further cold rolling at a cold rolling rate of 5 to 40%, and an aging treatment for heating to 150 to 190 ° C. after the cold rolling.
  • a solution treatment at 500 to 570 ° C. is performed, followed by further cold rolling at a cold rolling rate of 5 to 40%, and an aging treatment for heating to 150 to 190 ° C. after the cold rolling.
  • Patent Document 3 contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and It contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and consists of the balance Al and inevitable impurities, or Mn and Cr as impurities are further Mn: 0.1% by mass %, Cr: 0.1% by mass or less of an Al—Mg—Si alloy ingot that is hot-rolled and further cold-rolled.
  • a method for producing an Al—Mg—Si alloy plate characterized in that heat treatment is performed by holding at 200 to 400 ° C. for 1 hour or longer after cold rolling until the end of cold rolling.
  • thermal conductivity and electrical conductivity have a good correlation, and an aluminum alloy plate having excellent thermal conductivity has excellent electrical conductivity. It can be used as a conductive member material as well as a heat radiating member material.
  • Al-Mg-Si alloy plates have been improved, but with the improvement in performance, size, and thickness of products using aluminum alloy member materials, in addition to high conductivity and workability, it has become more difficult than before. While the Al—Mg—Si based alloy sheet is required to have higher strength, the methods described in Patent Document 1, Patent Document 2 and Patent Document 3 maintain high conductivity and workability. It was difficult to obtain the required strength, and improvement studies on relatively thin Al—Mg—Si alloy plates were insufficient.
  • an object of the present invention is to provide an Al—Mg—Si based alloy material having high conductivity and good workability while having higher strength.
  • Another object of the present invention is to provide an Al—Mg—Si based alloy sheet having a thickness of less than 0.9 mm and having a higher strength while having high conductivity and good workability.
  • Still another object of the present invention is to provide a method for producing an Al—Mg—Si based alloy plate having higher electrical conductivity and better workability while having higher strength.
  • the chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, 2.
  • the Al—Mg—Si alloy material according to item 2 wherein Mn, Cr, Zn, and Ti as impurities are each controlled to be 0.1 mass% or less.
  • the chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, 7.
  • the Al—Mg—Si based alloy sheet according to item 6 above comprising the balance Al and inevitable impurities.
  • the chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Further, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 280 MPa or more, and the conductivity is 54% IACS or more.
  • (11) The Al—Mg—Si based alloy material according to item 10 above, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
  • the Al—Mg—Si alloy material according to any one of items 10 to 15, wherein the 0.2% proof stress is 230 MPa or more.
  • the chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Further, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 280 MPa or more, and the conductivity is 54% IACS or more.
  • the chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 24.
  • the method for producing an Al—Mg—Si-based alloy plate according to item 23, which contains 0.5% by mass or less and the balance is Al and inevitable impurities.
  • a method for producing an alloy plate wherein the surface temperature of an Al—Mg—Si alloy plate immediately after the end of hot rolling is 170 ° C. or less, and 120 ° C. or more after the end of hot rolling and before the end of cold rolling
  • a method for producing an Al—Mg—Si alloy plate, which is heat-treated at a temperature of less than 200 ° C. (34) The method for producing an Al—Mg—Si based alloy plate according to the above 33, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
  • an Al—Mg—Si alloy material having a fiber structure excellent in strength, thermal conductivity, and workability can be obtained.
  • Si 0.2 to 0.8 mass%
  • Mg 0.3 to 1 mass%
  • Fe 0.5 mass% or less
  • Cu 0.5 mass% Since it contains the following and the balance Al and inevitable impurities, it can be an Al—Mg—Si alloy material having a fiber structure excellent in strength, thermal conductivity, and workability.
  • Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1% by mass or less, and thus excellent in strength, thermal conductivity, and workability.
  • An Al—Mg—Si alloy material having a fiber structure can be obtained.
  • an Al—Mg—Si based alloy material having a strong fiber structure can be obtained.
  • an Al—Mg—Si based alloy material having a fiber structure having a higher tensile strength can be obtained.
  • an Al—Mg—Si alloy plate having a thickness of less than 0.9 mm and excellent in strength, thermal conductivity and workability can be obtained.
  • the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less. And Cu: 0.5% by mass or less, and the balance being Al and unavoidable impurities, it can be an Al—Mg—Si based alloy plate excellent in strength, thermal conductivity, and workability.
  • the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 .5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities, strength, thermal conductivity, processing Al-Mg-Si alloy material having a fiber structure with excellent properties can be obtained.
  • Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are respectively regulated to 0.05% by mass or less, strength, thermal conductivity, An Al—Mg—Si alloy material having a fiber structure excellent in workability can be obtained.
  • the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, it has a fiber structure excellent in strength, thermal conductivity, and workability.
  • An Al—Mg—Si alloy material can be formed.
  • an Al—Mg—Si based alloy material having a fiber structure having a higher tensile strength can be obtained.
  • an Al—Mg—Si alloy material having a strong proof fiber structure can be obtained.
  • the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 .5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities, strength, thermal conductivity, processing
  • An Al—Mg—Si based alloy plate having a thickness of less than 0.9 mm can be obtained.
  • Mn, Cr, and Zn as impurities are regulated to 0.1% by mass or less, respectively, so that the thickness is excellent in strength, thermal conductivity, and workability.
  • An Al—Mg—Si based alloy plate of less than 0.9 mm can be formed.
  • Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are respectively regulated to 0.05% by mass or less, strength, thermal conductivity, An Al—Mg—Si based alloy plate with excellent workability can be obtained.
  • Al—Mg—Si system is used for strength, thermal conductivity, and workability.
  • An alloy plate can be used.
  • an Al—Mg—Si based alloy sheet having both high tensile strength and yield strength can be obtained.
  • a method for producing an Al—Mg—Si alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, Since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of rolling is 170 ° C. or less, and heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C.
  • the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0
  • This is a method for producing an Al—Mg—Si alloy plate, in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot containing less than 5% by mass and comprising the balance Al and inevitable impurities. Then, the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of hot rolling is 170 ° C. or less, and heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of hot rolling and before the end of cold rolling.
  • the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower, the effects of age hardening and conductivity improvement can be surely obtained.
  • the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet is improved by the cold rolling and the good processing Sex can be obtained.
  • the final annealing is performed after the cold rolling, so that the workability of the Al—Mg—Si based alloy sheet is good.
  • the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
  • Si 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass%
  • at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less is contained in the Al—Mg—Si alloy ingot consisting of the remainder Al and inevitable impurities.
  • Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less, so that the tensile strength and the electrical conductivity are high and the workability is high. Can be produced.
  • the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower, the effects of age hardening and conductivity improvement are surely obtained.
  • the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet is improved by the cold rolling and the good processing Sex can be obtained.
  • the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
  • the inventor of the present application uses a hot-rolled alloy in a manufacturing method of an Al—Mg—Si based alloy material (including Al—Mg—Si based alloy plate, the same applies hereinafter) that is sequentially subjected to hot rolling and cold rolling. While maintaining the surface temperature of the material at a predetermined temperature or less and performing heat treatment as an aging treatment after the end of hot rolling and before the end of cold rolling, while having high conductivity and good workability, The inventors have found that an Al—Mg—Si based alloy material having high strength can be obtained, leading to the present invention.
  • Mg and Si are elements necessary for the development of strength, and the respective contents thereof are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. preferable. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, the strength is lowered. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate.
  • the Si content is more preferably 0.2% by mass or more and 0.6% by mass or less, and particularly preferably 0.32% by mass or more and 0.60% by mass or less.
  • the Mg content is more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less.
  • Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases.
  • the Fe content and the Cu content are preferably regulated to 0.5% by mass or less, respectively.
  • the Fe content is more preferably regulated to 0.35% by mass or less, and particularly preferably from 0.1% by mass to 0.25% by mass.
  • the Cu content is more preferably 0.1% by mass or less.
  • Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab.
  • the effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered.
  • the Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.
  • the B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass or less.
  • various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material.
  • the content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less.
  • the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot.
  • the obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.
  • the homogenization treatment is preferably performed at 500 ° C. or higher.
  • the heating before hot rolling is carried out in order to solidify the crystallized substance and Mg, Si in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.
  • the Al-Mg-Si alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.
  • the chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.
  • Hot rolling is performed on the Al-Mg-Si alloy ingot after heating before hot rolling.
  • Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using.
  • the finish hot rolling can be omitted.
  • finish hot rolling is performed once by introducing an Al—Mg—Si alloy material from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.
  • the Al—Mg—Si alloy material after finish hot rolling may be wound with a winding device to form a hot rolled coil.
  • finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling
  • the Al-Mg-Si alloy material is taken up with a winder after the rough hot rolling. It may be a hot rolled coil.
  • Mg and Si are kept in a solid solution state in accordance with the solution treatment, followed by cooling of the Al—Mg—Si alloy material by a rough hot rolling pass, or rough hot rolling.
  • the quenching effect can be obtained by the temperature drop due to forced cooling after the pass and after the pass.
  • the surface temperature of the Al—Mg—Si alloy material immediately before the pass is 350 ° C. or higher and 470 ° C. or lower, and the Al—Mg—Si alloy material is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass.
  • the reason why the surface temperature of the Al—Mg—Si alloy plate immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that if it is less than 350 ° C., the effect of quenching in the rapid hot rolling is small and the temperature is higher than 470 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy plate having a rising path.
  • the average cooling rate is an Al—Mg—Si alloy from the start to the end of the control pass when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass.
  • Forced cooling after the control pass may be performed sequentially on the rolled part while rolling the Al—Mg—Si alloy plate, or after rolling the entire Al—Mg—Si alloy plate. Also good.
  • the method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.
  • the control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si alloy material just before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed multiple times. By lowering the temperature of the Al—Mg—Si alloy material below 350 ° C., quenching can be performed efficiently and effectively.
  • the surface temperature of the Al—Mg—Si alloy material immediately after the final pass of the hot rolling is defined as the temperature after the rough hot rolling
  • the surface temperature of the Al—Mg—Si alloy material immediately after the end of forced cooling is set as the temperature after rough hot rolling.
  • finishing hot rolling ends when finishing hot rolling is performed, finishing hot rolling ends.
  • hot rolling ends When finishing hot rolling is not performed, hot rolling ends with the end of the final pass of rough hot rolling, and immediately after the hot rolling ends.
  • the surface temperature of the Al—Mg—Si based alloy plate is preferably 170 ° C. or less. An effective quenching effect is obtained by setting the temperature of the alloy plate immediately after the end of hot rolling to 170 ° C. or less, and the electrical conductivity is improved while age hardening by the subsequent heat treatment.
  • the surface temperature of the Al-Mg-Si alloy material immediately after hot rolling is more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.
  • the surface temperature of the Al—Mg—Si alloy material immediately before finish hot rolling is: 280 ° C. or lower is preferable.
  • the surface temperature of the Al—Mg—Si alloy material immediately before the final hot hot rolling pass is 280 ° C. or less. preferable.
  • the control pass is the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling.
  • the surface temperature of the alloy material is 470 to 350 ° C.
  • the surface temperature of the Al—Mg—Si alloy material is 170 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling. It is preferable to implement the control pass so that
  • the Al—Mg—Si alloy material after the hot rolling and before the cold rolling is heat treated to age harden and improve the conductivity.
