JP2012062517A - Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same - Google Patents

Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same Download PDF

Info

Publication number
JP2012062517A
JP2012062517A JP2010207289A JP2010207289A JP2012062517A JP 2012062517 A JP2012062517 A JP 2012062517A JP 2010207289 A JP2010207289 A JP 2010207289A JP 2010207289 A JP2010207289 A JP 2010207289A JP 2012062517 A JP2012062517 A JP 2012062517A
Authority
JP
Japan
Prior art keywords
strength
alloy
conductivity
thermal conductivity
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207289A
Other languages
Japanese (ja)
Other versions
JP5555580B2 (en
Inventor
Junichi Mochizuki
淳一 望月
Sotaro Sekida
宗太郎 関田
Katsumi Koyama
克己 小山
Yoshikazu Suzuki
義和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2010207289A priority Critical patent/JP5555580B2/en
Publication of JP2012062517A publication Critical patent/JP2012062517A/en
Application granted granted Critical
Publication of JP5555580B2 publication Critical patent/JP5555580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based aluminum alloy rolled sheet excellent in thermal conductivity, strength and formability and a method of manufacturing the same by a simple and economical process without damaging a performance as a component for heat radiation.SOLUTION: An Al-Mg-Si-based alloy, which contains 0.1 to 0.34 mass% (described as%, hereinafter) Mg, 0.2 to 0.8% Si, and 0.22 to 1.0% Cu with the balance being Al and inevitable impurities and whose Si/Mg content ratio is ≥1.3, is turned to an ingot having a thickness of ≥250 mm by semicontinuous casting, subjected to hot rolling through preheating at the temperature of 400 to 540°C and cold rolling with the rolling reduction of 50 to 85%, and then annealed at the temperature of 140 to 280°C, to obtain the Al-Mg-Si-based alloy rolled sheet which has a fiber structure, and whose electric conductivity is ≥57.5%IACS and tensile strength is ≥180 N/mm.

Description

この発明は、熱伝導性、強度及び成形性に優れたAl−Mg−Si系合金圧延板及びその低コストでの製造方法に関するもので、特にプラズマディスプレイや液晶ディスプレイなどの電子映像機器、パソコンなどの電子情報機器や家庭用電化製品の放熱板、筐体、支持体、基板など熱拡散性を要する部品の素材として好適なAl−Mg−Si系合金圧延板に関するものである。   TECHNICAL FIELD The present invention relates to an Al—Mg—Si alloy rolled plate excellent in thermal conductivity, strength and formability, and a method for producing the same at low cost, and in particular, electronic video equipment such as plasma displays and liquid crystal displays, personal computers, etc. The present invention relates to an Al—Mg—Si alloy rolled plate suitable as a material for parts that require heat diffusibility, such as heat sinks, housings, supports, and substrates of electronic information devices and household appliances.

熱を発生する電子部品を多く用いる電子機器および電化製品で、さらなる高機能化と小型化、薄型化が進められており、内部温度の上昇を防止する熱設計の重要性が増している。   Electronic devices and electrical appliances that use a large amount of electronic components that generate heat are being further enhanced in function, size, and thickness, and the importance of thermal design that prevents an increase in internal temperature is increasing.

例えば、プラズマディスプレイは薄く、壁に掛けられる構造になっているために映像部品と電子部品とが高密度に集積している。映像部品は発光素子の集合体であり、高電圧が負荷されているために発熱量が多く、電子部品の温度を上昇させるので、ノイズの原因や最悪の場合は故障の原因となる。この故障を防ぐ目的で、映像部品と電子部品の間に放熱板を設置し、熱の分散・拡散機能を設けている。前記放熱板は厚さ0.5〜2.0mm程度の板材から成形されることが多く、その素材必要性能は高熱伝導率、高強度、かつ良好な成形性である。   For example, since a plasma display is thin and has a structure that can be hung on a wall, video components and electronic components are densely integrated. A video component is an aggregate of light emitting elements, and since a high voltage is loaded, it generates a large amount of heat and raises the temperature of the electronic component. This causes noise and, in the worst case, causes failure. In order to prevent this failure, a heat radiating plate is installed between the video component and the electronic component to provide a heat dispersion / diffusion function. The heat radiating plate is often formed from a plate material having a thickness of about 0.5 to 2.0 mm, and the necessary performance of the material is high thermal conductivity, high strength, and good formability.

本来、アルミニウムは鋼材より熱伝導性に優れ、軽量であり、プラズマディスプレイの放熱板を含め、液晶ディスプレイ、パソコン、携帯用電子機器、車載用電子機器などの放熱板、筐体、支持体、基板など熱拡散性が重要な用途に適した性質を持っている。但し、アルミニウム材の中でも純アルミニウム系、すなわちJIS1100、1050、1070合金等に代表される1000系合金では、熱伝導性は高いが、強度が低く、筐体、支持体など成形部品としては強度不足である。   Originally, aluminum has better thermal conductivity than steel, is lighter, and includes heat sinks for LCDs, personal computers, portable electronic devices, automotive electronic devices, housings, supports, and substrates, including heat sinks for plasma displays. It has properties suitable for applications where thermal diffusivity is important. However, among aluminum materials, pure aluminum, that is, 1000 series alloys represented by JIS1100, 1050, 1070 alloys, etc. have high thermal conductivity but low strength and are insufficient in strength as molded parts such as housings and supports. It is.

一方、より高い強度を有する材料としてはAl−Mg系のJIS5052合金やAl−Mn系の3003合金等が代表的であるが、これらの熱伝導性は1000系合金と比較すると低く、熱拡散性が特に要求される部品の素材としては適さない。そこで、ますます高機能化と小型化・薄型化が進む電子機器の熱対策には、熱伝達性及び強度ともに良好なアルミニウム合金板材が求められている。加えて、用いられる電子機器が世界的に多く使用されるものであり、板材製造に要するエネルギーやコストの観点から、余分な熱処理工程などを含まない簡略化された工程で、かつ量産に適した工程で、高熱伝達性と強度を実現できることが求められている。   On the other hand, Al-Mg-based JIS5052 alloy and Al-Mn-based 3003 alloy are typical examples of materials having higher strength, but their thermal conductivity is lower than that of 1000-based alloys, and thermal diffusivity. Is not suitable as a material for parts that are particularly required. In view of this, an aluminum alloy sheet having good heat transferability and strength is required as a heat countermeasure for electronic devices that are becoming more highly functional, smaller and thinner. In addition, electronic devices used are widely used around the world. From the viewpoint of energy and cost required for plate production, this is a simplified process that does not include an extra heat treatment process and is suitable for mass production. The process is required to achieve high heat transfer properties and strength.

このような高熱伝導性及び高強度をあわせ持つ材料として、Al−Mg−Si系合金の使用が考えられる。一般に、導電率及び熱伝導率間には顕著な正の相関性があり、導電率が高いほど熱伝導性も高い材料と言うことができる。もともとAl−Mg−Si系合金には、高強度電線用のJIS規格合金として導電率に優れた6101合金が存在する。非特許文献1によると、その組成は、Si:0.3〜0.7質量%(以下、合金組成については単に%と記載する。)、Mg:0.35〜0.8%で、Fe:0.5%以下、Cu、Zn:各0.l%以下、Mn、Cr:各0.03%以下、B:0.06%以下と規定されている。   As a material having such high thermal conductivity and high strength, use of an Al—Mg—Si based alloy is conceivable. In general, there is a significant positive correlation between electrical conductivity and thermal conductivity, and it can be said that the higher the electrical conductivity, the higher the thermal conductivity. Originally, Al-Mg-Si-based alloys include 6101 alloy having excellent conductivity as a JIS standard alloy for high-strength electric wires. According to Non-Patent Document 1, the composition is Si: 0.3 to 0.7% by mass (hereinafter referred to simply as “%” for the alloy composition), Mg: 0.35 to 0.8%, Fe : 0.5% or less, Cu, Zn: 0. 1% or less, Mn, Cr: 0.03% or less for each, B: 0.06% or less.

