JP2005008926A - Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method - Google Patents

Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method Download PDF

Info

Publication number
JP2005008926A
JP2005008926A JP2003172872A JP2003172872A JP2005008926A JP 2005008926 A JP2005008926 A JP 2005008926A JP 2003172872 A JP2003172872 A JP 2003172872A JP 2003172872 A JP2003172872 A JP 2003172872A JP 2005008926 A JP2005008926 A JP 2005008926A
Authority
JP
Japan
Prior art keywords
aluminum alloy
conductivity
formability
cold rolling
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172872A
Other languages
Japanese (ja)
Other versions
JP4130613B2 (en
Inventor
Yoshinobu Komiyama
慶信 込山
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2003172872A priority Critical patent/JP4130613B2/en
Publication of JP2005008926A publication Critical patent/JP2005008926A/en
Application granted granted Critical
Publication of JP4130613B2 publication Critical patent/JP4130613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet as a material having excellent electric conductivity, thermal conductivity, formability and strength and further having superior appearance quality and suitably used for plasma displays, electronic parts, etc. <P>SOLUTION: The aluminum alloy sheet has a composition which consists of 0.2 to 1.5% Si, 0.2 to 1.5% Mg, 0.02 to 0.1% Cr, ≤0.3% Fe and the balance Al with inevitable impurities and in which Ti among the inevitable impurities is controlled to ≤0.015%. In the case where priority is put on electric conductivity, cold rolling is done without performing process annealing in the course of the cold rolling and then annealing at >180 to 300°C is carried out. In the case where priority is put on strength, solution treatment at 500 to 570°C is done in the course of cold rolling and successively cold rolling at 5 to 15% final cold rolling rate is performed and then annealing at 170 to 210°C is carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマディスプレーなどの電子映像部品、パソコンなどの電子部品、一般家庭用電化製品部品などに好適であり、特に放熱板、筺体としての使用に好適な、熱伝導性と成形性に優れたアルミニウム合金板および該アルミニウム合金板の製造方法に関するものである。
【0002】
【従来の技術】
プラズマディスプレーは、映像を映し出す映像部分と電子部品が集積した部分とで構成され、機能面から薄く壁にかけられる構造となっているために映像部分と電子部品は近接した構造となり、電子部品への熱的影響を最小限とする必要がある。映像を映し出す映像部分の発光機構は高電圧が負荷されるために発熱量が多く周囲への影響は避けられない。また、鮮明な映像を映し出すプラズマディスプレーの発熱は電気回路として機能する構造物への導電率を変化させるため、正確に調整された電子回路へのノイズの原因となるばかりでなく、使用されている半導体電子部品に重大な影響を及ぼす可能性が高い。このために映像部分の発熱から高い機能を誇る電子部品を保護する目的で、映像部分と電子部品集積部分との間に導電率と放熱効果の高い材料で製作した放熱部品を置き、映像部分の発熱を分散し局部への加熱を避ける放熱機構が必要とされる。
【0003】