  • the heat treatment of the Al—Mg—Si alloy material after the hot rolling and before the cold rolling is performed at a temperature of 120 ° C. or higher and lower than 200 ° C. in order to obtain the effects of age hardening and conductivity improvement.
  • the temperature of the heat treatment is more preferably 130 ° C. or higher and 190 ° C. or lower, and particularly preferably 140 ° C. or higher and 180 ° C. or lower.
  • the heat treatment time of the Al—Mg—Si based alloy material performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of the hot rolling and before the end of the cold rolling is not particularly limited. What is necessary is just to adjust time at predetermined temperature so that it may be obtained, for example, heat processing may be implemented by adjusting time in the range of 1 to 12 hours.
  • cold rolling is performed to harden and further improve the strength.
  • the heat treatment is preferably performed after the end of hot rolling and before the start of cold rolling in order to enhance the effect of improving the strength of the age-hardened Al—Mg—Si based alloy material by cold rolling.
  • the Al—Mg—Si alloy material having a predetermined thickness is obtained by cold rolling after the heat treatment.
  • the cold rolling after the heat treatment is preferably performed at a rolling rate of 20% or more in order to improve strength and improve workability.
  • the rolling rate of the Al—Mg—Si alloy sheet by cold rolling after heat treatment is further 30% or more, more preferably 50% or more, more preferably 60% or more, and more preferably 70% or more, and the thickness is less than 0.9 mm In order to make this aluminum material, it is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the Al—Mg—Si based alloy material after cold rolling may be cleaned as necessary.
  • final annealing may be performed after cold rolling.
  • the final annealing is preferably performed at 180 ° C. or less, more preferably 160 ° C. or less, particularly 140 ° C. or less, so that the strength of the Al—Mg—Si based alloy material does not become too low.
  • the final annealing time of the Al—Mg—Si based alloy material carried out at the temperature of 180 ° C. or lower may be adjusted so as to obtain necessary workability and strength.
  • the final annealing is performed in the range of 1 to 10 hours. What is necessary is just to select by temperature.
  • the production of the Al—Mg—Si alloy material of the present application may be performed by a coil or a single plate. Further, the alloy plate may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.
  • an Al—Mg—Si alloy material that can improve strength while obtaining high electrical conductivity and has excellent workability despite its high strength can be obtained.
  • An Al—Mg—Si based alloy sheet having a thickness of 0.9 mm and excellent workability despite its strength can be obtained.
  • the electrical conductivity of the Al—Mg—Si based alloy material of the present application is defined as 54% IACS or more, and the tensile strength is defined as 280 MPa or more.
  • the tensile strength is preferably 285 MPa or more, and more preferably 290 MPa or more.
  • the 0.2% yield strength of the Al—Mg—Si alloy material of the present application is preferably 230 MPa or more, more preferably 240 MPa or more, and particularly preferably 250 MPa or more.
  • the difference (TS ⁇ YS) between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) of the Al—Mg—Si based alloy sheet of the present application is preferably 0 MPa or more and 30 MPa or less.
  • YS is preferably 0 MPa or more and 20 MPa or less.
  • the Al—Mg—Si alloy material of the present application preferably has a fiber structure.
  • the fiber structure is a metal structure stretched by plastic working.
  • FIG. 1 shows a model diagram of the fiber structure of the Al—Mg—Si alloy material of the present application.
  • the metal structure is exposed so that the normal of the observation surface is perpendicular to both the processing direction vector of the Al—Mg—Si based alloy material and the normal direction vector of the processing surface,
  • a metal structure in which the grain boundary in the normal direction of the processed surface of the metal structure of the observation surface observed with an optical microscope is 3 lines / 100 ⁇ m or more and the grain boundary having a length in the processing direction of 300 ⁇ m or more is defined as a fiber structure.
  • the processing direction is the rolling direction
  • the processing surface is the rolling surface
  • the observation surface is a cross section in the thickness direction cut in parallel to the rolling direction.
  • the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processing surface is polished. Then, a method of anodizing the polished surface can be exemplified. Barker's solution (3% borohydrofluoric acid aqueous solution) can be preferably used as the anodizing solution.
  • Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.
  • Example 1 The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered.
  • the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace.
  • a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 219 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after finish hot rolling was 110 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
  • Examples 2 to 40, Comparative Examples 1 to 6 After chamfering the aluminum alloy slab described in Table 1, treatment was performed under the conditions described in Table 2 to Table 6 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
  • Example 15 the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
  • Comparative Example 1 and Comparative Example 2 a solution treatment was performed in which a heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more.
  • the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
  • the tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • the cross section of the Al—Mg—Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.
  • Tables 7 and 8 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability, and whether the Al—Mg—Si based alloy sheet has a fiber structure.
  • Aluminum alloy slabs having different chemical compositions shown in Table 9 were obtained by the DC casting method.
  • Example 101 The aluminum alloy slab having the chemical composition number 101 in Table 9 was chamfered. Next, the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 219 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after finish hot rolling was 110 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
  • Example 102 to 140 After chamfering the aluminum alloy slab shown in Table 9, it was treated under the conditions shown in Tables 10 to 14 to obtain an aluminum alloy sheet.
  • Example 101 in all Examples and Comparative Examples, homogenization and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the final hot hot rolling pass was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
  • Example 115 the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
  • Comparative Example 101 and Comparative Example 102 a solution treatment was performed in which a heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more.
  • the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
  • the tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • Tables 15 and 16 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability.
  • Aluminum alloy slabs having different chemical compositions shown in Table 17 were obtained by the DC casting method.
  • Example 201 The aluminum alloy slab having the chemical composition number 201 in Table 17 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
  • Example 202 to 242 and Comparative Examples 201 to 206 After chamfering the aluminum alloy slab described in Table 17, treatment was performed under the conditions described in Table 18 to Table 22 to obtain an aluminum alloy plate.
  • Example 201 homogenization and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final rough hot rolling pass was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
  • Example 215 the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
  • Comparative Example 201 and Comparative Example 202 a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more.
  • the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
  • the tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • the cross section of the Al—Mg—Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.
  • Tables 23 and 24 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability, and whether the Al—Mg—Si based alloy sheet has a fiber structure.
  • Aluminum alloy slabs having different chemical compositions shown in Table 25 were obtained by the DC casting method.
  • Example 301 The aluminum alloy slab having the chemical composition number 301 in Table 25 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
  • Example 302 to 342, Comparative Examples 301 to 306 After chamfering the aluminum alloy slab described in Table 25, it was treated under the conditions described in Table 26 to Table 30 to obtain an aluminum alloy plate. As in Example 301, homogenization treatment and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final pass of rough hot rolling was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
  • Example 315 the final pass of rough hot rolling was set as the final pass of hot rolling, and the finish hot rolling was not performed.
  • Comparative Example 301 and Comparative Example 302 a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more.
  • the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
  • the tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • Table 31 and Table 32 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability.
  • Aluminum alloy slabs having different chemical compositions shown in Table 33 were obtained by the DC casting method.
  • Example 401 The aluminum alloy slab having the chemical composition number 401 in Table 33 was chamfered. Next, the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started.
  • the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained.
  • the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after finish hot rolling was 110 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled with a workability of 98% to obtain an aluminum alloy plate with a product plate thickness of 0.15 mm.
  • Example 402 to 445, Comparative Examples 401 to 407 The aluminum alloy slab described in Table 33 was chamfered and then treated under the conditions described in Table 34 to Table 39 to obtain an aluminum alloy plate.
  • Example 401 in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the rough hot rolling final pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
  • Example 417 the final pass of the rough hot rolling was set as the final pass of the hot rolling, and the finish hot rolling was not performed.
  • the tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • Tables 34 to 39 show the evaluation results of tensile strength, electrical conductivity, and workability.
  • the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 170 ° C. or less
  • the heat treatment temperature after the end of hot rolling and before the end of cold rolling is in the range of 120 to 195 ° C.
  • the tensile strength and electrical conductivity are high and workability is good
  • Comparative Example 401, Comparative Example 402, and Comparative Example 403, which do not satisfy the specified range of the present application are inferior to those of Examples in terms of tensile strength or electrical conductivity.
  • Comparative Example 404 having a lower Si content than the Examples
  • Comparative Example 405 having a higher Si content than the Examples
  • Comparative Example 406 having a lower Mg content than the Examples
  • Comparative Example 407 having a higher Mg content than the Examples.
  • at least one of tensile strength and electrical conductivity is inferior to the examples, and Comparative Example 405 and Comparative Example 407 are also inferior in workability.
  • This embodiment is an embodiment of the invention according to claims 33-44.
  • Aluminum alloy slabs having different chemical compositions shown in Table 40 were obtained by the DC casting method.
  • the ingot of the chemical composition number 20 containing rare earth used the raw material containing misch metal for casting.
  • Example 501 The aluminum alloy slab having the chemical composition number 501 in Table 40 was chamfered. Next, the homogenized treatment at 570 ° C. for 4 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 3 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 220 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
  • the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 218 ° C. to obtain an alloy plate having a thickness of 7.0 mm.
  • the temperature of the alloy sheet immediately after finish hot rolling was 110 ° C.
  • the alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
  • Example 502 to 547, Comparative Examples 501 to 507 The aluminum alloy slab described in Table 40 was chamfered and then treated under the conditions described in Table 41 to Table 46 to obtain an aluminum alloy plate.
  • Example 501 in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the final rough hot rolling pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
  • Example 517 the final pass of rough hot rolling was set as the final pass of hot rolling, and the finish hot rolling was not performed.
  • the tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
  • Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
  • the electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 ⁇ 10 ⁇ 2 ⁇ m) adopted internationally was 100% IACS.
  • the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
  • Tables 41 to 46 show the evaluation results of tensile strength, electrical conductivity, and workability.
  • the surface temperature of the alloy sheet immediately after the end of hot rolling is 170 ° C. or less and the heat treatment temperature after the end of hot rolling and before the end of cold rolling is 120 ° C. or more and less than 200 ° C.
  • the tensile strength and electrical conductivity are high and the workability is good
  • the chemical composition specified in the present application the surface temperature of the alloy sheet immediately after the hot rolling is finished, or the cold after the hot rolling is finished.
  • at least one of the heat treatment temperatures before the end of the hot rolling does not satisfy the specified range of the present application, at least one of the tensile strength and the electrical conductivity is inferior to the examples, and the workability is inferior.
  • the present application is Japanese Patent Application No. 2016-67345, Japanese Patent Application No. 2016-67346, Japanese Patent Application No. 2016-67349, Japanese Patent Application No. 2016-67350, Japanese Patent Application, all of which were filed on March 30, 2016. This is accompanied by the priority claim of Japanese Patent Application No. 2016-67353 and Japanese Patent Application No. 2016-67354, and the disclosure content thereof constitutes a part of the present application as it is.
  • the present invention can be used for the production of Al—Mg—Si alloy materials and alloy plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is an Al-Mg-Si-based alloy material that has high strength while having high conductivity and good processability. The tensile strength of the Al-Mg-Si-based alloy material, which has a fibrous structure, is set to be equal to or greater than 280 MPa, and the conductivity thereof is set to be equal to or greater than 54 % IACS.