非特許文献2には、溶体化処理及び析出処理を経たT6材で導電率が57%IACSと高く、純アルミニウム系の1100−H18と同等の値を示す合金が開示されている。この合金の通常使用形態は押出あるいは引き抜きされた線であり、板材の強度と単純に置き換えられないが、T6材で221N/mmと純アルミニウム系では達成不可能な高い強度も持つ。このような特性が板材として実現できれば、熱伝導性も良好なため前記のような熱拡散性を必要とする部品の素材として好適と考えられる。 Non-Patent Document 2 discloses an alloy that is a T6 material that has undergone a solution treatment and a precipitation treatment and has a conductivity as high as 57% IACS and that is equivalent to that of pure aluminum-based 1100-H18. The normal use form of this alloy is an extruded or drawn wire, which cannot be simply replaced with the strength of the plate material, but has a high strength that cannot be achieved with a pure aluminum system at 221 N / mm 2 for the T6 material. If such a characteristic can be realized as a plate material, the thermal conductivity is good, so that it is considered suitable as a material for parts that require the above-mentioned thermal diffusivity.

但し、この合金を単純に板材とするには、溶体化処理などコストがかかる熱処理を必要とし、製造工程も複雑となる。強度を上げる析出処理後は成形性が落ちるが、それを避けて成形後に析出処理を行うこともまた煩雑である。   However, in order to simply use this alloy as a plate material, costly heat treatment such as solution treatment is required, and the manufacturing process becomes complicated. Although the formability deteriorates after the precipitation treatment for increasing the strength, it is also complicated to perform the precipitation treatment after the molding to avoid it.

一方、6101合金のような熱伝導率に優れたAl−Mg−Si合金を板材として製造するための技術が、いくつかの公知文献で提案されている。特許文献1に記載の発明は、組成としてSi:0.2〜0.8%、Mg:0.3〜0.9%、Fe:0.35%以下およびCu:0.20%以下を含有したAl−Mg−Si系合金を対象とし、熱間圧延の条件を規制することで優れた熱伝導性と強度を有するAl−Mg−Si系合金圧延板を得る方法を示している。   On the other hand, techniques for producing an Al—Mg—Si alloy having excellent thermal conductivity such as 6101 alloy as a plate material have been proposed in several known documents. The invention described in Patent Document 1 contains Si: 0.2 to 0.8%, Mg: 0.3 to 0.9%, Fe: 0.35% or less, and Cu: 0.20% or less as a composition A method for obtaining an Al—Mg—Si alloy rolled sheet having excellent thermal conductivity and strength by regulating the hot rolling conditions is shown.

合金組成自体は、6101合金の範囲を若干広げたに過ぎないが、熱間圧延に溶体化処理と同じ効果を持たせることにより、独立した溶体化処理を省略することを可能とする技術である。しかしながら、熱間粗圧延時の任意パス工程には非常に困難な制約(パス前の材料温度350〜440℃、パス間の冷却速度50℃/min以上、パス上り材料温度250〜340℃、上り板厚10mm以下)があり、これを実施するためには膨大な設備投資費用が必要となる。   The alloy composition itself is a technique that makes it possible to omit the independent solution treatment by giving the same effect as the solution treatment to hot rolling, although the range of the 6101 alloy is only slightly expanded. . However, it is a very difficult restriction for the optional pass process during hot rough rolling (material temperature 350-440 ° C. before pass, cooling rate between passes 50 ° C./min or more, pass up material temperature 250-340 ° C., up In order to implement this, enormous capital investment costs are required.

また、特許文献2及び3に記載の発明は、特許文献1と同様に6101合金類似の合金組成を対象とし、熱間圧延後の工程で追加的な中間焼鈍を必要とする。また、任意の熱間圧延パス前の材料温度と後の冷却速度を制御する請求項があり、実施例でもこの制御がすべてで行われており、煩雑な工程をとっている。   In addition, the inventions described in Patent Documents 2 and 3 are directed to an alloy composition similar to the 6101 alloy as in Patent Document 1, and require additional intermediate annealing in the process after hot rolling. Further, there is a claim for controlling the material temperature before an arbitrary hot rolling pass and the cooling rate after the hot rolling pass, and this control is performed in all the embodiments, and a complicated process is taken.

特許文献4に記載の発明では、組成としてSi:0.2〜1.5%、Mg:0.2〜1.5%、Cr:0.02〜0.1%、Fe:0.3%以下、Ti:0.015%以下のAl−Mg−Si合金についてのもので、Cu0.01〜1%など他の選択元素を添加した場合も記述されている。この特許の工程の一つの形態は、熱間圧延後、冷間圧延途中で500〜570℃の溶体化処理を行い、さらに規定の条件での冷間圧延後にさらに170〜210℃にて加熱焼鈍する煩雑なものである。   In the invention described in Patent Document 4, the composition is Si: 0.2 to 1.5%, Mg: 0.2 to 1.5%, Cr: 0.02 to 0.1%, Fe: 0.3% Hereinafter, it is about an Al-Mg-Si alloy with Ti: 0.015% or less, and the case where other selective elements such as Cu 0.01 to 1% are added is also described. One form of the process of this patent is that after hot rolling, a solution treatment at 500 to 570 ° C. is performed in the middle of cold rolling, and further heat annealing at 170 to 210 ° C. after cold rolling under specified conditions. It is a complicated thing to do.

特許文献4では、他の形態の工程、すなわち、熱間圧延後、冷間圧延途中で中間焼鈍を行わず、最終板厚まで冷間圧延し、180〜300℃に加熱する焼鈍を行って、導電率53%IACS以上の熱伝導率に優れた板材を得る方法も開示している。これは熱間圧延工程での条件規制、溶体化処理や冷間圧延工程途中での焼鈍なども無く簡単な製造方法と言えるが、この特許方法では、量産に適した大型の材料において安定して高熱伝達と強度を実現するための規定がなされておらず、完成された技術となっていない。   In Patent Document 4, other forms of the process, that is, after hot rolling, without performing intermediate annealing in the middle of cold rolling, cold rolling to the final plate thickness, and performing annealing to 180 to 300 ° C, Also disclosed is a method for obtaining a plate material having an excellent thermal conductivity of 53% IACS or more. This can be said to be a simple manufacturing method with no restrictions on conditions in the hot rolling process, solution treatment, and annealing in the middle of the cold rolling process, but this patented method is stable for large materials suitable for mass production. No provisions have been made to achieve high heat transfer and strength, and the technology has not been completed.

特許文献5に記載の発明では、組成としてSi:0.2〜1.5%、Mg:0.2〜1.5%、Ti:0.015超〜0.2%、さらにMnまたはCrを微量含むAl−Mg−Si系合金を対象とし、Cu0.01〜1%など他の選択元素を添加した場合も記述されている。比較的高い熱伝導性と、優れた強度と成形性を有しているものの、製造工程に連続焼鈍方式による溶体化処理(500〜570℃、冷却速度1.0℃/sec以上)を行っており、やはり高コストになってしまう。   In the invention described in Patent Document 5, the composition is Si: 0.2 to 1.5%, Mg: 0.2 to 1.5%, Ti: more than 0.015 to 0.2%, and Mn or Cr. A case where an Al-Mg-Si-based alloy containing a trace amount is targeted and another selective element such as Cu 0.01 to 1% is added is also described. Although it has relatively high thermal conductivity and excellent strength and moldability, solution treatment (500 to 570 ° C., cooling rate of 1.0 ° C./sec or more) is performed by a continuous annealing method in the manufacturing process. It will also be expensive.