Al−Si−Mg合金は合金成分により、その材料の性能に大きく及ぼすために要求性能に合わせ自動車用外板材料として広く利用されている。また、Al−Si−Mg合金の特徴として圧延条件、熱処理条件を調整することにより高い導電率が確保できることが非特許文献1や特許文献1、2に示されている。このような高い導電率に着目して電線やブスバーにAl−Si−Mg合金が使用されている。さらに最近では導電率の高い材料は同時に高い熱伝導性が確保されることから上記したプラズマディスプレーの放熱板材料としてAl−Si−Mg合金が広く利用されている。導電率と熱伝導率は、図1に示すように高い相関を示し、導電率の高い材料は熱伝導性が高い材料と言うことが出来る。すなわち、導電率の高いAl−Si−Mg合金は、これら電子部品集積部に対し、映像部分の発熱を遮蔽し、拡散するための放熱部材としては最も適した材料といえる。
【0004】
【非特許文献1】
“最近の導電用アルミニウム合金について”、住友電気技報、昭和53年1月発行、第112号
【特許文献1】
特開2000−226628号公報
【特許文献2】
特開2000−87198号公報
【0005】
【発明が解決しようとする課題】
上記のような放熱部材には、優れた導電率と熱伝導率と同時に、映像部分と電子部品の集積部分との中間に位置するため構造部材としての機能が要求され、強度と成形性が放熱部品の必要な条件となる。
しかし、現在、これらプラズマディスプレー用の部品に使用されている放熱板用材料は導電率の向上と強度の確保に重点が置かれ、部品形状を確保する量産性に優れたプレス成形性との両立は十分でなく、形状を決める上で大きな制約条件となっている。特にプレス成形時の予ひずみ導入後の曲げ加工では曲げ外周部分に割れ発生が避けられず周囲の形状にはなじまない大きな曲げ半径で曲げ加工する必要があった。また、強度の確保は電子機器等に組み込んだ後構造物としての強度、さらに衝突等によるきず、変形防止等の機能が必要であり、強度面を重視した場合にも熱伝導性、導電率に優れ、且つ成形性と高い強度が確保できる軽量なAl−Si−Mg合金の開発が待たれている。
また、従来、Ai−Si−Mg合金の成形後の外観品質を確保する上で鋳造時にTi或いはTi−Bを結晶粒径の微細化剤として使用している。しかし、これらの微細化剤の添加は導電率低下に大きく影響することが明らかになった。しかし、外観品質の維持も重要であり、導電率の低下を招くことなく外観品質を確保することも求められている。
【0006】
本発明は、上記事情を背景としてなされたものであり、熱伝導率、導電率、強度を確保するとともに、プレス成形性能と曲げ加工性に優れたアルミニウム合金板およびその製造方法を提供することを基本的な目的とする。さらに導電率の低下を招くことなく外観品質を確保することができるアルミニウム合金板およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明の熱伝導性と成形性に優れたアルミニウム合金板のうち、請求項1記載の発明は、質量%で、Si:0.2〜1.5%、Mg:0.2〜1.5%、Cr:0.02〜0.1%、Fe:0.3%以下を含有し、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiが0.015%以下に規制され、かつ導電率が50%IACS以上、熱伝導率が200w/m・K以上であることを特徴とする。
【0008】
請求項2記載の熱伝導性と成形性に優れたアルミニウム合金板の発明は、請求項1記載の発明において、さらに、Cu:0.01〜1%を含有することを特徴とする。
【0009】
請求項3記載の熱伝導性と成形性に優れたアルミニウム合金板の発明は、請求項1または2に記載の発明において、電気・電子部品用の放熱板または筐体に用いられることを特徴とする。
【0010】
請求項4記載の熱伝導性と成形性に優れたアルミニウム合金板の製造方法の発明は、請求項1または2に記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で中間焼鈍を行わずに最終板厚まで冷間圧延し、該冷間圧延後、180℃超〜300℃に加熱する焼鈍を行って、導電率が53%IACS以上、熱伝導率が200w/m・K以上であるアルミニウム合金板を得ることを特徴とするアルミニウム合金板の製造方法。
【0011】
請求項5記載の熱伝導性と成形性に優れたアルミニウム合金板の製造方法の発明は、請求項1または2に記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で500〜570℃の溶体化処理を行い、続いて最終冷延率5〜15%の冷間圧延後、170〜210℃に加熱する焼鈍を行って、導電率が50%IACS以上、熱伝導率が200w/m・K以上、耐力が200MPa以上であるアルミニウム合金板を得ることを特徴とする。
【0012】
なお、本発明のアルミニウム合金板を発明するに際し、Ai−Si−Mg合金の導電率と熱伝達性を確保するための合金成分に着目し検討を行なった結果、スラブ鋳造時に行なうTiまたはTi−Bの結晶粒微細化剤の添加が導電率を阻害する原因であることを明らかにした。本発明のアルミニウム合金板では、結晶粒径の微細化は成形加工の際の肌荒れの発生を抑制するために必要な性質であるため、Tiに替わるものとしてCr微量添加による結晶粒径の微細化を行い、導電率、熱伝導性、成形性に優れた特性を得ている。
【0013】
また、本発明の製造方法は、溶体化処理の負荷は強度向上には有効になるものの導電率低下は避けられないことから、冷間圧延中間工程における溶体化処理と最終低温焼鈍を組み入れることにより高い導電率と強度が確保できることを見出すことにより完成した。成形性の確保には、冷間圧延加工率(冷延率)を最適に調整することで安定した成形性能の確保が可能になり、高い導電率、熱伝導性に優れ、成形性、強度を備えた電子機器や放熱板用に適した材料を得ることができる。
【0014】
また、導電率は圧延率、熱処理条件の影響を強く受けることから、強度、成形性を確保する上で熱処理条件を最適に調整する必要があり、本発明の他の製造方法では、冷間圧延工程の中間に溶体化処理を組み入れ、強度を確保すると同時に溶体化処理後の冷間圧延率を15%以下に調整するものとしてプレス成形などの加工性と強度、導電率に優れたAl−Mg−Si系合金の製造を可能にした。