Description

Al-Mg―Si系合金材、Al-Mg―Si系合金板及びAl-Mg―Si系合金板の製造方法Al-Mg-Si alloy material, Al-Mg-Si alloy plate, and method for producing Al-Mg-Si alloy plate
 この発明は、Al-Mg―Si系合金材、特に熱伝導性、導電性、強度および加工性に優れたAl-Mg―Si系合金材、熱伝導性、導電性、強度および加工性に優れた厚さ0.9mm未満のAl-Mg―Si系合金板、及びAl-Mg―Si系合金板の製造方法に関する。 This invention is an Al—Mg—Si based alloy material, particularly an Al—Mg—Si based alloy material excellent in thermal conductivity, conductivity, strength and workability, and excellent in thermal conductivity, conductivity, strength and workability. Further, the present invention relates to an Al—Mg—Si based alloy plate having a thickness of less than 0.9 mm and a method for producing an Al—Mg—Si based alloy plate.
 薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。 Flat panel TVs, thin monitors for personal computers, notebook computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and heating elements such as internal covers In a member material to be built in or mounted, excellent thermal conductivity, strength, and workability for quickly radiating heat are required.
 JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl-Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。 Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength. An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.
 これに対しAl-Mg-Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al-Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。 In contrast, an Al—Mg—Si alloy (6000 alloy) has good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate excellent in conductivity and workability has been studied.
 例えば、特許文献1には、Mgを0.1~0.34質量%、Siを0.2~0.8質量%、Cuを0.22~1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl-Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400~540℃の温度で予備加熱を経て熱間圧延、50~85%の圧下率で冷間圧延を施した後、140~280℃の温度で焼鈍をすることを特徴とする、Al-Mg-Si系合金圧延板の製造方法が開示されている。 For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, and 0.22 to 1.0% by mass of Cu, with the balance being Al and An Al—Mg—Si alloy composed of inevitable impurities and having a Si / Mg content ratio of 1.3 or more is made into an ingot of thickness 250 mm or more by semi-continuous casting and preheated at a temperature of 400 to 540 ° C. A method for producing an Al—Mg—Si alloy rolled sheet, characterized in that after hot rolling and cold rolling at a reduction rate of 50 to 85%, annealing is performed at a temperature of 140 to 280 ° C. It is disclosed.
 特許文献2には、Si:0.2~1.5質量%、Mg:0.2~1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02~0.15質量%、Cr:0.02~0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01~1質量%か希土類元素:0.01~0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500~570℃の溶体化処理を行い、続いてさらに冷間圧延率5~40%で冷間圧延を行い、冷間圧延後150~190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム板の製造方法が記載されている。 Patent Document 2 contains Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Fe: 0.3 mass% or less, and Mn: 0.02 to 0.15% by mass, Cr: 0.02 to 0.15% of one or two types, and the balance is Al and Ti in unavoidable impurities is regulated to 0.2% or less, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and rolling and then cold-rolling. Next, a solution treatment at 500 to 570 ° C. is performed, followed by further cold rolling at a cold rolling rate of 5 to 40%, and an aging treatment for heating to 150 to 190 ° C. after the cold rolling. Of aluminum plate with excellent thermal conductivity, strength and bending workability The law has been described.
 特許文献3には、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるか、もしくはさらに不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されているAl-Mg-Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200~400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl-Mg―Si系合金板の製造方法が示されている。 Patent Document 3 contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and It contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and consists of the balance Al and inevitable impurities, or Mn and Cr as impurities are further Mn: 0.1% by mass %, Cr: 0.1% by mass or less of an Al—Mg—Si alloy ingot that is hot-rolled and further cold-rolled. There is shown a method for producing an Al—Mg—Si alloy plate, characterized in that heat treatment is performed by holding at 200 to 400 ° C. for 1 hour or longer after cold rolling until the end of cold rolling.
 なお、特許文献3に記載のとおり、JIS1000系から7000系のアルミニウム合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。 In addition, as described in Patent Document 3, in JIS 1000 series to 7000 series aluminum alloys, thermal conductivity and electrical conductivity have a good correlation, and an aluminum alloy plate having excellent thermal conductivity has excellent electrical conductivity. It can be used as a conductive member material as well as a heat radiating member material.
特開2012-62517号公報JP 2012-62517 A 特開2007-9262号公報JP 2007-9262 A 特開2003-321755号公報JP 2003-321755 A
 上記のとおりAl-Mg―Si系合金板の改良がなされてきたが、アルミニウム合金部材材料を用いる製品の高性能化、小型化、薄型化に伴い、高い導電率と加工性に加え従来よりも更に高い強度を有することがAl-Mg-Si系合金板に求められているのに対し、上記特許文献1、特許文献2および特許文献3記載の方法では高い導電率と加工性を維持しつつ必要な強度を得ることが困難であり、また比較的薄い厚さのAl-Mg―Si系合金板の改善検討も不十分であった。 As described above, Al-Mg-Si alloy plates have been improved, but with the improvement in performance, size, and thickness of products using aluminum alloy member materials, in addition to high conductivity and workability, it has become more difficult than before. While the Al—Mg—Si based alloy sheet is required to have higher strength, the methods described in Patent Document 1, Patent Document 2 and Patent Document 3 maintain high conductivity and workability. It was difficult to obtain the required strength, and improvement studies on relatively thin Al—Mg—Si alloy plates were insufficient.
 本発明の目的は、上述した技術背景に鑑み、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl-Mg-Si系合金材を提供することにある。 In view of the above technical background, an object of the present invention is to provide an Al—Mg—Si based alloy material having high conductivity and good workability while having higher strength.
 本発明の他の目的は、高い導電率と良好な加工性を有しつつ更に高い強度を有する厚さ0.9mm未満のAl-Mg-Si系合金板を提供することにある。 Another object of the present invention is to provide an Al—Mg—Si based alloy sheet having a thickness of less than 0.9 mm and having a higher strength while having high conductivity and good workability.
 本発明のさらに他の目的は、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl-Mg-Si系合金板の製造方法を提供することにある。 Still another object of the present invention is to provide a method for producing an Al—Mg—Si based alloy plate having higher electrical conductivity and better workability while having higher strength.
 上記課題は、以下の手段によって解決される。
(1)引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl-Mg-Si系合金材。
(2)化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる前項1に記載のAl-Mg-Si系合金材。
(3)不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている前項2に記載のAl-Mg-Si系合金材。
(4)0.2%耐力が230MPa以上である前項1ないし前項3の何れか1項に記載のAl-Mg-Si系合金材。
(5)引張強さが285MPa以上である前項1ないし前項4の何れか1項に記載のAl-Mg-Si系合金材。
(6)引張強さが280MPa以上、導電率が54%IACS以上であり厚さが0.9mm未満のAl-Mg-Si系合金板。
(7)化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる前項6に記載のAl-Mg-Si系合金板。
(8)不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている前項7に記載のAl-Mg-Si系合金板。
(9)引張強さTS(MPa)と0.2%耐力YS(MPa)の差(TS―YS)が0MPa以上30MPa以下である前項6ないし前項8の何れか1項に記載のAl-Mg-Si系合金板。
(10)化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl-Mg-Si系合金材。
(11)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項10に記載のAl-Mg-Si系合金材。
(12)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項10または前項11に記載のAl-Mg-Si系合金材。
(13)不純物としてのAgが0.05質量%以下に規制されている前項10ないし前項12の何れか1項に記載のAl-Mg-Si系合金材。
(14)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項10ないし前項13の何れか1項に記載のAl-Mg-Si系合金材。
(15)引張強さが285MPa以上である前項10ないし前項14の何れか1項に記載のAl-Mg-Si系合金材。
(16)0.2%耐力が230MPa以上である前項10ないし前項15の何れか1項に記載のAl-Mg-Si系合金材。
(17)化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり厚さ0.9mm未満のAl-Mg-Si系合金板。
(18)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項17に記載のAl-Mg-Si系合金板。
(19)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項17または前項18に記載のAl-Mg-Si系合金板。
(20)不純物としてのAgが0.05質量%以下に規制されている前項17ないし前項19の何れか1項に記載のAl-Mg-Si系合金板。
(21)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項17ないし前項20の何れか1項に記載のAl-Mg-Si系合金板。
(22)引張強さTS(MPa)と0.2%耐力YS(MPa)の差(TS―YS)が0MPa以上30MPa以下である前項17ないし前項19の何れか1項に記載のAl-Mg-Si系合金板。
(23)Al-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl-Mg-Si系合金板の製造方法であって、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl-Mg-Si系合金板の製造方法。
(24)Al-Mg-Si系合金鋳塊の化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる前項23に記載のAl-Mg-Si系合金板の製造方法。
(25)不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている前項24に記載のAl-Mg-Si系合金板の製造方法。
(26)熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する前項23ないし前項25の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(27)熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下である前項23ないし前項26の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(28)熱処理温度が130℃以上180℃以下である前項23ないし前項27の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(29)熱処理後冷間圧延の圧延率が20%以上である前項23ないし前項28の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(30)冷間圧延後に最終焼鈍を実施する前項23ないし前項29の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(31)最終焼鈍の温度が180℃以下である前項30に記載のAl-Mg-Si系合金板の製造方法。
(32)熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する前項23ないし前項31の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(33)Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl-Mg-Si系合金板の製造方法。
(34)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項33に記載のAl-Mg-Si系合金板の製造方法。
(35)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項33または前項34に記載のAl-Mg-Si系合金板の製造方法。
(36)不純物としてのAgが0.05質量%以下に規制されている前項33ないし前項35の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(37)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項33ないし前項36の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(38)熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する前項33ないし前項37の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(39)熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下である前項33ないし前項38の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(40)熱処理温度が130℃以上180℃以下である前項33ないし前項39の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(41)熱処理後冷間圧延の圧延率が20%以上である前項33ないし前項40の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(42)冷間圧延後に最終焼鈍を実施する前項33ないし前項41の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
(43)最終焼鈍の温度が180℃以下である前項42に記載のAl-Mg-Si系合金板の製造方法。
(44)熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する前項33ないし前項43の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
The above problem is solved by the following means.
(1) An Al—Mg—Si alloy material having a tensile strength of 280 MPa or more, an electrical conductivity of 54% IACS or more, and a fiber structure.
(2) The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, 2. The Al—Mg—Si based alloy material according to item 1, comprising the balance Al and inevitable impurities.
(3) The Al—Mg—Si alloy material according to item 2, wherein Mn, Cr, Zn, and Ti as impurities are each controlled to be 0.1 mass% or less.
(4) The Al—Mg—Si alloy material according to any one of items 1 to 3, wherein the 0.2% proof stress is 230 MPa or more.
(5) The Al—Mg—Si alloy material according to any one of items 1 to 4, wherein the tensile strength is 285 MPa or more.
(6) An Al—Mg—Si alloy plate having a tensile strength of 280 MPa or more, an electrical conductivity of 54% IACS or more, and a thickness of less than 0.9 mm.
(7) The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, 7. The Al—Mg—Si based alloy sheet according to item 6 above, comprising the balance Al and inevitable impurities.
(8) The Al—Mg—Si based alloy plate according to item 7 above, wherein Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1 mass% or less.
(9) The Al—Mg as described in any one of the preceding items 6 to 8, wherein the difference (TS−YS) between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) is 0 MPa or more and 30 MPa or less. -Si alloy plate.
(10) The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Further, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 280 MPa or more, and the conductivity is 54% IACS or more. An Al—Mg—Si alloy material having a fiber structure.
(11) The Al—Mg—Si based alloy material according to item 10 above, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
(12) The Al—Mg—Si based alloy material according to item 10 or 11, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05 mass% or less.
(13) The Al—Mg—Si alloy material according to any one of items 10 to 12, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(14) The Al—Mg—Si alloy material according to any one of items 10 to 13, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(15) The Al—Mg—Si alloy material according to any one of items 10 to 14, wherein the tensile strength is 285 MPa or more.
(16) The Al—Mg—Si alloy material according to any one of items 10 to 15, wherein the 0.2% proof stress is 230 MPa or more.
(17) The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Further, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 280 MPa or more, and the conductivity is 54% IACS or more. Al—Mg—Si alloy plate with a thickness of less than 0.9 mm.
(18) The Al—Mg—Si based alloy plate according to item 17 above, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
(19) The Al—Mg—Si based alloy plate according to the above item 17 or 18, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05 mass% or less.
(20) The Al—Mg—Si alloy plate according to any one of items 17 to 19, wherein Ag as an impurity is regulated to 0.05% by mass or less.
(21) The Al—Mg—Si based alloy sheet according to any one of items 17 to 20, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(22) The Al—Mg as described in any one of 17 to 19 above, wherein the difference (TS−YS) between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) is 0 MPa or more and 30 MPa or less. -Si alloy plate.
(23) A method for producing an Al—Mg—Si alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, wherein Al—Mg—Si immediately after the end of hot rolling For producing an Al—Mg—Si based alloy sheet, wherein the surface temperature of the alloy plate is 170 ° C. or less, and heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C. after the hot rolling is finished and before the cold rolling is finished .
(24) The chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 24. The method for producing an Al—Mg—Si-based alloy plate according to item 23, which contains 0.5% by mass or less and the balance is Al and inevitable impurities.
(25) The method for producing an Al—Mg—Si based alloy plate as described in 24 above, wherein Mn, Cr, Zn, and Ti as impurities are each controlled to be 0.1 mass% or less.
(26) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 23 to 25, wherein the heat treatment is performed after the hot rolling is finished and before the cold rolling is started.