特許文献6、7に記載の発明は、熱間圧延工程での規制、溶体化処理、時効焼鈍なども無く、簡単な製造方法を示している。しかし、記載の成分では更なる高熱伝導化を達成し、具体的には導電率57.5%IACS以上とし、かつ強度にも優れた圧延板とはなせないことがわかった。   The inventions described in Patent Documents 6 and 7 show a simple manufacturing method without any restrictions in the hot rolling process, solution treatment, and aging annealing. However, it has been found that the described components can achieve further higher thermal conductivity, specifically, a rolled sheet having an electrical conductivity of 57.5% IACS or more and excellent strength.

特許第3496263号公報Japanese Patent No. 3496263 特開2003−321755号公報JP 2003-321755 A 特開2009−102737号公報JP 2009-102737 A 特開2005−8926号公報Japanese Patent Laying-Open No. 2005-8926 特開2005−264174号公報JP 2005-264174 A 特開2008−248297号公報JP 2008-248297 A 特開2009−242813号公報JP 2009-242813 A

アルミニウムハンドブック第5版Aluminum handbook 5th edition METALS HANDBOOK TENTH EDITION VOL.2METALS HANDBOOK TENTH EDITION VOL. 2

この発明は以上の事情を背景としてなされたもので、放熱用部品としての性能は損なわずに簡便かつ経済的な工程により、熱伝導性と強度、成形性に優れたAl−Mg−Si系合金圧延板及びその製造方法を提供することを目的としている。   The present invention was made against the background of the above circumstances, and an Al-Mg-Si alloy excellent in thermal conductivity, strength, and formability by a simple and economical process without impairing the performance as a heat dissipation component. It aims at providing a rolled sheet and its manufacturing method.

本発明者らは、上記課題を解決すべき、以下の要件を満足するような簡易かつ低コスト、エネルギー消費の少ない製造方法で熱伝導性、強度及び成形性に優れるAl−Mg−Si系合金圧延板を得るべく鋭意検討を実施した。   The inventors of the present invention should solve the above-mentioned problems, and are an Al-Mg-Si-based alloy that is excellent in thermal conductivity, strength, and formability by a simple and low-cost production method that satisfies the following requirements. The earnest examination was carried out to obtain a rolled sheet.

・半連続鋳造→面削→予備加熱→熱間圧延→冷間圧延→焼鈍の単純な工程で行われることを前提とし、
・面削の前に独立した均質化処理を必要とせず、
・熱間圧延時に特に複雑な温度制御を要さず、
・中間焼鈍を必要とせず、
・冷間圧延を連続した3パス以内で行い、
・工程のどの時点でも溶体化処理を行わず、
・熱間圧延の予備加熱温度を560℃未満に低温化する。
・ Assuming that semi-continuous casting → facing → preheating → hot rolling → cold rolling → annealing
・ No need for independent homogenization before chamfering,
・ No complicated temperature control is required during hot rolling.
・ No need for intermediate annealing,
・ Cold rolling within 3 consecutive passes,
・ No solution treatment at any point in the process,
-Reduce the preheating temperature for hot rolling to less than 560 ° C.

また、小サイズの鋳塊で良好な特性が出ても、サイズアップして特性が下がるか安定しないような材料設定は、望ましくない。量産規模で熱伝導性と強度、成形性が良好な材料が安定して得られることが必要で、少なくとも厚さが250mm以上の量産規模の鋳塊から製造された板材で良好な特性が得られることが求められる。板材の表面欠陥が無いことも必要条件となる。   In addition, even if a small size ingot produces good characteristics, it is not desirable to set the material so that the characteristics increase or the characteristics decrease or become unstable. It is necessary to stably obtain a material with good thermal conductivity, strength and formability on a mass production scale, and good characteristics can be obtained with a plate material manufactured from an ingot of mass production scale with a thickness of at least 250 mm or more. Is required. It is also a necessary condition that there is no surface defect of the plate material.

本発明は、以上のような前提条件を満足するためになされたものであり、
請求項1記載の第1の発明は、Al−Mg−Si系合金圧延板において、Mgを0.1〜0.34%、Siを0.2〜0.8%、Cuを0.22〜1.0%含有し、残部がAl及び不可避的不純物からなり、Si/Mg含有量比が1.3以上であり、ファイバー組織を有し、導電率が57.5%IACS以上、引張強度180N/mm以上であることを特徴とする熱伝導性と強度と成形性に優れたAl−Mg−Si系合金圧延板である。
The present invention has been made to satisfy the above preconditions,
1st invention of Claim 1 is an Al-Mg-Si type alloy rolled sheet, Mg is 0.1-0.34%, Si is 0.2-0.8%, Cu is 0.22-0.2%. 1.0% content, the balance is made of Al and inevitable impurities, Si / Mg content ratio is 1.3 or more, has a fiber structure, conductivity is 57.5% IACS or more, and tensile strength is 180 N It is an Al—Mg—Si based alloy rolled plate excellent in thermal conductivity, strength and formability, characterized by being / mm 2 or more.

なお、前述のように、一般にアルミニウム合金の熱伝導性と導電率には正相関関係があるので、本発明の熱伝導性は導電率を代替特性として測定することにより評価した。したがって、以下の説明において、「導電率」への効果や影響が記載してあるところは、「熱伝導性」に対して同等の効果や影響があることを示している。   As described above, since there is generally a positive correlation between the thermal conductivity and conductivity of an aluminum alloy, the thermal conductivity of the present invention was evaluated by measuring the conductivity as an alternative characteristic. Therefore, in the following description, where an effect or influence on “conductivity” is described, it indicates that there is an equivalent effect or influence on “thermal conductivity”.

請求項2に記載の第2の発明は、請求項1記載の成分を有するAl−Mg−Si系合金を半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度での予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とするAl−Mg−Si系合金板の製造方法である。   According to a second aspect of the present invention, an Al—Mg—Si alloy having the component according to the first aspect is made into an ingot having a thickness of 250 mm or more by semi-continuous casting, and a preliminary operation at a temperature of 400 to 540 ° C. In the method for producing an Al-Mg-Si alloy sheet, which is subjected to hot rolling through heating and cold rolling at a reduction rate of 50 to 85%, followed by annealing at a temperature of 140 to 280 ° C. is there.

本発明によれば、適切な合金成分、製造工程により、熱伝導性、強度及び成形性に優れたAl−Mg−Si系合金圧延板を簡便かつ経済的な製造工程で得ることが可能であり、製造コストを低減することが可能である。また、量産に適した大型鋳塊を用いて、安定的に上記の良好な特性が得られる。   According to the present invention, it is possible to obtain an Al—Mg—Si alloy rolled sheet having excellent thermal conductivity, strength, and formability by a simple and economical manufacturing process with appropriate alloy components and manufacturing processes. It is possible to reduce the manufacturing cost. Moreover, the above-mentioned good characteristics can be stably obtained by using a large ingot suitable for mass production.

以下、より詳細に本発明内容を説明する。
本発明では、Al−Mg−Si系合金を溶体化処理の無い簡便な工程で板材とし良好な熱伝導性と強度を得るため、従来と異なる材料設計を行っている。導電率を上げるためには、添加元素であるMg、Si、Cuの固溶量を極力下げておく必要がある。これらの元素は、鋳造時には十分な析出時間が無いため、鋳塊中では相当量が固溶している。そのため高導電率の実現には、後の工程でこれらを十分に析出させることが求められる。
Hereinafter, the contents of the present invention will be described in more detail.
In the present invention, an Al—Mg—Si based alloy is used as a plate material in a simple process without solution treatment, and a material design different from the conventional one is performed in order to obtain good thermal conductivity and strength. In order to increase the conductivity, it is necessary to reduce the solid solution amount of additive elements Mg, Si, and Cu as much as possible. Since these elements do not have sufficient precipitation time at the time of casting, a considerable amount is dissolved in the ingot. Therefore, in order to achieve high conductivity, it is required to sufficiently deposit them in a later step.