なお、上記2つの製造方法は、導電率を重視する場合と強度を重視する場合とにおいて適宜に選択することができる。
【0015】
合金成分他
次に、本発明のアルミニウム合金板およびその製造方法で規定する合金成分と結晶粒径について説明する。
【0016】
Si:0.2〜1.5%
SiとMgは、この合金の強度、成形性、導電率などの特性を確保する上で重要な成分になる。Si量はMg量とのバランスで成形後の部品強度を確保するが1.5%を超える範囲では特に導電率への影響が大きく、また曲げ加工性を阻害する要因になる。一方、Si量が0.2%未満であると成形後の強度不足の原因となる。したがってSi量を0.2〜1.5%の範囲内とする。なお、同様の理由で下限を0.4%、上限を1.1%とするのが望ましい。
【0017】
Mg:0.2〜1.5%
Mgは引張強さを向上させプレス成形における割れ限界を向上させ、部品強度を確保する上で有効な成分になる。Mg含有量の向上は強度向上に有効になるが1.5%を超える範囲では特に導電率の大きな阻害要因となる。また0.2%を下回る添加では強度の確保が難しい。したがって、Mg含有量を0.2〜1.5%の範囲内とする。なお、同様の理由で下限を0.4%、上限を0.8%とするのが望ましい。
【0018】
Cr:0.02〜0.1%
Crの微量添加は結晶粒径の微細化に有効であり、Ti、Ti−Bの微細化効果に匹敵する効果が期待できる。ただし、0.1%を超えると導電率に影響する可能性があり、成形性への障害となる。また、0.02%未満では結晶粒径の微細化効果は期待できない。したがって、Cr含有量を0.02〜0.1%の範囲内とする。なお、同様の理由で下限を0.04%、上限を0.06%とするのが望ましい。
【0019】
Ti:0.015%以下
前述したようにTiの含有は導電性の大きな阻害要因になり、良好な導電性、熱伝導性確保が困難になるため、無添加もしくはできるだけ含有量を少なくする必要があり、0.015%以下に規制する。すなわち、鋳塊鋳造時に結晶粒径の微細化を目的としたTiおよびTi−Bの微細化剤としての使用は避けるか極力少なくするのが望ましい。その結果としてTi含有量を0.015%以下に規制することができる。また、同様の理由でTi含有量を0.005%未満とするのが望ましい。Ti,Ti−Bの微細化処理なしでは熱間圧延後の圧延組織は粗いものとなり、冷間圧延および調質焼鈍後の成形性に悪影響を及ぼすが、前述したようにCrの適量添加によってこのような問題の発生は避けている。
【0020】
Fe:0.3%以下
Feは、結晶粒径の微細化効果が期待できるが0.3%を超えると成形性への阻害要因となる。したがってFe含有量は0.3%以下とする。なお、上記作用を十分に得るためには、Fe含有量は0.2%以上とするのが望ましい。
【0021】
Cu:0.01〜1%
Cuは、強度と成形性を確保するため所望により含有させる。ただし、1%を越えると成形性及び導電率低下要因となり、0.01%未満では上記作用を十分に得られない。したがって、Cu含有量を0.01〜1%の範囲内とする。なお、同様の理由で下限を0.02%、上限を0.2%とするのが望ましい。
【0022】
Mn:0.1%以下
Mnの添加はFe,Crと鋳造時に初晶を発生させる場合があるが鋳造条件を十分管理することにより解消でき、0.1%以下でも結晶粒径の微細化効果が期待できる。したがって、所望によりMnを0.1%以下含有させる。なお、上記作用を十分に得るためには、Mn含有量は0.04%以上とするのが望ましい。
【0023】
製造条件
(導電率重視の場合)
1.冷間圧延中の中間焼鈍を行わない。
冷間圧延中の中間焼鈍は、結晶粒径の粗大化と強度不足原因となる可能性があり、また生産性への問題があるために強度及び成形性を重視する場合には、冷間圧延中の中間焼鈍は行わないものとする。
【0024】
2.冷間圧延後焼鈍(180℃超〜300℃)
冷間圧延後の焼鈍を行うことにより、導電率と成形加工性を確保する。この際の加熱温度が180℃以下であると充分な導電率、曲げ加工性の向上の効果が得られず、300℃を越えると強度が低下するため、この焼鈍での加熱温度は180℃超300℃以下とする。なお、同様の理由で下限温度を180℃超、上限温度を240℃とするのが望ましい。なお、焼鈍は例えば10時間以下で行うことができる。
上記製造方法により得られたアルミニウム合金板は、導電率が53%IACS以上、熱伝導率が200w/m・K以上の特性を得ることができる。
【0025】
製造条件
(強度重視の場合)
1.冷間圧延途中での溶体化処理(500〜570℃)
最終板厚から換算し、5〜15%の冷延率を残して溶体化処理を施す。このときの溶体化処理条件は500℃〜570℃の温度範囲とする。溶体化処理温度が500℃未満であると、充分な溶体化処理効果は得られず、また、570℃を越える温度では共晶溶融が発生する。また、同様に理由で下限を540℃、上限を570℃とするのが望ましい。溶体化処理後は、例えば空冷または水冷により5℃/sec以上の冷却速度で焼入れを行なう。冷却速度が5℃/sec未満では焼き入れ効果が十分に得られない。溶体化処理によって溶質原子の固溶量が多くなり、最終の焼鈍工程で時効による強度を向上させる事が出来る。
【0026】
溶体化処理後、冷延率5〜15%の冷間圧延を行う。該圧延の目的は、主に導電率と強度の確保にあり、圧延率5%未満では溶体化処理により低下した導電率の改善は充分得られず、強度も200MPaを下回るものとなる。15%を超える圧延では成形加工性の障害となる。したがって、溶体化処理後の冷延率は5〜15%の範囲内にあるようにする。
【0027】
2.冷間圧延後焼鈍(170〜210℃)