(27) The method for producing an Al—Mg—Si alloy plate according to any one of items 23 to 26, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after completion of hot rolling is 150 ° C. or less. .
(28) The method for producing an Al—Mg—Si alloy sheet according to any one of items 23 to 27, wherein the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower.
(29) The method for producing an Al—Mg—Si alloy sheet according to any one of items 23 to 28, wherein a rolling rate of cold rolling after heat treatment is 20% or more.
(30) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 23 to 29, wherein the final annealing is performed after cold rolling.
(31) The method for producing an Al—Mg—Si alloy plate as described in 30 above, wherein the final annealing temperature is 180 ° C. or lower.
(32) Among a plurality of hot rolling passes, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or 32. The method for producing an Al—Mg—Si based alloy sheet according to any one of items 23 to 31, wherein the pass at which the average cooling rate by forced cooling after the pass is 50 ° C./min or more is performed at least once.
(33) Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and Ti: 0 .Hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot containing at least one type of 1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities. A method for producing an alloy plate, wherein the surface temperature of an Al—Mg—Si alloy plate immediately after the end of hot rolling is 170 ° C. or less, and 120 ° C. or more after the end of hot rolling and before the end of cold rolling A method for producing an Al—Mg—Si alloy plate, which is heat-treated at a temperature of less than 200 ° C.
(34) The method for producing an Al—Mg—Si based alloy plate according to the above 33, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
(35) The Al—Mg—Si based alloy sheet according to the preceding item 33 or 34, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05 mass% or less, respectively. Production method.
(36) The method for producing an Al—Mg—Si based alloy sheet according to any one of the preceding items 33 to 35, wherein Ag as an impurity is regulated to 0.05 mass% or less.
(37) The method for producing an Al—Mg—Si-based alloy plate according to any one of the preceding items 33 to 36, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(38) The method for producing an Al—Mg—Si alloy sheet according to any one of items 33 to 37, wherein the heat treatment is performed after the hot rolling is completed and before the cold rolling is started.
(39) The method for producing an Al—Mg—Si alloy plate according to any one of the preceding items 33 to 38, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 150 ° C. or less. .
(40) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 33 to 39, wherein the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower.
(41) The method for producing an Al—Mg—Si alloy sheet according to any one of items 33 to 40, wherein the rolling rate of cold rolling after heat treatment is 20% or more.
(42) The method for producing an Al—Mg—Si alloy sheet according to any one of items 33 to 41, wherein the final annealing is performed after cold rolling.
(43) The method for producing an Al—Mg—Si based alloy plate as described in 42 above, wherein the final annealing temperature is 180 ° C. or lower.
(44) Among a plurality of hot rolling passes, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or 44. The method for producing an Al—Mg—Si based alloy sheet according to any one of the preceding items 33 to 43, wherein the pass in which the average cooling rate by forced cooling after the pass is 50 ° C./min or more is performed at least once.
 前項(1)に記載の発明によれば、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (1), an Al—Mg—Si alloy material having a fiber structure excellent in strength, thermal conductivity, and workability can be obtained.
 前項(2)に記載の発明によれば、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなるから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (2), Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% Since it contains the following and the balance Al and inevitable impurities, it can be an Al—Mg—Si alloy material having a fiber structure excellent in strength, thermal conductivity, and workability.
 前項(3)に記載の発明によれば、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in the preceding item (3), Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1% by mass or less, and thus excellent in strength, thermal conductivity, and workability. An Al—Mg—Si alloy material having a fiber structure can be obtained.
 前項(4)に記載の発明によれば、耐力が強い繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (4) above, an Al—Mg—Si based alloy material having a strong fiber structure can be obtained.
 前項(5)に記載の発明によれば、引張強さが更に強い繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (5), an Al—Mg—Si based alloy material having a fiber structure having a higher tensile strength can be obtained.
 前項(6)に記載の発明によれば、強度、熱伝導性、加工性に優れた厚さ0.9mm未満のAl-Mg-Si系合金板となしうる。 According to the invention described in item (6) above, an Al—Mg—Si alloy plate having a thickness of less than 0.9 mm and excellent in strength, thermal conductivity and workability can be obtained.
 前項(7)に記載の発明によれば、化学組成が、化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなるから、強度、熱伝導性、加工性に優れたAl-Mg-Si系合金板となしうる。 According to the invention described in item (7), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less. And Cu: 0.5% by mass or less, and the balance being Al and unavoidable impurities, it can be an Al—Mg—Si based alloy plate excellent in strength, thermal conductivity, and workability.
 前項(8)に記載の発明によればば、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されているから、残部Al及び不可避不純物からなるから、強度、熱伝導性、加工性に優れたAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (8), since Mn, Cr, Zn, and Ti as impurities are respectively regulated to 0.1% by mass or less, the balance is composed of the remaining Al and inevitable impurities. An Al—Mg—Si alloy plate excellent in thermal conductivity and workability can be obtained.
 前項(9)に記載の発明によれば、引張強さおよび耐力の両方が強いAl-Mg-Si系合金板となしうる。 According to the invention described in item (9) above, an Al—Mg—Si alloy plate having both high tensile strength and proof stress can be obtained.
 前項(10)に記載の発明によれば、化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (10), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 .5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities, strength, thermal conductivity, processing Al-Mg-Si alloy material having a fiber structure with excellent properties can be obtained.
 前項(11)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in the above item (11), since Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less, a fiber structure excellent in strength, thermal conductivity, and workability Al—Mg—Si based alloy material having
 前項(12)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in the preceding item (12), since Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are respectively regulated to 0.05% by mass or less, strength, thermal conductivity, An Al—Mg—Si alloy material having a fiber structure excellent in workability can be obtained.
 前項(13)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (13), since Ag as an impurity is regulated to 0.05% by mass or less, Al—Mg—Si having a fiber structure excellent in strength, thermal conductivity, and workability. It can be made of an alloy material.
 前項(14)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (14) above, since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, it has a fiber structure excellent in strength, thermal conductivity, and workability. An Al—Mg—Si alloy material can be formed.
 前項(15)に記載の発明によれば、引張強さが更に強い繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (15), an Al—Mg—Si based alloy material having a fiber structure having a higher tensile strength can be obtained.
 前項(16)に記載の発明によれば、耐力が強い繊維組織を有するAl-Mg-Si系合金材となしうる。 According to the invention described in item (16), an Al—Mg—Si alloy material having a strong proof fiber structure can be obtained.
 前項(17)に記載の発明によれば、化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、強度、熱伝導性、加工性に優れた厚さ0.9mm未満のAl-Mg-Si系合金板となしうる。 According to the invention described in item (17), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 .5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities, strength, thermal conductivity, processing An Al—Mg—Si based alloy plate having a thickness of less than 0.9 mm can be obtained.
 前項(18)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた厚さ0.9mm未満のAl-Mg-Si系合金板となしうる。 According to the invention described in the above item (18), Mn, Cr, and Zn as impurities are regulated to 0.1% by mass or less, respectively, so that the thickness is excellent in strength, thermal conductivity, and workability. An Al—Mg—Si based alloy plate of less than 0.9 mm can be formed.
 前項(19)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れたAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (19), since Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are respectively regulated to 0.05% by mass or less, strength, thermal conductivity, An Al—Mg—Si based alloy plate with excellent workability can be obtained.
 前項(20)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れたAl-Mg-Si系合金板となしうる。 According to the invention described in item (20) above, since Ag as an impurity is regulated to 0.05% by mass or less, an Al—Mg—Si based alloy plate excellent in strength, thermal conductivity, and workability can be obtained. It can be done.
 前項(21)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、強度、熱伝導性、加工性にAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (21), since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, Al—Mg—Si system is used for strength, thermal conductivity, and workability. An alloy plate can be used.
 前項(22)に記載の発明によれば、引張強さおよび耐力の両方が強いAl-Mg-Si系合金板となしうる。 According to the invention described in the preceding item (22), an Al—Mg—Si based alloy sheet having both high tensile strength and yield strength can be obtained.
 前項(23)に記載の発明によれば、Al-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl-Mg-Si系合金板の製造方法であって、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱間圧延による有効な焼き入れ効果が得られ、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (23), there is provided a method for producing an Al—Mg—Si alloy plate, in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, Since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of rolling is 170 ° C. or less, and heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of hot rolling and before the end of cold rolling, Effective quenching effect by hot rolling is obtained, and aging hardening and electrical conductivity improvement during heat treatment, and work hardening and workability improvement by cold rolling, high tensile strength and electrical conductivity and high workability A good Al—Mg—Si alloy plate can be produced.
 前項(24)に記載の発明によれば、化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl-Mg-Si系合金板の製造方法であって、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱間圧延による焼き入れ効果が得られ、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in item (24), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 This is a method for producing an Al—Mg—Si alloy plate, in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot containing less than 5% by mass and comprising the balance Al and inevitable impurities. Then, the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of hot rolling is 170 ° C. or less, and heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of hot rolling and before the end of cold rolling. As a result, the effect of quenching by hot rolling is obtained, and the tensile strength and conductivity are high due to aging hardening and conductivity improvement during heat treatment, and work hardening and workability improvement by cold rolling. Al-Mg-Si alloy plate with good properties can be manufactured .
 前項(25)に記載の発明によれば、不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (25), since Mn, Cr, Zn, and Ti as impurities are regulated to 0.1% by mass or less, the tensile strength and the conductivity are high. An Al—Mg—Si based alloy plate with good workability can be produced.
 前項(26)に記載の発明によれば、熱処理を熱間圧延終了後であって冷間圧延の開始前に実施するため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (26), since the heat treatment is performed after the hot rolling is finished and before the cold rolling is started, the age hardening and the electrical conductivity are improved during the heat treatment, and the work hardening by the cold rolling. By improving the workability, it is possible to produce an Al—Mg—Si based alloy plate that exhibits high tensile strength and electrical conductivity and good workability.
 前項(27)に記載の発明によれば、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下であるため、熱間圧延による焼き入れ効果を高めることができる。  According to the invention described in the preceding item (27), since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 150 ° C. or less, the quenching effect by hot rolling can be enhanced. *
 前項(28)に記載の発明によれば、熱処理温度が130℃以上180℃以下であるため、確実に時効硬化と導電率向上の効果が得られる。 According to the invention described in the preceding item (28), since the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower, the effects of age hardening and conductivity improvement can be surely obtained.
 前項(29)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl-Mg-Si系合金板の強度を向上させるとともに良好な加工性を得ることができる。 According to the invention described in the preceding item (29), since the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet is improved by the cold rolling and the good processing Sex can be obtained.
 前項(30)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、Al-Mg-Si系合金板の加工性が良好なものとなる。 According to the invention described in the preceding item (30), the final annealing is performed after the cold rolling, so that the workability of the Al—Mg—Si based alloy sheet is good.
 前項(31)に記載の発明によれば、最終焼鈍の温度が180℃以下であるため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (31), since the final annealing temperature is 180 ° C. or lower, an Al—Mg—Si alloy plate having high tensile strength and high conductivity and good workability is manufactured. can do.
 前項(32)に記載の発明によれば、熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施するため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in the preceding item (32), the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