次に、この発明における合金成分の限定理由について説明する。
合金中のMg、Si及びCuの量と各々の存在比を種々変化させ、熱伝導性及び強度・成形性が安定して良好になる条件を検討して適正な合金組成を選択した。Mg、Si及びCuについては、単なる添加量だけではなく、それぞれの量比を適正に選ぶ必要がある。
Next, the reasons for limiting the alloy components in the present invention will be described.
Various amounts of Mg, Si, and Cu in the alloy and respective abundance ratios were changed, and conditions for improving heat conductivity, strength and formability stably were examined, and an appropriate alloy composition was selected. About Mg, Si, and Cu, it is necessary to select not only the addition amount but also the respective amount ratios appropriately.

Mg:0.1〜0.34%
Mgはこの合金の強度と成形性の性能の確保に有用な必須添加元素である。ただし、比較的広い固溶限を持ち、また固溶した際に導電率を低下させる作用も大きい。0.34%を超えて含む場合、本発明の簡便な工程を前提とすると導電率の低下が大きく、量産規模材での特性ばらつきも大きくなる問題がある。一方、0.1%未満では強度の確保が難しい。したがって、Mg量の範囲は0.1〜0.34%であり、好ましいMg量の範囲は0.15〜0.3%である。なお、後述するようにMgについてはSi量との比で適正な範囲が存在する。
Mg: 0.1 to 0.34%
Mg is an essential additive element useful for ensuring the strength and formability of the alloy. However, it has a relatively wide solid solubility limit and also has a great effect of lowering the electrical conductivity when dissolved. In the case where the content exceeds 0.34%, assuming the simple process of the present invention, there is a problem that the decrease in the conductivity is large and the characteristic variation in the mass production scale material is also large. On the other hand, if it is less than 0.1%, it is difficult to ensure the strength. Therefore, the range of Mg amount is 0.1 to 0.34%, and the preferable range of Mg amount is 0.15 to 0.3%. As will be described later, there is an appropriate range for Mg with respect to the amount of Si.

Si:0.2〜0.8%
Siはこの合金の強度及び成形性の確保のために必須の元素である。0.8%を超えると導電率が低下し、更には他の添加元素と粗大な金属間化合物を生成し成形性の確保が難しくなる。一方で、0.2%未満では強度の確保が難しくなり、更には他元素との金属間化合物を形成せず固溶量が上昇し導電率が低下してしまう。したがってSi量の範囲は0.2〜0.8%とする。但し、ここで言及する金属間化合物とは主に時効処理により得られる強度上昇に寄与する微細化合物ではなく、合金鋳造時に生成した晶出物にあたる。好ましいSi量の範囲は、0.25〜0.7%である。
Si: 0.2 to 0.8%
Si is an essential element for ensuring the strength and formability of this alloy. If it exceeds 0.8%, the electrical conductivity will decrease, and other additive elements and coarse intermetallic compounds will be produced, making it difficult to ensure moldability. On the other hand, if it is less than 0.2%, it becomes difficult to ensure strength, and further, an intermetallic compound with other elements is not formed, and the amount of solid solution increases and the conductivity decreases. Therefore, the range of Si amount is 0.2 to 0.8%. However, the intermetallic compound mentioned here is not a fine compound that contributes to an increase in strength obtained mainly by aging treatment, but a crystallized product produced during alloy casting. A preferred Si content range is 0.25 to 0.7%.

Cu:0.22〜1.0%
Cuはこの合金の強度を確保するために必須の元素である。1.0%を超えると導電率と成形性の確保が難しい。一方で、0.22%未満では強度の確保が難しい。したがってCu量の範囲は0.22〜1.0%とする。更に好ましいCu量は、0.25〜0.8%である。
Cu: 0.22-1.0%
Cu is an essential element for securing the strength of the alloy. If it exceeds 1.0%, it is difficult to ensure conductivity and moldability. On the other hand, if it is less than 0.22%, it is difficult to ensure the strength. Therefore, the range of Cu content is 0.22 to 1.0%. A more preferable Cu amount is 0.25 to 0.8%.

Si/Mg含有比:1.3以上
本発明ではMgとSiおよびCuの含有量比を規定しており、この範囲にあれば導電率が高いアルミニウム合金板となせる。Si/Mg比がこれよりも低い値、つまり相対的にSi量が低いと、Mg及びSiを含む金属間化合物の生成量が少ないため最終的な板材中の固溶Mgが多くなることで導電率が低くなる傾向がある。また、この比が低いことで、量産規模材での位置による特性バラツキが大きくなる問題が生じる。これは、本発明の比較的Mg含有量の低い合金組成範囲で、Si/Mg比が低いと速やかな析出が起こりにくいため、量産規模の材料の部位による工程中熱履歴の違いを受けて析出状態が異なる可能性が高くなるためである。
Si / Mg content ratio: 1.3 or more In the present invention, the content ratio of Mg, Si and Cu is specified, and if it is within this range, an aluminum alloy plate having high conductivity can be obtained. When the Si / Mg ratio is lower than this, that is, when the Si amount is relatively low, the amount of intermetallic compound containing Mg and Si is small, so that the amount of solid solution Mg in the final plate material increases, so The rate tends to be low. Moreover, since this ratio is low, there arises a problem that the characteristic variation due to the position in the mass production scale material increases. This is an alloy composition range with a relatively low Mg content of the present invention, and when the Si / Mg ratio is low, rapid precipitation is unlikely to occur. This is because there is a high possibility that the states are different.

なお、Siも固溶量が増えると導電率を下げる作用を持つが、単位固溶量あたりの導電率低減作用はMgの場合より小さい。このため、Siを相対的に多めに含有することで両元素が若干固溶しても、Mgの固溶が減る効果が大きいため高導電率に対して有利に働く。Siの若干の固溶は強度向上にも寄与する。   Si also has an effect of lowering the electrical conductivity when the solid solution amount increases, but the electrical conductivity reducing effect per unit solid solution amount is smaller than that of Mg. For this reason, even if both elements are slightly dissolved by containing a relatively large amount of Si, the effect of reducing the solid solution of Mg is great, which works advantageously for high conductivity. Some solid solution of Si also contributes to strength improvement.

また、Si/Mg含有比の上限値は例えば8.0とすることができる。これを超えると、必然的にSiの添加量が上記規定の範囲を超えてしまうことになり、導電率を低下させてしまう結果となる   Moreover, the upper limit of Si / Mg content ratio can be set to 8.0, for example. Beyond this, the amount of Si inevitably exceeds the specified range, resulting in a decrease in conductivity.

規定した元素以外で、アルミニウム合金に一般的に添加あるいは含有される元素として、Feがある。Feはアルミニウムスクラップやアルミニウム地金に含有される不純物であり、通常、0.1%程度は含有されている。しかし、多量に含有されていると粗大なAl−Fe系金属間化合物を生成し、成形性が劣化する。また、導電率も低下する。したがってFe量は0.35%以下に規制されるのが望ましい。   In addition to the specified elements, there is Fe as an element generally added to or contained in the aluminum alloy. Fe is an impurity contained in aluminum scrap or aluminum ingot, and usually about 0.1% is contained. However, if it is contained in a large amount, a coarse Al—Fe-based intermetallic compound is produced, and the formability deteriorates. Also, the conductivity is lowered. Therefore, it is desirable that the Fe content be restricted to 0.35% or less.