冷間圧延を行なった後に焼鈍を行い析出による強度の向上と同時に導電率と成形加工性を確保する。焼鈍温度170℃未満では充分な曲げ加工性能は得られず、210℃を超える条件では導電率の向上は得られるものの強度の低下は避けられない。したがって、この焼鈍での加熱温度は170〜210℃とする。
【0028】
【発明の実施の形態】
以下に、本発明の実施形態を説明する。
本発明に用いるアルミニウム合金は、所定の成分となるように調整して常法により溶製することができ、本発明としては溶製に至る工程が特に限定されるものではない。ただし、鋳造時には、鋳塊の微細化のためにTiまたはTi−Bの結晶粒微細化剤の添加を避けるか添加量を少なくしてTi含有量が0.015%を越えないようにする。
【0029】
上記で溶製されるアルミニウム合金は熱間圧延され、さらに冷間圧延を繰り返し所定の板厚のアルミニウム合金板とする。
上記で得られた鋳塊は、熱間圧延に先立って均質化処理を行うのが望ましい。均質化処理は540℃〜560℃の温度範囲で4hr以上20hr以下の条件で行うことができる。該条件は、鋳造時の合金成分を均一に分散させることを目的に定められる。
【0030】
続く熱間圧延は圧延温度による成形性を確保するために圧延中の温度は、480℃〜550℃とすることができる。熱間圧延温度480℃未満では圧延荷重が高く、圧延中の耳割れの原因になり、550℃を超える温度では圧延ロール表面への焼きつきを発生させる。そして、熱間圧延では、圧延後の材料温度が250℃〜350℃になるように調整し行うのが望ましい。
その後、冷間圧延により所定の板厚とする。強度を重視する場合には、上記のように冷間圧延中に5〜15%の冷延率を残して500〜570℃の温度で溶体化処理を施す。なお、導電率を重視する場合には、冷間圧延中の焼鈍を行わない。
冷間圧延後には、導電率と成形加工性を確保するために、バッチ式焼鈍炉、または連続焼鈍炉により焼鈍を行う。この焼鈍における加熱温度は、導電率を特に重視するか、強度を特に重視するかによって異なり、導電率を特に重視する場合には、180℃超300℃以下で焼鈍を行って53%IACS以上の導電率と良好な成形性を確保する。一方、特に強度を重視する場合には、170℃〜210℃の焼鈍を行って、200MPa以上の強度と50%IACS以上の導電率と良好な成形性を確保する。
得られたアルミニウム合金板は、特定の用途での使用に限定されるものではないが、好適には電子映像部品、電子部品、一般家庭用電化製品部品などに使用され、特にこれら用途における放熱板、筺体としての使用に適している。
【0031】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
実施例1
半連続鋳造により表1に示す合金成分で厚さ44mm、幅250mm、長さ400mmのスラブを鋳造し、560℃×8hrの均質化処理後、面削片面5mmを行なった。面削後510℃まで加熱を行い熱間圧延にて厚さ7.0mm(圧延後温度300℃)の板材を得、さらに冷間圧延により厚さ1.0mm×幅180mmの板材を製作した。これをマッフル炉により加熱温度を変えて4時間の焼鈍処理を行ない、上記で得られた試験材についてJISH4000に定める5号試験片を圧延方向と平行に採取し、引張強さ、耐力、伸び率を測定した。また、成形性については圧延方向と平行に採取した幅20mmの試験片を用い、内側曲げ半径0.5mm、180°曲げを行い、試験後の曲げ外周面の割れ、肌荒れの状況を目視で1〜5の5段階の評価を行なった。すなわち、以下の評価基準によって判定した。
評価1: 良好な外周面
評価2: 微かに外周面に肌荒れを観測
評価3: 肌荒れの発生(合格)
評価4: 微かにネッキングの発生
評価5: ネッキング、割れの発生
また、導電率の測定は圧延方向と平行に板厚×幅10mm×長さ550mmの試験片を採取し、ダブルブリッジ法により比抵抗を測定し、純銅の比抵抗値を100として導電率を算出した。上記各試験結果は、表2に示した。
【0032】
表2に示した発明例では、190℃以上の焼鈍処理でいずれも純アルミニウム合金1100−H24を超える高い導電率(53%IACS以上)を確保することができ、強度、曲げ加工性においても優れた特性が確保された。一方、比較例の供試材は、導電率や強度、曲げ加工性のいずれかにおいて明らかに劣っている。また、発明用合金を用いて比較条件によって製造した比較条件例の供試材は、一部において焼鈍温度が低いことによって充分な曲げ加工性が得られなかった。また、焼鈍温度が350℃になると、結晶粒径の粗大化により肌アレの発生が顕在化した。
【0033】
【表1】

Figure 2005008926
【0034】
【表2】
Figure 2005008926
【0035】
実施例2
半連続鋳造により表3および表1の一部に示す合金成分で厚さ44mm、幅250mm、長さ400mmのスラブを鋳造し、560℃×8hrの均質化処理後、面削片面5mmを行なった。面削後510℃まで加熱を行い熱間圧延にて厚さ7.0mmの板材を得、冷間圧延により厚さ1.05〜1.2mm×幅180mmの板材を製作した。これを加熱速度5℃/min以上で昇温させ、560℃×40secの溶体化処理後、5℃/sec以上の冷却速度で焼入れを行なった。再び冷間圧延により厚さ1.00mm×幅180mm×Lの板材を得た。圧延後、マッフル炉により加熱温度を変えて4hrの焼鈍処理を行ない試験材とした。上記で得られた試験材についてJISH4000に定める5号試験片を圧延方向と平行に採取し、引張強さ、耐力、伸び率を測定した。また、成形性については圧延方向と平行に採取した幅20mmの試験片を用い内側曲げ半径0.5mm、180°曲げを行い、試験後の曲げ外周面の割れ、肌荒れの状況を目視で1〜5の5段階の評価を行なった。なお、表中の数値はn=2での評価の平均値で示した。導電率の測定は圧延方向と平行に板厚×幅10mm×長さ550mmの試験片を採取し、ダブルブリッジ法により比抵抗を測定し、純銅の比抵抗値を100として導電率を算出した。
【0036】