 前項(33)に記載の発明によれば、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うため、熱間圧延による有効な焼き入れ効果が得られ、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (33), Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% In addition, at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less is contained in the Al—Mg—Si alloy ingot consisting of the remainder Al and inevitable impurities. A method for producing an alloy sheet in which rolling and cold rolling are sequentially performed, wherein the surface temperature of the Al—Mg—Si alloy sheet immediately after the end of hot rolling is 170 ° C. or less, and after the end of hot rolling, Since the heat treatment is performed at a temperature of 120 ° C. or more and less than 200 ° C. before the end of the cold rolling, an effective quenching effect by the hot rolling can be obtained, age hardening at the time of the heat treatment and improvement of conductivity, and work hardening by the cold rolling. As a result of improved workability, the tensile strength and conductivity are high. Workability can be manufactured good Al-Mg-Si alloy plates.
 前項(34)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (34), Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less, so that the tensile strength and the electrical conductivity are high and the workability is high. Can be produced.
 前項(35)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZr、それぞれ0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (35), since Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are respectively regulated to 0.05% by mass or less, the tensile strength and the conductivity are An Al—Mg—Si based alloy plate having a high value and good workability can be produced.
 前項(36)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (36), since Ag as an impurity is regulated to 0.05% by mass or less, Al—Mg— showing high values of tensile strength and conductivity and good workability. Si-based alloy plates can be manufactured.
 前項(37)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (37), since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, the tensile strength and conductivity are high, and the workability is good. An Al—Mg—Si based alloy plate can be manufactured.
 前項(38)に記載の発明によれば、熱処理を熱間圧延終了後であって冷間圧延の開始前に実施するため、熱処理時の時効硬化と導電率向上、および冷間圧延による加工硬化と加工性改善により、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (38), since the heat treatment is performed after the hot rolling is finished and before the cold rolling is started, the age hardening and the electrical conductivity are improved during the heat treatment, and the work hardening by the cold rolling is performed. By improving the workability, it is possible to produce an Al—Mg—Si based alloy plate that exhibits high tensile strength and electrical conductivity and good workability.
 前項(39)に記載の発明によれば、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下であるため、熱間圧延による焼き入れ効果を高めることができる。  According to the invention described in the preceding item (39), since the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 150 ° C. or less, the quenching effect by hot rolling can be enhanced. *
 前項(40)に記載の発明によれば、熱処理温度が130℃以上180℃以下であるため、確実に時効硬化と導電率向上の効果が得られる。 According to the invention described in the preceding item (40), since the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower, the effects of age hardening and conductivity improvement are surely obtained.
 前項(41)に記載の発明によれば、熱処理後の冷間圧延の圧延率が20%以上であるため、冷間圧延によりAl-Mg-Si系合金板の強度を向上させるとともに良好な加工性を得ることができる。 According to the invention described in the preceding item (41), since the rolling rate of the cold rolling after the heat treatment is 20% or more, the strength of the Al—Mg—Si based alloy sheet is improved by the cold rolling and the good processing Sex can be obtained.
 前項(42)に記載の発明によれば、冷間圧延後に最終焼鈍を実施するため、Al-Mg-Si系合金板の加工性が良好なものとなる。 According to the invention described in the preceding item (42), since the final annealing is performed after cold rolling, the workability of the Al—Mg—Si based alloy plate is improved.
 前項(43)に記載の発明によれば、最終焼鈍の温度が180℃以下であるため、引張強さおよび導電率が高い値を示し加工性が良好なAl-Mg-Si系合金板を製造することができる。 According to the invention described in the preceding item (43), since the final annealing temperature is 180 ° C. or less, an Al—Mg—Si based alloy sheet having high tensile strength and high electrical conductivity and good workability is manufactured. can do.
 前項(44)に記載の発明によれば、熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施するため、熱間圧延による焼き入れ効果を高めることができる。 According to the invention described in the preceding item (44), the surface temperature of the Al—Mg—Si based alloy plate immediately before the pass among the plurality of passes of hot rolling is 470 to 350 ° C., and the Al—Mg—Si due to the pass is used. Since the pass in which the average cooling rate by cooling of the alloy plate or the forced cooling after the pass is 50 ° C./min or more is performed at least once, the quenching effect by hot rolling can be enhanced.
本願のAl-Mg―Si系合金材の繊維組織のモデル図である。It is a model figure of the fiber structure of the Al-Mg-Si alloy material of the present application.
 本願発明者は、熱間圧延、冷間圧延を順次施するAl-Mg-Si系合金材(Al-Mg―Si系合金板を含む。以下同じ)の製造方法において、熱間圧延上がりの合金材の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl-Mg-Si系合金材が得られることを見出し本願の発明に至った。 The inventor of the present application uses a hot-rolled alloy in a manufacturing method of an Al—Mg—Si based alloy material (including Al—Mg—Si based alloy plate, the same applies hereinafter) that is sequentially subjected to hot rolling and cold rolling. While maintaining the surface temperature of the material at a predetermined temperature or less and performing heat treatment as an aging treatment after the end of hot rolling and before the end of cold rolling, while having high conductivity and good workability, The inventors have found that an Al—Mg—Si based alloy material having high strength can be obtained, leading to the present invention.
 以下に、本願のAl-Mg-Si系合金材とそれらの製造方法について詳細に説明する。  Hereinafter, the Al—Mg—Si alloy material of the present application and the manufacturing method thereof will be described in detail. *
 本願のAl-Mg-Si系合金組成において、各元素の添加目的および好ましい含有量を示す。 In the Al—Mg—Si based alloy composition of the present application, the purpose of addition of each element and the preferred content are shown.
 MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下であることが好ましい。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では強度が低くなる。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が更に好ましく、更に0.32質量%以上0.60質量%以下が特に好ましい。Mg含有量は0.45質量%以上0.9質量%以下が更に好ましく、特に0.45質量%以上0.55質量%以下が好ましい。 Mg and Si are elements necessary for the development of strength, and the respective contents thereof are Si: 0.2% by mass or more and 0.8% by mass or less, and Mg: 0.3% by mass or more and 1% by mass or less. preferable. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, the strength is lowered. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate. The Si content is more preferably 0.2% by mass or more and 0.6% by mass or less, and particularly preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is more preferably 0.45% by mass or more and 0.9% by mass or less, and particularly preferably 0.45% by mass or more and 0.55% by mass or less.
 FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制ことが好ましい。Fe含有量は0.35質量%以下に規制することが更に好ましく、特に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが更に好ましい。 Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are preferably regulated to 0.5% by mass or less, respectively. The Fe content is more preferably regulated to 0.35% by mass or less, and particularly preferably from 0.1% by mass to 0.25% by mass. The Cu content is more preferably 0.1% by mass or less.
 TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。 Ti and B have the effect of refining crystal grains and preventing solidification cracking when casting the alloy into a slab. The effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.
 また、B含有量は0.1質量%以下が好ましく、特に0.06質量%以下が好ましい。 The B content is preferably 0.1% by mass or less, and particularly preferably 0.06% by mass or less.
 また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。 In addition, various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。 Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 次に、本願規定のAl-Mg―Si系合金材を得るための処理工程について記述する。 Next, the processing steps for obtaining the Al—Mg—Si alloy material specified in the present application will be described.
 常法にて溶解成分調整し、Al-Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot. The obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.
 前記均質化処理は、500℃以上で行うことが好ましい。 The homogenization treatment is preferably performed at 500 ° C. or higher.
 前記熱間圧延前加熱はAl-Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。 The heating before hot rolling is carried out in order to solidify the crystallized substance and Mg, Si in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.
 Al-Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 The Al-Mg-Si alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.
 鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 It is preferable to chamfer the ingot in order to remove an impurity layer near the surface of the ingot before heating after casting and before hot rolling. The chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.
 熱間圧延前加熱後のAl-Mg―Si系合金鋳塊に熱間圧延を施す。 Hot rolling is performed on the Al-Mg-Si alloy ingot after heating before hot rolling.
 熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using. In the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, the finish hot rolling can be omitted.
 本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl-Mg―Si系合金材を導入し1回のパスで実施される。 In the present application, finish hot rolling is performed once by introducing an Al—Mg—Si alloy material from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.
 冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl-Mg―Si系合金材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al-Mg―Si系合金材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When the cold rolling is performed with a coil, the Al—Mg—Si alloy material after finish hot rolling may be wound with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, the Al-Mg-Si alloy material is taken up with a winder after the rough hot rolling. It may be a hot rolled coil.
 粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl-Mg―Si系合金材の冷却、もしくは粗熱間圧延のパス後とパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。 In rough hot rolling, Mg and Si are kept in a solid solution state in accordance with the solution treatment, followed by cooling of the Al—Mg—Si alloy material by a rough hot rolling pass, or rough hot rolling. The quenching effect can be obtained by the temperature drop due to forced cooling after the pass and after the pass.
 本願において粗熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金材の表面温度が350℃以上470℃以下でありパスによるAl-Mg―Si系合金材の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl-Mg―Si系合金板の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl-Mg―Si系合金板の急冷が困難であるからである。 In the present application, among a plurality of passes of rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately before the pass is 350 ° C. or higher and 470 ° C. or lower, and the Al—Mg—Si alloy material is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass. The reason why the surface temperature of the Al—Mg—Si alloy plate immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that if it is less than 350 ° C., the effect of quenching in the rapid hot rolling is small and the temperature is higher than 470 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy plate having a rising path.
 上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl-Mg―Si系合金板の温度降下(℃)を要した時間(分)で除した値とする。 The average cooling rate is an Al—Mg—Si alloy from the start to the end of the control pass when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass. A value obtained by dividing the temperature drop (° C) of the plate by the time (minutes) required.
 制御パス後の強制冷却は、Al-Mg―Si系合金板を圧延しながら圧延後の部位に対し順次実施してもよいし、Al-Mg―Si系合金板全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。 Forced cooling after the control pass may be performed sequentially on the rolled part while rolling the Al—Mg—Si alloy plate, or after rolling the entire Al—Mg—Si alloy plate. Also good. The method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.
 前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al-Mg―Si系合金材の表面温度が470~350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl-Mg―Si系合金材の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。 The control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si alloy material just before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed multiple times. By lowering the temperature of the Al—Mg—Si alloy material below 350 ° C., quenching can be performed efficiently and effectively.
 本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl-Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl-Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とする。 In the present application, in the case where forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately after the final pass of the hot rolling is defined as the temperature after the rough hot rolling, When forced cooling is performed after the final pass of rolling, the surface temperature of the Al—Mg—Si alloy material immediately after the end of forced cooling is set as the temperature after rough hot rolling.
 本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl-Mg―Si系合金板の表面温度は170℃以下とすることが好ましい。熱間圧延終了直後の合金板の温度を170℃以下とすることにより有効な焼き入れ効果が得られ、その後の熱処理時により時効硬化するとともに導電率が向上する。 In the present application, when finishing hot rolling is performed, finishing hot rolling ends. When finishing hot rolling is not performed, hot rolling ends with the end of the final pass of rough hot rolling, and immediately after the hot rolling ends. The surface temperature of the Al—Mg—Si based alloy plate is preferably 170 ° C. or less. An effective quenching effect is obtained by setting the temperature of the alloy plate immediately after the end of hot rolling to 170 ° C. or less, and the electrical conductivity is improved while age hardening by the subsequent heat treatment.
 熱間圧延直後のAl-Mg―Si系合金材の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延直後のAl-Mg―Si系合金材の表面温度は150℃以下が更に好ましく、特に130℃以下が好ましい。 If the surface temperature of the Al-Mg-Si alloy material immediately after hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if heat treatment is performed after hot rolling and before cold rolling. It becomes insufficient. The surface temperature of the Al—Mg—Si alloy material immediately after hot rolling is more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.
 なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl-Mg―Si系合金材の表面温度は280℃以下が好ましい。 In addition, when performing finish hot rolling after rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately before finish hot rolling is: 280 ° C. or lower is preferable.
 また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl-Mg―Si系合金材の表面温度は280℃以下が好ましい。 Similarly, when the final hot rolling is not performed and the final pass of rough hot rolling is not a control pass, the surface temperature of the Al—Mg—Si alloy material immediately before the final hot hot rolling pass is 280 ° C. or less. preferable.