他の元素としては、TiやBなどがある。Tiは鋳塊の結晶粒微細化に効果があり、鋳塊割れを防止する。添加量が多すぎるとAlTiが晶出して導電率の低下と成形性が劣化する要因となる。一方で、添加量が少なすぎると微細化の効果が十分に得られない。上記の理由から、Tiの添加量は一般的に0.005〜0.1%程度に規制されている。 Other elements include Ti and B. Ti is effective in refining the crystal grain of the ingot and prevents ingot cracking. If the amount added is too large, Al 3 Ti crystallizes, causing a decrease in electrical conductivity and deterioration in formability. On the other hand, if the addition amount is too small, the effect of miniaturization cannot be obtained sufficiently. For the above reasons, the amount of Ti added is generally regulated to about 0.005 to 0.1%.

また、鋳塊の結晶粒の微細化の効果を高めるためにBをTiと複合添加することも行われている。その場合、Bの添加量が多すぎるとTiBが生成して曲げ性が劣化する。一方で、Bの添加量が少なすぎると結晶粒微細化に効果が十分に得られない。一般的に0.0001〜0.05%程度に規制されている。 Further, in order to enhance the effect of refining the crystal grains of the ingot, B is added in combination with Ti. In that case, the addition amount is too large when the TiB 2 is generated bending of B deteriorates. On the other hand, if the amount of addition of B is too small, an effect cannot be sufficiently obtained for crystal grain refinement. Generally, it is regulated to about 0.0001 to 0.05%.

上記以外のMn、Zr、Crなどは再結晶粒微細化のために一般的に添加される合金元素であるが、導電率への影響が大きく、添加されないことが望ましい。ただし、一般的な不純物元素の上限値である各々0.05%までの含有であれば、本発明のAl−Mg−Si系合金圧延板の性能を損なうことはない。   Mn, Zr, Cr, and the like other than those described above are alloy elements that are generally added for recrystallized grain refinement, but they have a great influence on the electrical conductivity and are preferably not added. However, if the content is up to 0.05%, which is the upper limit value of general impurity elements, the performance of the Al—Mg—Si alloy rolled sheet of the present invention is not impaired.

次に本発明の諸特性について説明する。本発明においては焼鈍後の導電率を57.5%IACS、引張強度を180N/mm以上に規制している。導電率が57.5%IACSより低いと放熱用部品としての熱伝導性が不十分である。従って、57.5%IACS以上が好ましい。なお、上述したように、熱伝導性を導電率で代替して説明するのは、一般にアルミニウム合金の熱伝導性と導電率には正相関関係があることに起因するものである。 Next, various characteristics of the present invention will be described. In the present invention, the electrical conductivity after annealing is regulated to 57.5% IACS, and the tensile strength is regulated to 180 N / mm 2 or more. When the electrical conductivity is lower than 57.5% IACS, the thermal conductivity as a heat radiating component is insufficient. Therefore, 57.5% IACS or more is preferable. In addition, as described above, the reason why the thermal conductivity is replaced with the electrical conductivity is explained because there is generally a positive correlation between the thermal conductivity and the electrical conductivity of the aluminum alloy.

また、引張強度が180N/mmより低いと放熱用部品としての強度が不十分となる。従って、180N/mm以上とした。なお、代表的な純アルミニウム材であるA1100では加工硬化で強度を上げたH18の状態で、導電率が57%IACS、引張強さが165N/mmであり、本発明の規定はこれと同等以上の導電率(熱伝導性)と、純アルミニウムで到達不可能な高強度を意味するものである。 On the other hand, if the tensile strength is lower than 180 N / mm 2 , the strength as a heat radiating component becomes insufficient. Therefore, it was set to 180 N / mm 2 or more. A1100, which is a typical pure aluminum material, has an electrical conductivity of 57% IACS and a tensile strength of 165 N / mm 2 in the state of H18 that has been increased in strength by work hardening. The above conductivity (thermal conductivity) means high strength that cannot be achieved with pure aluminum.

次にこの発明のAl−Mg−Si系合金圧延板の製造方法について説明する。先ず、常法に従い半連続鋳造法により、前記合金成分を有するAl−Mg−Si系合金の厚さ250mm以上の鋳塊を得る。この鋳塊寸法の規定は量産を効率的に行うために必要である。   Next, the manufacturing method of the Al-Mg-Si type alloy rolled sheet of this invention is demonstrated. First, an ingot having a thickness of 250 mm or more of an Al—Mg—Si based alloy having the alloy component is obtained by a semi-continuous casting method according to a conventional method. The regulation of the ingot size is necessary for efficient mass production.

熱間圧延前には、性能の向上、性能バラツキを少なくする目的で均質化処理を行うことが多いが、本発明においては、鋳塊の面削の前に独立した均質化処理を行わない。上記目的の熱処理は、面削の後に熱間圧延の予備加熱を400〜540℃の温度で実施することにより代わりとする。400℃未満では後の熱間圧延が困難になるため不適当であり、540℃を越えると鋳塊中で局部的な溶融が起こる可能性があり不適当である。熱間圧延の予備加熱温度は560℃未満とすることで、さらにコストおよびエネルギー消費の低減のために望ましく、特性上も問題が無い。   Prior to hot rolling, homogenization is often performed for the purpose of improving performance and reducing performance variations, but in the present invention, independent homogenization is not performed before chamfering of the ingot. The heat treatment for the above purpose is replaced by carrying out hot rolling preheating at a temperature of 400 to 540 ° C. after chamfering. If it is less than 400 ° C., it is not suitable because subsequent hot rolling becomes difficult, and if it exceeds 540 ° C., local melting may occur in the ingot, which is inappropriate. The preheating temperature for hot rolling is less than 560 ° C., which is desirable for further reducing cost and energy consumption, and there is no problem in characteristics.

熱間圧延は常法に従った方法で行えばよく、熱間圧延条件に特に制限はない。一般的には熱間仕上げ圧延は板厚10mm以下で300℃以下の終了温度になることが多い。   Hot rolling may be performed by a method according to a conventional method, and the hot rolling conditions are not particularly limited. In general, hot finish rolling often has an end temperature of 300 ° C. or less at a plate thickness of 10 mm or less.

熱間圧延が終了した後には冷間圧延を行う。これは熱間圧延板に対し加工を加え、強度を向上させるために行う。この冷間圧延は50〜85%の圧延率で行う。経済的な観点から、冷間圧延は3パス以内、望ましくは2パス以内で行い、途中での中間焼鈍は行わない。冷間圧延の圧延率が、50%未満であると高い強度が確保できない。また、85%を超えると、経済的なパス数で実施した場合に、表面模様欠陥のヘリンボンが発生しやすく不適当である。   After the hot rolling is finished, cold rolling is performed. This is done to improve the strength by processing the hot rolled sheet. This cold rolling is performed at a rolling rate of 50 to 85%. From an economical point of view, cold rolling is performed within 3 passes, preferably within 2 passes, and no intermediate annealing is performed. If the rolling rate of cold rolling is less than 50%, high strength cannot be secured. On the other hand, if it exceeds 85%, a herringbone having a surface pattern defect is likely to occur when it is carried out with an economical number of passes, which is inappropriate.