表4に示した発明例では180℃以上の焼鈍処理でいずれも高い導電率と耐力200MPa以上を有し、曲げ試験により高い成形性能が確保できることを確認した。一方、比較条件によって製造された比較条件例では、導電率、強度、曲げ加工性のいずれかにおいて劣っていた。
【0037】
【表3】
Figure 2005008926
【0038】
【表4】
Figure 2005008926
【0039】
【発明の効果】
以上説明したように、本発明の熱伝導性と成形性に優れたアルミニウム合金板によれば、質量%で、Si:0.2〜1.5%、Mg:0.2〜1.5%、Cr:0.02〜0.1%、Fe:0.3%以下を含有し、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiが0.015%以下に規制され、かつ導電率が50%IACS以上、熱伝導率が200w/m・K以上であるので、優れた導電率と熱伝導性ならびに高い曲げ成形性能が確保され、プラズマディスプレー、電子部品などの利用に大きく貢献することができる。
【0040】
さらに本発明の熱伝導性と成形性に優れたアルミニウム合金板の製造方法の1つによれば、本発明のアルミニウム合金板記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で中間焼鈍を行わずに最終板厚まで冷間圧延し、該冷間圧延後、180℃超〜300℃に加熱する焼鈍を行うので、導電率が53%IACS以上、熱伝導率が200w/m・K以上であり、特に導電性に優れるアルミニウム合金板を得ることができる。
【0041】
また、本発明の他の熱伝導性と成形性に優れたアルミニウム合金板の製造方法によれば、本発明のアルミニウム合金板記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で500〜570℃の溶体化処理を行い、続いて最終冷延率5〜15%の冷間圧延後、170〜210℃の焼鈍を行うので、導電率が50%IACS以上、熱伝導率が200w/m・K以上、耐力が200MPa以上であり、特に強度に優れるアルミニウム合金板を得ることができる。
【図面の簡単な説明】
【図1】導電率と熱伝導率との相関関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for electronic video parts such as plasma displays, electronic parts such as personal computers, general household electrical appliance parts, etc., and particularly suitable for use as a heat sink and a casing, and has excellent thermal conductivity and moldability. The present invention relates to an aluminum alloy plate and a method for producing the aluminum alloy plate.
[0002]
[Prior art]
The plasma display is composed of a video part that displays video and a part where electronic parts are integrated, and since it is structured to be thinly mounted on the wall from the functional side, the video part and the electronic part are close to each other. Thermal effects should be minimized. Since the light emission mechanism of the video portion that projects the video is loaded with a high voltage, it generates a large amount of heat and inevitably affects the surroundings. In addition, the heat generated by the plasma display that displays a clear image changes the conductivity of the structure that functions as an electric circuit, which not only causes noise to the precisely adjusted electronic circuit but is also used. It is likely to have a serious impact on semiconductor electronic components. For this purpose, in order to protect the electronic parts boasting high functions from the heat generated in the video part, a heat dissipation part made of a material having high electrical conductivity and heat dissipation effect is placed between the video part and the integrated part of the electronic part. There is a need for a heat dissipation mechanism that dissipates heat and avoids local heating.