 一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl-Mg―Si系合金材の表面温度が470~350℃であって圧延もしくは圧延と圧延後の強制冷却により冷却速度が50℃/分以上の冷却速度でAl-Mg―Si系合金材の表面温度が170℃以下となるように制御パスを実施ことが好ましい。 On the other hand, if the final pass of rough hot rolling is a control pass without finishing hot rolling, the control pass is the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling. The surface temperature of the alloy material is 470 to 350 ° C., and the surface temperature of the Al—Mg—Si alloy material is 170 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling. It is preferable to implement the control pass so that
 熱間圧延終了後冷間圧延終了前のAl-Mg―Si系合金材に熱処理を施し、時効硬化させるとともに導電率を向上させる。  The Al—Mg—Si alloy material after the hot rolling and before the cold rolling is heat treated to age harden and improve the conductivity. *
 本願において熱間圧延終了後冷間圧延終了前のAl-Mg―Si系合金材への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施することが好ましい。前記熱処理の温度は130℃以上190℃以下が更に好ましく、特に140℃以上180℃以下が好ましい。 In the present application, the heat treatment of the Al—Mg—Si alloy material after the hot rolling and before the cold rolling is performed at a temperature of 120 ° C. or higher and lower than 200 ° C. in order to obtain the effects of age hardening and conductivity improvement. preferable. The temperature of the heat treatment is more preferably 130 ° C. or higher and 190 ° C. or lower, and particularly preferably 140 ° C. or higher and 180 ° C. or lower.
 前記熱間圧延終了後冷間圧延終了前において120℃以上200℃未満の温度で実施するAl-Mg―Si系合金材の熱処理の時間は特に限定されないが、時効硬化および導電率向上の効果が得られるように所定の温度で時間を調節すればよく、例えば、1~12時間の範囲で時間を調節して熱処理を実施すればよい。 The heat treatment time of the Al—Mg—Si based alloy material performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of the hot rolling and before the end of the cold rolling is not particularly limited. What is necessary is just to adjust time at predetermined temperature so that it may be obtained, for example, heat processing may be implemented by adjusting time in the range of 1 to 12 hours.
 前記熱処理の後、冷間圧延を実施することにより加工硬化し強度が更に向上する。 After the heat treatment, cold rolling is performed to harden and further improve the strength.
 前記熱処理は時効硬化させたAl-Mg―Si系合金材の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。 The heat treatment is preferably performed after the end of hot rolling and before the start of cold rolling in order to enhance the effect of improving the strength of the age-hardened Al—Mg—Si based alloy material by cold rolling.
 前記熱処理後の冷間圧延により所定の厚さのAl-Mg―Si系合金材とする。熱処理後の冷間圧延は強度向上と加工性の改善の為20%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl-Mg―Si系合金板の圧延率は更に30%以上、更には50%以上、更には60%以上、更には70%以上が好ましく、厚さ0.9mm未満のアルミニウム材とするためには、60%以上、更には70%以上が好ましく、特に80%以上が好ましい。 The Al—Mg—Si alloy material having a predetermined thickness is obtained by cold rolling after the heat treatment. The cold rolling after the heat treatment is preferably performed at a rolling rate of 20% or more in order to improve strength and improve workability. The rolling rate of the Al—Mg—Si alloy sheet by cold rolling after heat treatment is further 30% or more, more preferably 50% or more, more preferably 60% or more, and more preferably 70% or more, and the thickness is less than 0.9 mm In order to make this aluminum material, it is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 冷間圧延後のAl-Mg―Si系合金材に必要に応じて洗浄を実施しても良い。 The Al—Mg—Si based alloy material after cold rolling may be cleaned as necessary.
 Al-Mg―Si系合金材の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl-Mg―Si系合金材の強度が低くなりすぎないようにする為に180℃以下で実施することが好ましく、更に160℃以下、特に140℃以下で実施することが好ましい。 If the workability of the Al—Mg—Si alloy material is more important, final annealing may be performed after cold rolling. The final annealing is preferably performed at 180 ° C. or less, more preferably 160 ° C. or less, particularly 140 ° C. or less, so that the strength of the Al—Mg—Si based alloy material does not become too low.
 前記180℃以下の温度で実施するAl-Mg―Si系合金材の最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1~10時間の範囲で最終焼鈍の温度により選択すれば良い。 The final annealing time of the Al—Mg—Si based alloy material carried out at the temperature of 180 ° C. or lower may be adjusted so as to obtain necessary workability and strength. For example, the final annealing is performed in the range of 1 to 10 hours. What is necessary is just to select by temperature.
 なお、本願のAl-Mg―Si系合金材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程で合金板を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。 The production of the Al—Mg—Si alloy material of the present application may be performed by a coil or a single plate. Further, the alloy plate may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.
 上記の製造方法によれば、高い導電率を得つつ、強度を向上させることができ、高強度であるにも関わらず加工性も優れたAl-Mg―Si系合金材が得られ、また高強度であるにも関わらず加工性も優れた厚さ0.9mmのAl-Mg―Si系合金板が得られる。 According to the manufacturing method described above, an Al—Mg—Si alloy material that can improve strength while obtaining high electrical conductivity and has excellent workability despite its high strength can be obtained. An Al—Mg—Si based alloy sheet having a thickness of 0.9 mm and excellent workability despite its strength can be obtained.
 本願のAl-Mg―Si系合金材の導電率は54%IACS以上、引張強さは280MPa以上と規定する。引張強さは285MPa以上が好ましく、290MPa以上が更に好ましい。本願のAl-Mg―Si系合金材の0.2%耐力は、230MPa以上が好ましく、更に240MPa以上が好ましく、特に250MPa以上が好ましい。また、本願のAl-Mg―Si系合金板の引張強さTS(MPa)と0.2%耐力YS(MPa)の差(TS―YS)は0MPa以上30MPa以下であることが好ましく、TS―YSは更に0MPa以上20MPa以下であることが好ましい。 The electrical conductivity of the Al—Mg—Si based alloy material of the present application is defined as 54% IACS or more, and the tensile strength is defined as 280 MPa or more. The tensile strength is preferably 285 MPa or more, and more preferably 290 MPa or more. The 0.2% yield strength of the Al—Mg—Si alloy material of the present application is preferably 230 MPa or more, more preferably 240 MPa or more, and particularly preferably 250 MPa or more. Further, the difference (TS−YS) between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) of the Al—Mg—Si based alloy sheet of the present application is preferably 0 MPa or more and 30 MPa or less. YS is preferably 0 MPa or more and 20 MPa or less.
 本願のAl-Mg―Si系合金材は繊維組織を有するのが望ましい。繊維組織は塑性加工により伸ばされた金属組織である。 The Al—Mg—Si alloy material of the present application preferably has a fiber structure. The fiber structure is a metal structure stretched by plastic working.
 図1に本願のAl-Mg―Si系合金材の繊維組織のモデル図を示す。 FIG. 1 shows a model diagram of the fiber structure of the Al—Mg—Si alloy material of the present application.
 図1に示すように、本願において、観察面の法線がAl-Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるように金属組織を露出させ、光学顕微鏡で観察した観察面の金属組織の加工面法線方向の粒界が3本/100μm以上であり、加工方向の長さが300μm以上の粒界が存在する金属組織を繊維組織と規定する。なお、塑性加工が圧延の場合、加工方向は圧延方向であり、加工面は圧延面であり、観察面は圧延方向に対し平行に切断した厚さ方向の断面となる。 As shown in FIG. 1, in the present application, the metal structure is exposed so that the normal of the observation surface is perpendicular to both the processing direction vector of the Al—Mg—Si based alloy material and the normal direction vector of the processing surface, A metal structure in which the grain boundary in the normal direction of the processed surface of the metal structure of the observation surface observed with an optical microscope is 3 lines / 100 μm or more and the grain boundary having a length in the processing direction of 300 μm or more is defined as a fiber structure. . When the plastic processing is rolling, the processing direction is the rolling direction, the processing surface is the rolling surface, and the observation surface is a cross section in the thickness direction cut in parallel to the rolling direction.
 金属組織を露出させる方法としては、法線がAl-Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるAl-Mg―Si系合金材の面を研磨した後、研磨面を陽極酸化処理する方法を例示できる。陽極酸化処理液はバーカー氏液(3%ホウフッ化水素酸水溶液)を好適に用いることができる。 As a method of exposing the metal structure, the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processing surface is polished. Then, a method of anodizing the polished surface can be exemplified. Barker's solution (3% borohydrofluoric acid aqueous solution) can be preferably used as the anodizing solution.
 以下に本発明の実施例および比較例を示す。
(第1の実施例)
 この実施例は、請求項1~5に係る発明についての実施例である。
Examples of the present invention and comparative examples are shown below.
(First embodiment)
This embodiment is an embodiment of the invention according to claims 1 to 5.
 表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 
[実施例1]
 表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で560℃5hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度450℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度221℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 221 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度219℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は110℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 219 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after finish hot rolling was 110 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2~40、比較例1~6]
 表1に記載のアルミニウム合金スラブに面削を施した後、表2~表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2 to 40, Comparative Examples 1 to 6]
After chamfering the aluminum alloy slab described in Table 1, treatment was performed under the conditions described in Table 2 to Table 6 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
 実施例15では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 15, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
 比較例1および比較例2では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例1および比較例2において、冷間圧延率は溶体化処理後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Example 1 and Comparative Example 2, a solution treatment was performed in which a heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 1 and Comparative Example 2, the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。 The tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl-Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。 In Examples and Comparative Examples, when the metal structure of the cross section of the Al—Mg—Si alloy plate in the thickness direction cut parallel to the rolling direction is exposed, the rolling surface normal of the metal structure observed with an optical microscope The metal structure in which the grain boundary in the direction is 3 lines / 100 μm or more and the grain boundary having a length in the rolling direction of 300 μm or more is defined as the fiber structure.
 金属組織を露出させる方法としては、Al-Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。 As a method for exposing the metal structure, the cross section of the Al—Mg—Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.
 引張強さ、0.2%耐力、導電率、および加工性の評価結果、およびAl-Mg―Si系合金板が繊維組織を有するか否かを表7および表8に示す。 Tables 7 and 8 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability, and whether the Al—Mg—Si based alloy sheet has a fiber structure.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本願規定の化学組成、引張強さ、および導電率を満足し、繊維組織を有する実施例記載のAl-Mg-Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例1および比較例2は導電率が本願実施に劣り、化学組成が本願規定範囲を満足しない比較例3~比較例6は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。
(第2の実施例)
 この実施例は、請求項6~9に係る発明についての実施例である。
The Al—Mg—Si alloy materials described in the examples satisfying the chemical composition, tensile strength, and electrical conductivity specified in the present application and having a fiber structure have good workability. On the other hand, Comparative Example 1 and Comparative Example 2 in which solution treatment was performed during the cold rolling had inferior electrical conductivity to that of the present application, and Comparative Examples 3 to 6 in which the chemical composition did not satisfy the specified range of the present application were tensile strengths. Alternatively, at least one of the conductivity is inferior to that of the example, and some of the conductivity is inferior.
(Second embodiment)
This embodiment is an embodiment of the invention according to claims 6-9.
 表9に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 
[実施例101]
 表9の化学組成番号101のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で560℃5hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度450℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度221℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 9 were obtained by the DC casting method.
[Example 101]
The aluminum alloy slab having the chemical composition number 101 in Table 9 was chamfered. Next, the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 221 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度219℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は110℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 219 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after finish hot rolling was 110 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[実施例102~140、比較例101~106]
 表9に記載のアルミニウム合金スラブに面削を施した後、表10~表14に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例101と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 102 to 140, Comparative Examples 101 to 106]
After chamfering the aluminum alloy slab shown in Table 9, it was treated under the conditions shown in Tables 10 to 14 to obtain an aluminum alloy sheet. As in Example 101, in all Examples and Comparative Examples, homogenization and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the final hot hot rolling pass was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
 実施例115では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 115, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
 比較例101および比較例102では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例101および比較例102において、冷間圧延率は溶体化処理後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Example 101 and Comparative Example 102, a solution treatment was performed in which a heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 101 and Comparative Example 102, the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。 The tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 引張強さ、0.2%耐力、導電率、および加工性の評価結果を表15および表16に示す。 Tables 15 and 16 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本願規定の化学組成、引張強さ、および導電率を満足する実施例記載のAl-Mg-Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例101および比較例102は導電率が本願実施に劣り、化学組成が本願規定範囲を満足しない比較例103~比較例106は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。 The Al—Mg—Si alloy material described in the examples that satisfies the chemical composition, tensile strength, and conductivity specified in this application has good workability. On the other hand, Comparative Example 101 and Comparative Example 102 in which solution treatment was performed in the middle of cold rolling had inferior electrical conductivity to that of the present application, and Comparative Examples 103 to 106 whose chemical compositions did not satisfy the specified range were tensile strengths. Alternatively, at least one of the conductivity is inferior to that of the example, and some of the conductivity is inferior.
 