本発明の合金では最終焼鈍後の組織がファイバー組織になっていることが、組織上の特徴となっている。ファイバー組織とは、熱間圧延あるいは冷間圧延に伴い加えられた塑性加工により伸ばされた結晶粒の中に、転位が高密度に集中した組織である。本発明の合金では、冷間圧延後に部分あるいは完全再結晶が起きないような条件で焼鈍を行うために、焼鈍後にファイバー組織を有しており、高い強度を維持できる。   The alloy according to the present invention is characterized in that the structure after the final annealing is a fiber structure. The fiber structure is a structure in which dislocations are concentrated at high density in crystal grains stretched by plastic working applied during hot rolling or cold rolling. Since the alloy of the present invention is annealed under conditions that do not cause partial or complete recrystallization after cold rolling, it has a fiber structure after annealing and can maintain high strength.

冷間圧延を行った後は、焼鈍を140〜280℃の範囲で行う。140℃未満の焼鈍では軟化が不十分であり、曲げ性が不足する。280℃を超える温度での焼鈍では軟化が進行しすぎるために強度が不十分となる。また、焼鈍時間は1時間より短い時間では効果が少なく、48時間より長時間では軟化が飽和し経済的に不利になる。   After cold rolling, annealing is performed in the range of 140 to 280 ° C. Annealing below 140 ° C. results in insufficient softening and insufficient bendability. In annealing at a temperature exceeding 280 ° C., the strength becomes insufficient because of excessive softening. The annealing time is less effective when the time is shorter than 1 hour, and softening is saturated when the time is longer than 48 hours, which is economically disadvantageous.

また、前記焼鈍は圧延板を軟化させるために行うものであるが、通常の6000系合金のように時効硬化のために行うわけではない。6000系合金を含む熱処理型アルミニウム合金では、一般的に溶体化処理を施し時効硬化を行い強度と導電率の確保を図る。すなわち、溶体化処理を行うことによって、後の150℃を越えるような熱処理は必然的に時効処理としての作用効果を奏することになる。しかし、本発明においては溶体化処理を行っていないので、後の上述した温度範囲の熱処理は上述したように、単に焼鈍として合金の軟化させるために行うものである。   The annealing is performed to soften the rolled sheet, but is not performed for age hardening as in a normal 6000 series alloy. In heat-treatable aluminum alloys including 6000 series alloys, solution treatment is generally performed and age hardening is performed to ensure strength and electrical conductivity. That is, by performing the solution treatment, the subsequent heat treatment exceeding 150 ° C. necessarily has an effect as an aging treatment. However, since the solution treatment is not performed in the present invention, the heat treatment in the temperature range described above is performed simply to anneal and soften the alloy as described above.

また、本製造方法では、溶体化処理を行わないことで低コスト化を図ることが可能となる。   Moreover, in this manufacturing method, it becomes possible to achieve cost reduction by not performing solution treatment.

表1の合金番号1〜16に示す合金を、常法にて溶解し各々を半連続鋳造法にて厚さ450mm×幅1080mm×長さ2800mmの鋳塊に鋳造した。なお、以下の表ではすべて、本発明規定を外れる条件については、斜体字で表し区別した。   The alloys shown in Alloy Nos. 1 to 16 in Table 1 were melted by a conventional method, and each was cast into an ingot having a thickness of 450 mm, a width of 1080 mm, and a length of 2800 mm by a semi-continuous casting method. In all of the following tables, conditions that deviate from the provisions of the present invention are shown in italics and distinguished.

得られた鋳塊は表面の約15mmを面削し、予備加熱して熱間圧延、冷間圧延及び最終焼鈍の工程で板厚1mmあるいは1.5mm、幅1000mmの板材(コイル)とした。表2に製造工程条件を示す。これらの熱延予備加熱温度の保持時間は4〜6hとし、熱延上がり時の材料温度は250〜300℃の範囲に入っていた。冷間圧延はすべて2パスで行なったもので、表2中の圧延率は冷間圧延前の板厚を基準とした総圧下率である。評価用の材料は、コイルの長手および幅の中央から採取した。   The obtained ingot was chamfered about 15 mm on the surface and preheated to obtain a plate material (coil) having a plate thickness of 1 mm or 1.5 mm and a width of 1000 mm in the steps of hot rolling, cold rolling and final annealing. Table 2 shows the manufacturing process conditions. The holding time of these hot rolling preheating temperatures was 4 to 6 hours, and the material temperature at the time of hot rolling was in the range of 250 to 300 ° C. All of the cold rolling was performed in two passes, and the rolling rate in Table 2 is the total rolling reduction based on the plate thickness before cold rolling. The material for evaluation was taken from the center of the length and width of the coil.

Figure 2012062517
No.1〜16は微細化剤成分として他にTi 0.01%, B0.002%を含む。
Figure 2012062517
No. 1-16 contain 0.01% of Ti and 0.002% of B in addition as a fine agent component.

Figure 2012062517
Figure 2012062517

導電率は圧延方向と平行に板厚×50mm×長さ1000mm(測定基準長さ500mm)の試験片を採取し、ダブルブリッジ法により比抵抗値を測定し、標準銅の比抵抗値を100として算出した。   Conductivity is taken in parallel with the rolling direction by taking a specimen of plate thickness x 50 mm x length 1000 mm (measurement reference length 500 mm), measuring the specific resistance value by the double bridge method, and setting the specific resistance value of standard copper as 100 Calculated.

また引張強度は、JISZ2201に定める5号引張試験片にて圧延方向に直角方向の引張強度を求めた。   In addition, the tensile strength was determined in the direction perpendicular to the rolling direction using a No. 5 tensile test piece defined in JISZ2201.

本発明の合金は成形をして用いることが多い。そのため、圧延方向に対し直角方向(曲げ性の劣る方向)に切り出したJIS2204に定める3号曲げ試験片にて90°曲げ試験を実施し、その結果を成形性とした。90°曲げ試験は、内側曲げ半径を2.0mmとして行い、10倍のルーペで観察し、割れが発生しなければ合格(○)、割れが発生したものは不合格(×)とした。   The alloy of the present invention is often used after being formed. Therefore, a 90 ° bending test was performed on a No. 3 bending test piece defined in JIS 2204 cut in a direction perpendicular to the rolling direction (a direction inferior in bendability), and the result was regarded as formability. The 90 ° bending test was performed with an inner bending radius of 2.0 mm, and was observed with a 10-fold magnifier. If no crack was generated, the test was accepted (O), and if the crack was generated, the test was rejected (X).

導電率、引張強度、成形性の評価結果を表3に示す。   Table 3 shows the evaluation results of conductivity, tensile strength, and formability.

Figure 2012062517
Figure 2012062517

表3において本発明で規定する合金成分かつ製造工程の条件を満足した発明例は、いずれもが導電率が57.5%IACS以上で引張強度180N/mm以上かつ良好な成形性を有しており、導電率即ち熱伝導性と強度と成形性を兼ね備えた材料であることが明らかである。 In Table 3, all of the invention examples satisfying the alloy components and manufacturing process conditions defined in the present invention have a conductivity of 57.5% IACS or more, a tensile strength of 180 N / mm 2 or more, and good formability. It is clear that the material has both conductivity, that is, thermal conductivity, strength, and moldability.

一方、比較例の1−Gは冷間圧延時の冷間圧延率が不足したために、ファイバー組織を得ることが出来ず、引張強度が低下し、強度を確保できなかった例である。   On the other hand, 1-G of Comparative Example is an example in which the fiber structure could not be obtained because the cold rolling rate at the time of cold rolling was insufficient, the tensile strength was lowered, and the strength could not be secured.

1−Hは最終焼鈍温度が低すぎたために、回復がほとんど起きずに成形性を確保できなかった例である。   1-H is an example in which the final annealing temperature was too low, so that almost no recovery occurred and formability could not be ensured.

1−Iは最終焼鈍温度が高すぎ、部分或いは完全再結晶が起きてしまい、強度不足した例である。   1-I is an example in which the final annealing temperature is too high and partial or complete recrystallization occurs, resulting in insufficient strength.