[0003]
Al-Si-Mg alloys are widely used as automotive outer plate materials in accordance with required performance because they greatly affect the performance of the materials depending on the alloy components. Further, Non-Patent Document 1 and Patent Documents 1 and 2 show that high electrical conductivity can be secured by adjusting rolling conditions and heat treatment conditions as a feature of the Al—Si—Mg alloy. Focusing on such high conductivity, Al—Si—Mg alloys are used for electric wires and bus bars. More recently, Al—Si—Mg alloys have been widely used as a heat sink material for the above-mentioned plasma display because a material having a high conductivity can simultaneously ensure a high thermal conductivity. As shown in FIG. 1, the electrical conductivity and the thermal conductivity have a high correlation, and a material having a high electrical conductivity can be said to be a material having a high thermal conductivity. That is, the Al—Si—Mg alloy having a high electrical conductivity can be said to be the most suitable material as a heat radiating member for shielding and diffusing the heat generated in the video portion with respect to these electronic component integrated parts.
[0004]
[Non-Patent Document 1]
“Recent Aluminum Alloys for Conduction”, Sumitomo Electric Technical Review, issued in January 1978, No. 112 [Patent Document 1]
JP 2000-226628 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-87198
[Problems to be solved by the invention]
The heat dissipating member as described above is required to function as a structural member because it is located between the image portion and the integrated portion of the electronic component at the same time as excellent conductivity and thermal conductivity, and the heat dissipation and strength are required. This is a necessary condition for parts.
However, the heat sink materials currently used in these plasma display parts are focused on improving conductivity and ensuring strength, and are compatible with press formability with excellent mass productivity to ensure part shape. Is not sufficient, and is a major constraint in determining the shape. In particular, in the bending process after the introduction of pre-strain at the time of press forming, it was necessary to perform the bending process with a large bending radius that is inevitable to generate cracks in the outer peripheral part of the bending and is not compatible with the surrounding shape. Also, securing strength requires strength as a structure after being incorporated into electronic equipment, etc., and also functions such as scratches and prevention of deformation due to collision, etc. Even when emphasizing strength, thermal conductivity and conductivity are required. The development of a lightweight Al—Si—Mg alloy that is excellent and can secure moldability and high strength is awaited.
Conventionally, Ti or Ti-B is used as a crystal grain size refining agent at the time of casting in order to ensure the appearance quality after molding of the Ai-Si-Mg alloy. However, it has been clarified that the addition of these micronizing agents greatly affects the decrease in conductivity. However, maintenance of appearance quality is also important, and it is also required to ensure appearance quality without causing a decrease in conductivity.
[0006]
The present invention has been made against the background of the above circumstances, and provides an aluminum alloy plate excellent in press forming performance and bending workability and a method for producing the same while ensuring thermal conductivity, conductivity, and strength. Basic purpose. Furthermore, it aims at providing the aluminum alloy plate which can ensure external appearance quality, and its manufacturing method, without causing the fall of electrical conductivity.
[0007]
[Means for Solving the Problems]
Among the aluminum alloy plates excellent in thermal conductivity and formability of the present invention to solve the above problems, the invention according to claim 1 is mass%, Si: 0.2 to 1.5%, Mg: 0 2 to 1.5%, Cr: 0.02 to 0.1%, Fe: 0.3% or less, with the balance being Al and inevitable impurities, Ti in the inevitable impurities being 0.015% It is regulated as follows, and the electrical conductivity is 50% IACS or more and the thermal conductivity is 200 w / m · K or more.
[0008]
The invention of the aluminum alloy plate excellent in thermal conductivity and formability described in claim 2 is characterized in that in the invention described in claim 1, Cu: 0.01 to 1% is further contained.
[0009]
The invention of the aluminum alloy plate excellent in thermal conductivity and formability according to claim 3 is used in the heat dissipation plate or casing for electric / electronic parts in the invention according to claim 1 or 2. To do.
[0010]
The invention of the method for producing an aluminum alloy plate excellent in thermal conductivity and formability according to claim 4 is the intermediate annealing in the middle of cold rolling after hot rolling the aluminum alloy having the composition according to claim 1 or 2. The steel sheet is cold-rolled to the final thickness without being subjected to heat treatment, and after the cold-rolling, annealing is performed by heating to over 180 ° C. to 300 ° C., and the conductivity is 53% IACS or more and the heat conductivity is 200 w / m · K. The manufacturing method of the aluminum alloy plate characterized by obtaining the aluminum alloy plate which is the above.