(第3の実施例)
 この実施例は、請求項10~16に係る発明についての実施例である。

(Third embodiment)
This embodiment is an embodiment of the invention according to claims 10 to 16.
 表17に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 
[実施例201]
 表17の化学組成番号201のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 17 were obtained by the DC casting method.
[Example 201]
The aluminum alloy slab having the chemical composition number 201 in Table 17 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C. immediately before the pass. An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[実施例202~242、比較例201~206]
 表17に記載のアルミニウム合金スラブに面削を施した後、表18~表22に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例201と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 202 to 242 and Comparative Examples 201 to 206]
After chamfering the aluminum alloy slab described in Table 17, treatment was performed under the conditions described in Table 18 to Table 22 to obtain an aluminum alloy plate. In addition, as in Example 201, homogenization and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final rough hot rolling pass was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
 実施例215では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 215, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.
 比較例201および比較例202では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例201および比較例202において、冷間圧延率は溶体化処理後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Example 201 and Comparative Example 202, a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 201 and Comparative Example 202, the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。 The tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl-Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。 In Examples and Comparative Examples, when the metal structure of the cross section of the Al—Mg—Si alloy plate in the thickness direction cut parallel to the rolling direction is exposed, the rolling surface normal of the metal structure observed with an optical microscope The metal structure in which the grain boundary in the direction is 3 lines / 100 μm or more and the grain boundary having a length in the rolling direction of 300 μm or more is defined as the fiber structure.
 金属組織を露出させる方法としては、Al-Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。 As a method for exposing the metal structure, the cross section of the Al—Mg—Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.
 引張強さ、0.2%耐力、導電率、および加工性の評価結果、およびAl-Mg―Si系合金板が繊維組織を有するか否かを表23および表24に示す。 Tables 23 and 24 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability, and whether the Al—Mg—Si based alloy sheet has a fiber structure.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 本願規定の化学組成、引張強さ、および導電率を満足し、繊維組織を有する実施例記載のAl-Mg-Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例201および比較例202は導電率が本願実施に劣り、化学組成が本願規定範囲を満足しない比較例203~比較例206は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。
(第4の実施例)
 この実施例は、請求項17~22に係る発明についての実施例である。
The Al—Mg—Si alloy materials described in the examples satisfying the chemical composition, tensile strength, and electrical conductivity specified in the present application and having a fiber structure have good workability. On the other hand, Comparative Example 201 and Comparative Example 202 in which solution treatment was performed in the middle of cold rolling had inferior electrical conductivity compared to the present application, and Comparative Examples 203 to 206 whose chemical compositions did not satisfy the specified range were tensile strengths. Alternatively, at least one of the conductivity is inferior to that of the example, and some of the conductivity is inferior.
(Fourth embodiment)
This embodiment is an embodiment of the invention according to claims 17-22.
 表25に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 
[実施例301]
 表25の化学組成番号301のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 25 were obtained by the DC casting method.
[Example 301]
The aluminum alloy slab having the chemical composition number 301 in Table 25 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C. immediately before the pass. An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
[実施例302~342、比較例301~306]
 表25に記載のアルミニウム合金スラブに面削を施した後、表26~表30に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例301と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 302 to 342, Comparative Examples 301 to 306]
After chamfering the aluminum alloy slab described in Table 25, it was treated under the conditions described in Table 26 to Table 30 to obtain an aluminum alloy plate. As in Example 301, homogenization treatment and heating before hot rolling were continuously performed in the same furnace in all Examples and Comparative Examples, and forced cooling after the final pass of rough hot rolling was performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.
 実施例315では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 315, the final pass of rough hot rolling was set as the final pass of hot rolling, and the finish hot rolling was not performed.
 比較例301および比較例302では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例301および比較例302において、冷間圧延率は溶体化処理後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。 In Comparative Example 301 and Comparative Example 302, a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 301 and Comparative Example 302, the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。 The tensile strength, 0.2% proof stress, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。 Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 引張強さ、0.2%耐力、導電率、および加工性の評価結果を表31および表32に示す。 Table 31 and Table 32 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 本願規定の化学組成、引張強さ、および導電率を満足する実施例記載のAl-Mg-Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例301および比較例302は導電率が本願実施に劣り、化学組成が本願規定範囲を満足しない比較例303~比較例306は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。
(第5の実施例)
  この実施例は、請求項23~32に係る発明についての実施例である。
The Al—Mg—Si alloy materials described in the examples satisfying the chemical composition, tensile strength, and electrical conductivity specified in the present application have good workability. On the other hand, Comparative Example 301 and Comparative Example 302 in which solution treatment was performed during the cold rolling had inferior electrical conductivity to that of the present application, and Comparative Examples 303 to 306 whose chemical compositions did not satisfy the prescribed range were tensile strengths. Alternatively, at least one of the conductivity is inferior to that of the example, and some of the conductivity is inferior.
(Fifth embodiment)
This embodiment is an embodiment of the invention according to claims 23-32.
 表33に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 
[実施例401]
 表33の化学組成番号401のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で560℃5hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度450℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃、厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
Aluminum alloy slabs having different chemical compositions shown in Table 33 were obtained by the DC casting method.
[Example 401]
The aluminum alloy slab having the chemical composition number 401 in Table 33 was chamfered. Next, the homogenized treatment at 560 ° C. for 5 hours was performed on the alloy slab after chamfering in a heating furnace, and then the pre-hot rolling at 540 ° C. for 4 hours was performed by changing the temperature in the same furnace. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は110℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、加工度98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after finish hot rolling was 110 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled with a workability of 98% to obtain an aluminum alloy plate with a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
[実施例402~445、比較例401~407]
 表33に記載のアルミニウム合金スラブに面削を施した後、表34~表39に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例401と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷、粗熱間圧延最終パス完了後に送風冷却する空冷、および強制冷却無しの中から選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 402 to 445, Comparative Examples 401 to 407]
The aluminum alloy slab described in Table 33 was chamfered and then treated under the conditions described in Table 34 to Table 39 to obtain an aluminum alloy plate. As in Example 401, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the rough hot rolling final pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
 実施例417では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 417, the final pass of the rough hot rolling was set as the final pass of the hot rolling, and the finish hot rolling was not performed.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 得られた合金板の引張強さ、導電率、加工性を以下の方法により評価した。 The tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さは、JIS5号試験片について、常温で常法により測定した。 Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 引張強さ、導電率、および加工性の評価結果を表34~表39に示す。 Tables 34 to 39 show the evaluation results of tensile strength, electrical conductivity, and workability.
 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後冷間圧延終了前の熱処理温度が120~195℃の範囲内である実施例では、引張強さおよび導電率が高い値を示し加工性も良好であるのに対し、熱間圧延終了直後の合金板の表面温度もしくは熱間圧延終了後冷間圧延終了前の熱処理温度の少なくともどちらかが本願規定範囲を満足しない比較例401、比較例402および比較例403は引張強さもしくは導電率のどちらかが実施例に劣る。また、Si含有量が実施例より少ない比較例404、Si含有量が実施例より多い比較例405、Mg含有量が実施例より少ない比較例406、およびMg含有量が実施例より多い比較例407も、引張強さもしくは導電率の少なくともどちらかが実施例に劣り、比較例405および比較例407は加工性も劣る。 In an embodiment in which the surface temperature of the Al—Mg—Si based alloy sheet immediately after the end of hot rolling is 170 ° C. or less, and the heat treatment temperature after the end of hot rolling and before the end of cold rolling is in the range of 120 to 195 ° C. On the other hand, while the tensile strength and electrical conductivity are high and workability is good, at least either the surface temperature of the alloy sheet immediately after the end of hot rolling or the heat treatment temperature after the end of hot rolling and before the end of cold rolling However, Comparative Example 401, Comparative Example 402, and Comparative Example 403, which do not satisfy the specified range of the present application, are inferior to those of Examples in terms of tensile strength or electrical conductivity. In addition, Comparative Example 404 having a lower Si content than the Examples, Comparative Example 405 having a higher Si content than the Examples, Comparative Example 406 having a lower Mg content than the Examples, and Comparative Example 407 having a higher Mg content than the Examples. However, at least one of tensile strength and electrical conductivity is inferior to the examples, and Comparative Example 405 and Comparative Example 407 are also inferior in workability.
(第6の実施例)
 この実施例は、請求項33~44に係る発明についての実施例である。
表40に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。 なお、希土類が含まれる化学組成番号20の鋳塊はミッシュメタルが含まれる原料を鋳造に用いた。
(Sixth embodiment)
This embodiment is an embodiment of the invention according to claims 33-44.
Aluminum alloy slabs having different chemical compositions shown in Table 40 were obtained by the DC casting method. In addition, the ingot of the chemical composition number 20 containing rare earth used the raw material containing misch metal for casting.
[実施例501]
 表40の化学組成番号501のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃4hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃3hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度450℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度220℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 501]
The aluminum alloy slab having the chemical composition number 501 in Table 40 was chamfered. Next, the homogenized treatment at 570 ° C. for 4 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 3 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./minute from the alloy plate temperature of 450 ° C. immediately before the pass, An alloy plate having a hot rolling temperature of 220 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.
 粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度218℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は110℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。 After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 218 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after finish hot rolling was 110 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
[実施例502~547、比較例501~507]
 表40に記載のアルミニウム合金スラブに面削を施した後、表41~表46に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例501と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷、粗熱間圧延最終パス完了後に送風冷却する空冷、および強制冷却無しの中から選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 502 to 547, Comparative Examples 501 to 507]
The aluminum alloy slab described in Table 40 was chamfered and then treated under the conditions described in Table 41 to Table 46 to obtain an aluminum alloy plate. As in Example 501, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling were continuously performed in the same furnace, and forced cooling after the final rough hot rolling pass was performed while rolling. It was selected from water cooling in which the alloy plate was moved and water was sprayed on the alloy plate sequentially from the upper and lower sides with respect to the part of the rolled alloy plate, air cooling to be blown and cooled after completion of the final hot hot rolling pass, and no forced cooling. In some examples, final annealing was performed after cold rolling.
 実施例517では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。 In Example 517, the final pass of rough hot rolling was set as the final pass of hot rolling, and the finish hot rolling was not performed.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 得られた合金板の引張強さ、導電率、加工性を以下の方法により評価した。 The tensile strength, conductivity, and workability of the obtained alloy plate were evaluated by the following methods.
 引張強さは、JIS5号試験片について、常温で常法により測定した。 Tensile strength was measured for JIS No. 5 specimens at room temperature by a conventional method.
 導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was obtained as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.
 加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。 As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside A radius test was performed with a radius of 0, and a bending test by the 6.3 V block method of JIS Z 2248 metal material bending test method was performed.
 引張強さ、導電率、および加工性の評価結果を表41~表46に示す。 Tables 41 to 46 show the evaluation results of tensile strength, electrical conductivity, and workability.
 本願規定の化学組成を有し、熱間圧延終了直後の合金板の表面温度が170℃以下であり熱間圧延終了後冷間圧延終了前の熱処理温度が120℃以上200℃未満の範囲内である実施例では、引張強さおよび導電率が高い値を示し加工性も良好であるのに対し、本願規定の化学組成、熱間圧延終了直後の合金板の表面温度もしくは熱間圧延終了後冷間圧延終了前の熱処理温度の少なくとも一つが本願規定範囲を満足しない比較例は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。 Within the range where the surface temperature of the alloy sheet immediately after the end of hot rolling is 170 ° C. or less and the heat treatment temperature after the end of hot rolling and before the end of cold rolling is 120 ° C. or more and less than 200 ° C. In some examples, the tensile strength and electrical conductivity are high and the workability is good, whereas the chemical composition specified in the present application, the surface temperature of the alloy sheet immediately after the hot rolling is finished, or the cold after the hot rolling is finished. In the comparative example in which at least one of the heat treatment temperatures before the end of the hot rolling does not satisfy the specified range of the present application, at least one of the tensile strength and the electrical conductivity is inferior to the examples, and the workability is inferior.
 本願は、いずれも2016年3月30日付で出願された日本国特許出願の特願2016-67345号、特願2016-67346号、特願2016-67349号、特願2016-67350号、特願2016-67353号および特願2016-67354号の優先権主張を伴うものであり、それらの開示内容は、そのまま本願の一部を構成するものである。 The present application is Japanese Patent Application No. 2016-67345, Japanese Patent Application No. 2016-67346, Japanese Patent Application No. 2016-67349, Japanese Patent Application No. 2016-67350, Japanese Patent Application, all of which were filed on March 30, 2016. This is accompanied by the priority claim of Japanese Patent Application No. 2016-67353 and Japanese Patent Application No. 2016-67354, and the disclosure content thereof constitutes a part of the present application as it is.
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are for illustrative purposes and are not to be construed as limiting, but represent any equivalent of the features shown and described herein. It should be recognized that various modifications within the claimed scope of the present invention are permissible.
 本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。 While this invention may be embodied in many different forms, this disclosure is to be considered as providing examples of the principles of the invention, which examples are hereby incorporated by reference. Many illustrated embodiments are described herein with the understanding that they are not intended to be limited to the preferred embodiments described and / or illustrated.
  本発明の実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。 Although several embodiments of the present invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, and is equivalent to what may be recognized by those skilled in the art based on this disclosure. It encompasses any and all embodiments that have elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements, and / or changes. Claim limitations should be construed broadly based on the terms used in the claims, and should not be limited to the embodiments described herein or in the process of this application, as such The examples should be construed as non-exclusive.
  この発明はAl-Mg-Si系合金材及び合金板の製造に利用することができる。 The present invention can be used for the production of Al—Mg—Si alloy materials and alloy plates.

Claims (44)