1−Jは冷間圧延率が高すぎた例で、冷間圧延後の表面で異常な模様(ヘリンボン)が生じたため、後の評価に供さなかった。   1-J was an example in which the cold rolling rate was too high, and an abnormal pattern (herringbone) was generated on the surface after cold rolling, so it was not subjected to subsequent evaluation.

1−Kは、熱延予備加熱温度が低すぎた例で、熱間圧延時に材料割れが生じたため、後の評価に供さなかった。また、1−Lは熱間圧延の予備加熱を規定以上の温度で行なった場合であり、鋳塊中で局部的な溶融が生じて均一な組織が得られないため、後の工程に進まず評価に供さなかった。   1-K was an example in which the hot rolling preheating temperature was too low, and material cracking occurred during hot rolling, so it was not subjected to subsequent evaluation. In addition, 1-L is a case where the preheating of the hot rolling is performed at a temperature higher than a specified temperature, and local melting occurs in the ingot and a uniform structure cannot be obtained. We did not use for evaluation.

また10−AはSi量が少なすぎ規定するSi/Mg比も満足していないために、導電率が低下してしまった。   Moreover, since 10-A does not satisfy the Si / Mg ratio which prescribes | regulates too little Si amount, the electrical conductivity fell.

11−AはSi量が多すぎたために、導電率が低下してしまった。また、金属間化合物を多く生成してしまい、曲げ性も低下した。   Since 11-A had too much Si, the conductivity decreased. Moreover, many intermetallic compounds were produced | generated and the bendability also fell.

12−AはMg量が少なすぎたために、強度が低下してしまった。   The strength of 12-A was lowered because the amount of Mg was too small.

13−AはMg量が多すぎたために、導電率が低下してしまった。   Since 13-A contained too much Mg, the conductivity decreased.

14−AはCu量が少なすぎたために、強度が低下してしまった。   In 14-A, the amount of Cu was too small, so the strength was lowered.

15−AはCu量が多すぎたために、導電率が低下してしまった。また、曲げ性も低下してしまった。   Since the amount of Cu in 15-A was too large, the conductivity decreased. Moreover, the bendability has also deteriorated.

16−AはSi/Mg含有比が1.00であり、本発明で規定する1.3よりも低い。導電率は57%IACSより低くなっている。   16-A has a Si / Mg content ratio of 1.00, which is lower than 1.3 defined in the present invention. The conductivity is below 57% IACS.

また、比較として市販品A1100P−H18およびA3003P−H18の評価結果も表3に記載した。前者は特に強度が不足し、後者は導電率が不足しているため、どちらも放熱用部品材としての性能が不足している。このことからも、本発明のAl−Mg−Si系合金圧延板は、導電率つまり熱導電性、強度、成形性を兼ね備えた材料であることが明らかである。   For comparison, the evaluation results of commercial products A1100P-H18 and A3003P-H18 are also shown in Table 3. In particular, the former has insufficient strength, and the latter has insufficient conductivity, so that both have insufficient performance as heat-dissipating component materials. Also from this, it is clear that the Al—Mg—Si alloy rolled sheet of the present invention is a material having conductivity, that is, thermal conductivity, strength, and formability.

表4に合金組成のみをさらに変化させた場合の実施例と比較例を示す。ここでは、量産規模の半連続鋳造装置で作成した400×1080×2500mmの鋳塊を用い、実施例1の工程A(表2)と同様の条件で1mm厚の板材として評価に供した。評価用の材料は、コイルの長手および幅の中央から採取した。   Table 4 shows examples and comparative examples when only the alloy composition is further changed. Here, a 400 × 1080 × 2500 mm ingot created by a mass production scale semi-continuous casting apparatus was used, and it was subjected to evaluation as a plate material having a thickness of 1 mm under the same conditions as in Step A (Table 2) of Example 1. The material for evaluation was taken from the center of the length and width of the coil.

なお、表4中の合金は、表記組成以外に、Fe0.12〜0.14%を含み、鋳造微細化剤由来のTi0.01%、B0.002%を含み、残部がAlと他の不可避的な不純物元素からなる。   The alloys in Table 4 contain Fe 0.12 to 0.14% in addition to the indicated composition, include 0.01% Ti and B0.002% derived from the casting finer, and the balance is Al and other inevitable Made of typical impurity elements.

Figure 2012062517
Figure 2012062517

発明例は組成規定範囲の上限および下限を含むが、すべて導電率57.5%以上、引張り強さ180N/mm以上の良好な値を示し、優れた導電率即ち熱伝導性と強度を兼ね備えた材料となっている。比較例では、強度か導電率のいずれかで劣る結果になっている。 Inventive examples include the upper and lower limits of the composition-defined range, but all show good values of electrical conductivity of 57.5% or more and tensile strength of 180 N / mm 2 or more, and have excellent electrical conductivity, that is, thermal conductivity and strength. It has become a material. In the comparative example, either strength or conductivity is inferior.

表5の合金を量産規模の半連続鋳造装置を用い、250×1050×2500mmあるいは400×1050×2500mmの鋳塊とした。これを、表6の製造条件(M、N、O)で熱間圧延、冷間圧延および最終焼鈍して厚さ1mmで幅970mmの板とした。これらの材料の長さ約500mのコイルについて、前端、長さ中央、後端の幅中央、幅端で、導電率と強度の評価を行った。なお、前端、後端の材料とは、端の形状不正および圧延開始および終了の速度非定常域を除いた、通常使用部の前端および後端を意味する。   The alloys shown in Table 5 were made into ingots of 250 × 1050 × 2500 mm or 400 × 1050 × 2500 mm using a mass production scale semi-continuous casting apparatus. This was hot rolled, cold rolled, and finally annealed under the production conditions (M, N, O) shown in Table 6 to obtain a plate having a thickness of 1 mm and a width of 970 mm. About the coil of about 500 m in length of these materials, electrical conductivity and intensity | strength were evaluated in the front end, the center of length, the width center of the rear end, and the width end. In addition, the material of the front end and the rear end means the front end and the rear end of the normal use portion excluding the irregular shape of the end and the unsteady speed range at the start and end of rolling.

比較として実験規模の半連続鋳造装置を用い80×200×250mmの鋳塊とし、以降の工程も実験規模装置を用いて厚さ1mmの板を得た(表6、工程P)。これについても約10mの長さの板の各部位で特性の評価を行った。   For comparison, a semi-continuous casting apparatus on an experimental scale was used to obtain an ingot of 80 × 200 × 250 mm, and a plate having a thickness of 1 mm was obtained using the experimental scale apparatus in the subsequent processes (Table 6, process P). Also about this, the characteristic was evaluated in each site | part of the board about 10 m in length.

表7、表8に導電率および強度の評価結果を示す。合金組成が本発明規定の場合、量産規模である250mm厚あるいは400mm厚の鋳塊を用いた場合でも、材料部位によらず安定して優れた導電率即ち熱伝導性と強度を兼ね備えた材料となっている。量産規模の材料では、材料サイズが大きいことから、部位により鋳塊組織や、熱間圧延などの工程中に受ける熱履歴および加工がかなり異なることで、添加元素の固溶、析出の状態の差による部位間特性差が生じやすい。本発明組成では部位間の析出状態の差を抑えることに成功している。本発明規定内のSi、Mg量で、特にSi/Mg比を1.3以上にすることで、Mgの析出を遅滞なく生じ、量産規模材の部位特性差が有効に抑制される。   Tables 7 and 8 show the evaluation results of conductivity and strength. When the alloy composition is stipulated in the present invention, even when a 250 mm or 400 mm thick ingot, which is a mass production scale, is used, a material having stable and excellent conductivity, that is, thermal conductivity and strength, regardless of the material portion, It has become. For mass-scale materials, the material size is large, so the ingot structure and the thermal history and processing experienced during processes such as hot rolling differ significantly depending on the site, resulting in differences in the state of solid solution and precipitation of additive elements. Differences in characteristics between parts are likely to occur. The composition of the present invention succeeds in suppressing the difference in the precipitation state between the parts. By setting the Si / Mg ratio within the provisions of the present invention to a Si / Mg ratio of 1.3 or more, Mg precipitation occurs without delay, and the difference in the site characteristics of mass-produced materials is effectively suppressed.