[0011]
Invention of the manufacturing method of the aluminum alloy plate excellent in the thermal conductivity and the formability of Claim 5 is 500-500 in the middle of cold rolling after hot rolling the aluminum alloy which has the composition of Claim 1 or 2. Solution treatment at 570 ° C. is performed, followed by cold rolling at a final cold rolling rate of 5-15%, followed by annealing to 170-210 ° C., conductivity of 50% IACS or more, thermal conductivity of 200 w An aluminum alloy plate having a proof stress of 200 MPa or more is obtained.
[0012]
Inventing the aluminum alloy plate of the present invention, as a result of investigation focusing on the alloy components for ensuring the electrical conductivity and heat transfer of the Ai-Si-Mg alloy, Ti or Ti- It has been clarified that the addition of the grain refiner of B is a cause of inhibiting the conductivity. In the aluminum alloy plate of the present invention, since the refinement of the crystal grain size is a property necessary for suppressing the occurrence of rough skin during the forming process, the crystal grain size is refined by adding a small amount of Cr as an alternative to Ti. To obtain characteristics excellent in electrical conductivity, thermal conductivity, and moldability.
[0013]
In addition, the manufacturing method of the present invention is effective in improving the strength of the solution treatment load, but a decrease in conductivity is unavoidable. Therefore, by incorporating the solution treatment and the final low-temperature annealing in the intermediate process of cold rolling. It was completed by finding that high conductivity and strength could be secured. In order to ensure formability, it is possible to ensure stable forming performance by optimally adjusting the cold rolling processing rate (cold rolling rate), which has excellent high conductivity and thermal conductivity, and has excellent formability and strength. It is possible to obtain a material suitable for the equipped electronic device and the heat sink.
[0014]
In addition, since the electrical conductivity is strongly influenced by the rolling rate and heat treatment conditions, it is necessary to optimally adjust the heat treatment conditions in order to ensure strength and formability. Al-Mg with excellent workability, strength, and electrical conductivity such as press forming as a solution treatment is incorporated in the middle of the process to secure the strength and at the same time adjust the cold rolling rate after solution treatment to 15% or less. -Made it possible to produce Si-based alloys.
Note that the above two manufacturing methods can be appropriately selected between cases where the electrical conductivity is important and strength is important.
[0015]
Next, the alloy component and crystal grain size defined in the aluminum alloy sheet of the present invention and the manufacturing method thereof will be described.
[0016]
Si: 0.2 to 1.5%
Si and Mg are important components for securing the properties such as strength, formability, and conductivity of the alloy. The amount of Si secures the strength of the molded part in balance with the amount of Mg, but in the range exceeding 1.5%, the influence on the electrical conductivity is particularly large, and the bending workability is hindered. On the other hand, if the Si content is less than 0.2%, it will cause insufficient strength after molding. Therefore, the Si amount is set to be within a range of 0.2 to 1.5%. For the same reason, it is desirable to set the lower limit to 0.4% and the upper limit to 1.1%.
[0017]
Mg: 0.2 to 1.5%
Mg is an effective component for improving the tensile strength, improving the cracking limit in press molding, and ensuring the strength of the part. Improvement of the Mg content is effective for improving the strength, but in the range of more than 1.5%, it becomes a significant hindrance to the electrical conductivity. Further, when the content is less than 0.2%, it is difficult to ensure the strength. Therefore, the Mg content is within the range of 0.2 to 1.5%. For the same reason, it is desirable to set the lower limit to 0.4% and the upper limit to 0.8%.
[0018]
Cr: 0.02-0.1%
Addition of a small amount of Cr is effective for refining the crystal grain size, and an effect comparable to that of Ti and Ti-B can be expected. However, if it exceeds 0.1%, the electrical conductivity may be affected, which is an obstacle to moldability. On the other hand, if it is less than 0.02%, the effect of refining crystal grain size cannot be expected. Therefore, the Cr content is within the range of 0.02 to 0.1%. For the same reason, it is desirable that the lower limit is 0.04% and the upper limit is 0.06%.
[0019]
Ti: 0.015% or less As described above, the content of Ti is a major impediment to electrical conductivity, and it is difficult to ensure good electrical conductivity and thermal conductivity. Therefore, it is necessary to add no or reduce the content as much as possible. Yes, restricted to 0.015% or less. That is, it is desirable to avoid or minimize the use of Ti and Ti-B as a refining agent for the purpose of refining the crystal grain size during ingot casting. As a result, the Ti content can be regulated to 0.015% or less. For the same reason, the Ti content is preferably less than 0.005%. Without the refinement treatment of Ti and Ti-B, the rolling structure after hot rolling becomes rough and adversely affects the formability after cold rolling and temper annealing. Such problems are avoided.