  1.  引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl-Mg-Si系合金材。 An Al—Mg—Si alloy material having a tensile strength of 280 MPa or more, electrical conductivity of 54% IACS or more, and a fiber structure.
  2.  化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる請求項1に記載のAl-Mg-Si系合金材。 The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, the balance Al and 2. The Al—Mg—Si based alloy material according to claim 1, comprising inevitable impurities.
  3.  不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている請求項2に記載のAl-Mg-Si系合金材。 3. The Al—Mg—Si based alloy material according to claim 2, wherein Mn, Cr, Zn, and Ti as impurities are regulated to 0.1% by mass or less.
  4.  0.2%耐力が230MPa以上である請求項1ないし請求項3の何れか1項に記載のAl-Mg-Si系合金材。 The Al-Mg-Si alloy material according to any one of claims 1 to 3, wherein the 0.2% proof stress is 230 MPa or more.
  5.  引張強さが285MPa以上である請求項1ないし請求項4の何れか1項に記載のAl-Mg-Si系合金材。 The Al-Mg-Si alloy material according to any one of claims 1 to 4, wherein the tensile strength is 285 MPa or more.
  6.  引張強さが280MPa以上、導電率が54%IACS以上であり厚さが0.9mm未満のAl-Mg-Si系合金板。 An Al—Mg—Si alloy plate having a tensile strength of 280 MPa or more, an electrical conductivity of 54% IACS or more, and a thickness of less than 0.9 mm.
  7.  化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる請求項6に記載のAl-Mg-Si系合金板。 The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, the balance Al and The Al—Mg—Si based alloy plate according to claim 6, comprising inevitable impurities.
  8.  不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている請求項7に記載のAl-Mg-Si系合金板。 8. The Al—Mg—Si based alloy plate according to claim 7, wherein Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1 mass% or less.
  9.  引張強さTS(MPa)と0.2%耐力YS(MPa)の差(TS―YS)が0MPa以上30MPa以下である請求項6ないし請求項8の何れか1項に記載のAl-Mg-Si系合金板。 9. The Al—Mg— composition according to any one of claims 6 to 8, wherein a difference (TS-YS) between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) is 0 MPa or more and 30 MPa or less. Si alloy plate.
  10.  化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl-Mg-Si系合金材。 The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, and further Ti: 0.1 mass% or less or B: containing at least one kind of 0.1 mass% or less, the balance consisting of Al and inevitable impurities, tensile strength of 280 MPa or more, conductivity of 54% IACS or more, Al-Mg-Si based alloy material.
  11.  不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項10に記載のAl-Mg-Si系合金材。 11. The Al—Mg—Si based alloy material according to claim 10, wherein Mn, Cr, and Zn as impurities are regulated to 0.1% by mass or less.
  12.  不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項10または請求項11に記載のAl-Mg-Si系合金材。 12. The Al—Mg—Si based alloy material according to claim 10 or 11, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05 mass% or less.
  13.  不純物としてのAgが0.05質量%以下に規制されている請求項10ないし請求項12の何れか1項に記載のAl-Mg-Si系合金材。 The Al-Mg-Si alloy material according to any one of claims 10 to 12, wherein Ag as an impurity is regulated to 0.05 mass% or less.
  14.  不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項10ないし請求項13の何れか1項に記載のAl-Mg-Si系合金材。 14. The Al—Mg—Si based alloy material according to any one of claims 10 to 13, wherein a total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
  15.  引張強さが285MPa以上である請求項10ないし請求項14の何れか1項に記載のAl-Mg-Si系合金材。 The Al-Mg-Si alloy material according to any one of claims 10 to 14, wherein the tensile strength is 285 MPa or more.
  16.  0.2%耐力が230MPa以上である請求項10ないし請求項15の何れか1項に記載のAl-Mg-Si系合金材。 The Al-Mg-Si alloy material according to any one of claims 10 to 15, wherein a 0.2% proof stress is 230 MPa or more.
  17.  化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり厚さ0.9mm未満のAl-Mg-Si系合金板。 The chemical composition contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less, and further Ti: Contains at least one of 0.1% by mass or less or B: 0.1% by mass or less, consists of the balance Al and inevitable impurities, has a tensile strength of 280 MPa or more, a conductivity of 54% IACS or more, and a thickness of 0 .Al-Mg-Si alloy plate of less than 9 mm.
  18.  不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項17に記載のAl-Mg-Si系合金板。 18. The Al—Mg—Si based alloy plate according to claim 17, wherein Mn, Cr, and Zn as impurities are respectively regulated to 0.1% by mass or less.
  19.  不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項17または請求項18に記載のAl-Mg-Si系合金板。 19. The Al—Mg—Si based alloy plate according to claim 17 or 18, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are regulated to 0.05% by mass or less, respectively.
  20. 不純物としてのAgが0.05質量%以下に規制されている請求項17ないし請求項19の何れか1項に記載のAl-Mg-Si系合金板。 20. The Al—Mg—Si based alloy plate according to any one of claims 17 to 19, wherein Ag as an impurity is regulated to 0.05% by mass or less.
  21.  不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項17ないし請求項20の何れか1項に記載のAl-Mg-Si系合金板。 21. The Al—Mg—Si based alloy plate according to any one of claims 17 to 20, wherein a total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
  22.  引張強さTS(MPa)と0.2%耐力YS(MPa)の差(TS―YS)が0MPa以上30MPa以下である請求項17ないし請求項19の何れか1項に記載のAl-Mg-Si系合金板。 The difference between the tensile strength TS (MPa) and the 0.2% proof stress YS (MPa) (TS-YS) is 0 MPa or more and 30 MPa or less, and the Al-Mg- composition according to any one of claims 17 to 19. Si alloy plate.
  23.  Al-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施するAl-Mg-Si系合金板の製造方法であって、熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl-Mg-Si系合金板の製造方法。 An Al—Mg—Si alloy sheet manufacturing method in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si alloy ingot, the Al—Mg—Si alloy sheet immediately after the end of hot rolling The surface temperature of the Al—Mg—Si alloy plate is heat-treated at a temperature of 120 ° C. or more and less than 200 ° C. after the end of the hot rolling and before the end of the cold rolling.
  24.  Al-Mg-Si系合金鋳塊の化学組成が、Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、残部Al及び不可避不純物からなる請求項23に記載のAl-Mg-Si系合金板の製造方法。 The chemical composition of the Al—Mg—Si alloy ingot is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 24. The method for producing an Al—Mg—Si based alloy plate according to claim 23, comprising at most% by mass, and comprising the balance Al and inevitable impurities.
  25.  不純物としてのMn、Cr、Zn、およびTiが、それぞれ0.1質量%以下に規制されている請求項24に記載のAl-Mg-Si系合金板の製造方法。 25. The method for producing an Al—Mg—Si based alloy plate according to claim 24, wherein Mn, Cr, Zn, and Ti as impurities are each regulated to 0.1% by mass or less.
  26.  熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する請求項23ないし請求項25の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 23 to 25, wherein the heat treatment is performed after the end of hot rolling and before the start of cold rolling.
  27.  熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下である請求項23ないし請求項26の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 27. The method for producing an Al—Mg—Si alloy plate according to any one of claims 23 to 26, wherein the surface temperature of the Al—Mg—Si alloy plate immediately after the end of hot rolling is 150 ° C. or less.
  28.  熱処理温度が130℃以上180℃以下である請求項23ないし請求項27の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 23 to 27, wherein the heat treatment temperature is 130 ° C or higher and 180 ° C or lower.
  29.  熱処理後冷間圧延の圧延率が20%以上である請求項23ないし請求項28の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 23 to 28, wherein a rolling rate of cold rolling after heat treatment is 20% or more.
  30.  冷間圧延後に最終焼鈍を実施する請求項23ないし請求項29の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 30. The method for producing an Al—Mg—Si based alloy sheet according to any one of claims 23 to 29, wherein final annealing is performed after cold rolling.
  31.  最終焼鈍の温度が180℃以下である請求項30に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to claim 30, wherein the final annealing temperature is 180 ° C or lower.
  32.  熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する請求項23ないし請求項31の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 Of the multiple passes of hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or after the pass and the pass 32. The method for producing an Al—Mg—Si based alloy plate according to claim 23, wherein the pass in which the average cooling rate by forced cooling is 50 ° C./min or more is performed at least once.
  33.  Si:0.2~0.8質量%、Mg:0.3~1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなるAl-Mg-Si系合金鋳塊に熱間圧延、冷間圧延を順次実施する合金板の製造方法であって、 熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が170℃以下であり、熱間圧延終了後であって冷間圧延終了前に120℃以上200℃未満の温度で熱処理を行うAl-Mg-Si系合金板の製造方法。 Si: 0.2 to 0.8% by mass, Mg: 0.3 to 1% by mass, Fe: 0.5% by mass or less and Cu: 0.5% by mass or less, and Ti: 0.1% by mass % Of alloy plate or B: 0.1% by mass or less of an alloy plate in which hot rolling and cold rolling are sequentially performed on an Al—Mg—Si based alloy ingot consisting of Al and inevitable impurities. A manufacturing method in which the surface temperature of an Al—Mg—Si alloy sheet immediately after the end of hot rolling is 170 ° C. or less, and after the end of hot rolling and before the end of cold rolling, is 120 ° C. or more and less than 200 ° C. A method for producing an Al—Mg—Si alloy plate, which is heat-treated at a temperature of 5 ° C.
  34.  不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項33に記載のAl-Mg-Si系合金板の製造方法。 34. The method for producing an Al—Mg—Si based alloy plate according to claim 33, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
  35.  不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項33または請求項34に記載のAl-Mg-Si系合金板の製造方法。 35. The production of an Al—Mg—Si based alloy plate according to claim 33 or claim 34, wherein Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are each regulated to 0.05 mass% or less. Method.
  36.  不純物としてのAgが0.05質量%以下に規制されている請求項33ないし請求項35の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 36. The method for producing an Al—Mg—Si based alloy plate according to any one of claims 33 to 35, wherein Ag as an impurity is regulated to 0.05 mass% or less.
  37.  不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項33ないし請求項36の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 37. The method for producing an Al—Mg—Si based alloy plate according to any one of claims 33 to 36, wherein a total content of rare earth elements as impurities is regulated to 0.1% by mass or less.
  38.  熱処理を熱間圧延終了後であって冷間圧延の開始前に実施する請求項33ないし請求項37の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 38. The method for producing an Al—Mg—Si based alloy sheet according to any one of claims 33 to 37, wherein the heat treatment is performed after the end of hot rolling and before the start of cold rolling.
  39.  熱間圧延終了直後のAl-Mg-Si系合金板の表面温度が150℃以下である請求項33ないし請求項38の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy plate according to any one of claims 33 to 38, wherein the surface temperature of the Al-Mg-Si alloy plate immediately after the end of hot rolling is 150 ° C or lower.
  40.  熱処理温度が130℃以上180℃以下である請求項33ないし請求項39の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 40. The method for producing an Al—Mg—Si based alloy plate according to any one of claims 33 to 39, wherein the heat treatment temperature is 130 ° C. or higher and 180 ° C. or lower.
  41.  熱処理後冷間圧延の圧延率が20%以上である請求項33ないし請求項40の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si alloy sheet according to any one of claims 33 to 40, wherein a rolling rate of cold rolling after heat treatment is 20% or more.
  42.  冷間圧延後に最終焼鈍を実施する請求項33ないし請求項41の何れか1項に記載のAl-Mg-Si系合金板の製造方法。 The method for producing an Al-Mg-Si based alloy sheet according to any one of claims 33 to 41, wherein final annealing is performed after cold rolling.
  43.  最終焼鈍の温度が180℃以下である請求項42に記載のAl-Mg-Si系合金板の製造方法。 43. The method for producing an Al—Mg—Si based alloy plate according to claim 42, wherein the final annealing temperature is 180 ° C. or lower.
  44.  熱間圧延の複数のパスのうち、パス直前のAl-Mg―Si系合金板の表面温度が470~350℃でありパスによるAl-Mg―Si系合金板の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを少なくとも1回実施する請求項33ないし請求項43の何れか1項に記載のAl-Mg-Si系合金板の製造方法。
     
    Of the multiple passes of hot rolling, the surface temperature of the Al—Mg—Si alloy plate immediately before the pass is 470 to 350 ° C., and the Al—Mg—Si alloy plate is cooled by the pass, or after the pass and the pass 44. The method for producing an Al—Mg—Si-based alloy plate according to claim 33, wherein the pass in which the average cooling rate by forced cooling is 50 ° C./min or more is performed at least once.
PCT/JP2016/088715 2016-03-30 2016-12-26 Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate WO2017168890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680082917.8A CN108699641B (en) 2016-03-30 2016-12-26 Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2016-067350 2016-03-30
JP2016067349A JP6774198B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy plate
JP2016067350A JP6833331B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy plate
JP2016067354A JP2017179451A (en) 2016-03-30 2016-03-30 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2016-067345 2016-03-30
JP2016-067346 2016-03-30
JP2016-067349 2016-03-30
JP2016-067354 2016-03-30
JP2016067346A JP6774197B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy material
JP2016067345A JP6774196B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy material
JP2016-067353 2016-03-30
JP2016067353A JP2017179450A (en) 2016-03-30 2016-03-30 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Publications (1)

Publication Number Publication Date
WO2017168890A1 true WO2017168890A1 (en) 2017-10-05

Family

ID=59963864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088715 WO2017168890A1 (en) 2016-03-30 2016-12-26 Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate

Country Status (3)

Country Link
CN (1) CN108699641B (en)
TW (1) TW201807210A (en)
WO (1) WO2017168890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039075A (en) * 2017-03-29 2019-03-14 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening component, spring component and structural component using the same
JP2020033605A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY SHEET
CN111041290A (en) * 2019-12-20 2020-04-21 比亚迪股份有限公司 Aluminum alloy and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039301B (en) * 2019-01-31 2022-10-11 古河电气工业株式会社 Aluminum alloy material, conductive member using same, battery member, fastening member, spring member, structural member, and rubber-insulated cable
WO2020158683A1 (en) * 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same
CN110257677A (en) * 2019-07-23 2019-09-20 江苏威腾电力科技有限公司 A kind of novel high thermal conductivity Al-Mg-Si alloy
CN111575556B (en) * 2020-07-07 2021-05-07 福建祥鑫股份有限公司 High-thermal-conductivity aluminum alloy and heat treatment process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353132A (en) * 1986-08-20 1988-03-07 アルキャン・インタ−ナショナル・リミテッド Contact conductor
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP2012062517A (en) * 2010-09-15 2012-03-29 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113318B2 (en) * 2004-04-13 2013-01-09 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
CN101638745B (en) * 2009-08-28 2012-07-04 沈阳工业大学 AlMgSi alloy sheet preparation method
CN103131905A (en) * 2013-03-06 2013-06-05 苏州有色金属研究院有限公司 Aluminum alloy for automotive body and heat treatment method thereof
CN107881384A (en) * 2017-11-28 2018-04-06 中铝材料应用研究院有限公司 A kind of high crimping, high baking and hardening performance aluminum alloy plate materials and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353132A (en) * 1986-08-20 1988-03-07 アルキャン・インタ−ナショナル・リミテッド Contact conductor
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP2012062517A (en) * 2010-09-15 2012-03-29 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039075A (en) * 2017-03-29 2019-03-14 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening component, spring component and structural component using the same
JP2020033605A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY SHEET
CN111041290A (en) * 2019-12-20 2020-04-21 比亚迪股份有限公司 Aluminum alloy and application thereof
CN111041290B (en) * 2019-12-20 2020-11-27 比亚迪汽车工业有限公司 Aluminum alloy and application thereof

Also Published As

Publication number Publication date
TW201807210A (en) 2018-03-01
CN108699641B (en) 2020-06-19
CN108699641A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6774196B2 (en) Al-Mg-Si based alloy material
CN110872664A (en) Al-Mg-Si alloy plate
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
CN110872665B (en) Al-Mg-Si alloy plate
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179449A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168892A1 (en) Method for producing al-mg-si alloy plate
JP6774197B2 (en) Al-Mg-Si based alloy material
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179450A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897105

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897105

Country of ref document: EP

Kind code of ref document: A1