合金組成が本発明規定を外れMg含有量が高くSi/Mg比の低い比較合金40では、量産規模の工程Oによった場合、材料中の部位により導電率あるいは強度の差異が生じている。特に導電率は、57.5%に達しない部位が存在している。   In the comparative alloy 40 in which the alloy composition deviates from the provisions of the present invention and the Mg content is high and the Si / Mg ratio is low, there is a difference in conductivity or strength depending on the part in the material when the mass production scale process O is performed. In particular, there are sites where the electrical conductivity does not reach 57.5%.

また、Si,Mg量が本発明規定を超える合金41−Oは、全体に導電率が低く、特性の部位間差異も大きい。   In addition, the alloy 41-O in which the amounts of Si and Mg exceed the provisions of the present invention has a low electrical conductivity as a whole, and has a large difference between characteristics.

なお、サイズの小さい実験規模の鋳塊を元にする工程Pでは、本発明を外れる合金40でも本発明範囲の合金38と同様に導電率、強度が安定している。このことから、材料の部位間の特性差が課題になるのは、特に量産規模の工程を用いた場合であることがわかる。本発明以前の技術ではこの課題が意識もされていないので、当然そのための解決手段を含んでいない。   It should be noted that, in the process P based on an ingot of a small experimental scale, the conductivity and strength are stable even in the alloy 40 that deviates from the present invention, like the alloy 38 within the scope of the present invention. From this, it is understood that the characteristic difference between the parts of the material becomes a problem particularly when a mass production process is used. Since the technology prior to the present invention is not aware of this problem, it naturally does not include a solution.

Figure 2012062517
Figure 2012062517

Figure 2012062517
Figure 2012062517

Figure 2012062517
Figure 2012062517

Figure 2012062517
Figure 2012062517

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   While the present invention has been described in detail based on the above specific examples, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

本発明で得られた熱伝導性と強度と成形性に優れたAl−Mg−Si系合金圧延板は、特定の用途での使用に限定されるものではないが、プラズマディスプレイなど映像電子部品、パソコンなどの電子部品などの使用に好適であり、工業上顕著な効果を奏するものである。   The Al—Mg—Si based alloy rolled plate excellent in thermal conductivity, strength and formability obtained in the present invention is not limited to use in a specific application, but is a video electronic component such as a plasma display, It is suitable for the use of electronic parts such as a personal computer, and has a remarkable industrial effect.

Claims (2)

Al−Mg−Si系合金圧延板において、Mgを0.1〜0.34質量%(以下、%と記す)、Siを0.2〜0.8%、Cuを0.22〜1.0%含有し、残部がAl及び不可避的不純物からなり、Si/Mg含有量比が1.3以上であり、ファイバー組織を有し、導電率が57.5%IACS以上、引張強度180N/mm以上であることを特徴とする、熱伝導性、強度及び成形性に優れたAl−Mg−Si系合金圧延板。 In an Al-Mg-Si alloy rolled sheet, Mg is 0.1 to 0.34% by mass (hereinafter referred to as%), Si is 0.2 to 0.8%, and Cu is 0.22 to 1.0. %, The balance is made of Al and inevitable impurities, the Si / Mg content ratio is 1.3 or more, it has a fiber structure, the conductivity is 57.5% IACS or more, and the tensile strength is 180 N / mm 2. An Al—Mg—Si alloy rolled sheet excellent in thermal conductivity, strength, and formability, characterized by the above. 請求項1記載の成分を有するAl−Mg−Si系合金圧延板の製造方法であって、
Mgを0.1〜0.34質量%(以下、%と記す)、Siを0.2〜0.8%、Cuを0.22〜1.0%含有し、残部がAl及び不可避的不純物からなり、Si/Mg含有量比が1.3以上であるAl−Mg−Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度での予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする、Al−Mg−Si系合金圧延板の製造方法。
A method for producing an Al-Mg-Si alloy rolled sheet having the component according to claim 1,
0.1 to 0.34% by mass of Mg (hereinafter referred to as%), 0.2 to 0.8% of Si, 0.22 to 1.0% of Cu, the balance being Al and inevitable impurities An Al—Mg—Si based alloy having a Si / Mg content ratio of 1.3 or more is made into an ingot having a thickness of 250 mm or more by semi-continuous casting, and subjected to preheating at a temperature of 400 to 540 ° C. A method for producing an Al-Mg-Si alloy rolled sheet, characterized by performing hot rolling and cold rolling at a reduction rate of 50 to 85%, followed by annealing at a temperature of 140 to 280 ° C.
JP2010207289A 2010-09-15 2010-09-15 Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same Active JP5555580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207289A JP5555580B2 (en) 2010-09-15 2010-09-15 Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207289A JP5555580B2 (en) 2010-09-15 2010-09-15 Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012062517A true JP2012062517A (en) 2012-03-29
JP5555580B2 JP5555580B2 (en) 2014-07-23

Family

ID=46058533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207289A Active JP5555580B2 (en) 2010-09-15 2010-09-15 Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5555580B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179450A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179451A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168890A1 (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
CN108300879A (en) * 2018-01-30 2018-07-20 广西南南铝加工有限公司 Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process
CN110872664A (en) * 2018-08-30 2020-03-10 昭和电工株式会社 Al-Mg-Si alloy plate
CN115011848A (en) * 2022-05-11 2022-09-06 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof
CN115198213A (en) * 2022-08-10 2022-10-18 华南理工大学 Composite thermomechanical treatment method for regulating and controlling conductivity and mechanical property of aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005008926A (en) * 2003-06-18 2005-01-13 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) * 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005008926A (en) * 2003-06-18 2005-01-13 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179450A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179451A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
WO2017168890A1 (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
CN108300879A (en) * 2018-01-30 2018-07-20 广西南南铝加工有限公司 Electric vehicle bus-bars conductor Al-Mg-Si alloy thin plate preparation process
CN110872664A (en) * 2018-08-30 2020-03-10 昭和电工株式会社 Al-Mg-Si alloy plate
CN115011848A (en) * 2022-05-11 2022-09-06 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof
CN115198213A (en) * 2022-08-10 2022-10-18 华南理工大学 Composite thermomechanical treatment method for regulating and controlling conductivity and mechanical property of aluminum alloy
CN115198213B (en) * 2022-08-10 2022-12-13 华南理工大学 Composite thermomechanical treatment method for regulating and controlling conductivity and mechanical property of aluminum alloy

Also Published As

Publication number Publication date
JP5555580B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5555580B2 (en) Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same
JP6462662B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
JP2007009262A (en) Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
WO2016047617A1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
TWI443205B (en) High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP6147167B2 (en) Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness
JP2008057046A (en) Silver containing copper alloy
JP2008013836A (en) High-strength copper alloy sheet showing little anisotropy, and manufacturing method therefor
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
WO2010016429A1 (en) Copper alloy material for electrical/electronic component
KR20040081812A (en) PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2005264174A (en) Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2010059543A (en) Copper alloy material
JP5254764B2 (en) Al-Mg-Si alloy material
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2009242813A (en) Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2017179449A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP4130613B2 (en) Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof
JP4933326B2 (en) Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5555580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150