[0020]
Fe: 0.3% or less Fe can be expected to have an effect of refining the crystal grain size. Therefore, the Fe content is 0.3% or less. In order to obtain the above effect sufficiently, the Fe content is desirably 0.2% or more.
[0021]
Cu: 0.01 to 1%
Cu is contained as desired to ensure strength and formability. However, if it exceeds 1%, the moldability and conductivity will be reduced, and if it is less than 0.01%, the above-mentioned effects cannot be obtained sufficiently. Therefore, the Cu content is set within a range of 0.01 to 1%. For the same reason, it is desirable that the lower limit is 0.02% and the upper limit is 0.2%.
[0022]
Mn: 0.1% or less Addition of Mn may generate primary crystals during casting with Fe, Cr, but can be eliminated by adequately controlling the casting conditions. Can be expected. Therefore, if desired, Mn is contained in an amount of 0.1% or less. In addition, in order to fully obtain the said effect | action, it is desirable that Mn content shall be 0.04% or more.
[0023]
Manufacturing conditions (concentration on conductivity)
1. Do not perform intermediate annealing during cold rolling.
Intermediate annealing during cold rolling may cause coarsening of crystal grain size and insufficient strength, and cold rolling when stressing strength and formability due to problems with productivity. The intermediate annealing inside shall not be performed.
[0024]
2. Annealing after cold rolling (over 180 ° C to 300 ° C)
Conducting annealing after cold rolling ensures electrical conductivity and formability. If the heating temperature at this time is 180 ° C. or less, sufficient conductivity and bending workability cannot be improved, and if it exceeds 300 ° C., the strength decreases. Therefore, the heating temperature in this annealing exceeds 180 ° C. It shall be 300 degrees C or less. For the same reason, it is desirable that the lower limit temperature is over 180 ° C. and the upper limit temperature is 240 ° C. In addition, annealing can be performed in 10 hours or less, for example.
The aluminum alloy plate obtained by the above-described manufacturing method can obtain characteristics with an electrical conductivity of 53% IACS or higher and a thermal conductivity of 200 w / m · K or higher.
[0025]
Manufacturing conditions (when strength is important)
1. Solution treatment during cold rolling (500-570 ° C)
Converted from the final thickness, a solution treatment is performed leaving a cold rolling rate of 5 to 15%. The solution treatment conditions at this time are set to a temperature range of 500 ° C to 570 ° C. When the solution treatment temperature is less than 500 ° C., a sufficient solution treatment effect cannot be obtained, and eutectic melting occurs at a temperature exceeding 570 ° C. For the same reason, it is desirable that the lower limit is 540 ° C. and the upper limit is 570 ° C. After the solution treatment, for example, quenching is performed at a cooling rate of 5 ° C./sec or more by air cooling or water cooling. If the cooling rate is less than 5 ° C./sec, a sufficient quenching effect cannot be obtained. The solution treatment increases the amount of solute atoms in the solid solution, and the strength by aging can be improved in the final annealing process.
[0026]
After the solution treatment, cold rolling with a cold rolling rate of 5 to 15% is performed. The purpose of the rolling is mainly to ensure electrical conductivity and strength. If the rolling rate is less than 5%, the electrical conductivity that has been lowered by the solution treatment cannot be sufficiently improved, and the strength is less than 200 MPa. Rolling exceeding 15% is an obstacle to formability. Therefore, the cold rolling rate after the solution treatment is set in the range of 5 to 15%.
[0027]
2. Annealing after cold rolling (170-210 ° C)
After performing cold rolling, annealing is performed to improve the strength by precipitation and at the same time ensure conductivity and formability. When the annealing temperature is less than 170 ° C., sufficient bending performance cannot be obtained, and when the temperature exceeds 210 ° C., an improvement in conductivity is obtained, but a decrease in strength is inevitable. Therefore, the heating temperature in this annealing is set to 170 to 210 ° C.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The aluminum alloy used in the present invention can be adjusted to have a predetermined component and melted by a conventional method, and the process leading to melting is not particularly limited as the present invention. However, at the time of casting, in order to refine the ingot, the addition of Ti or Ti-B crystal grain refining agent is avoided or the addition amount is reduced so that the Ti content does not exceed 0.015%.
[0029]
The aluminum alloy melted as described above is hot-rolled and further cold-rolled to obtain an aluminum alloy plate having a predetermined thickness.
The ingot obtained above is desirably subjected to a homogenization treatment prior to hot rolling. The homogenization treatment can be performed in a temperature range of 540 ° C. to 560 ° C. under conditions of 4 hr to 20 hr. The conditions are determined for the purpose of uniformly dispersing the alloy components during casting.
[0030]
In the subsequent hot rolling, the temperature during rolling can be set to 480 ° C. to 550 ° C. in order to ensure formability at the rolling temperature. If the hot rolling temperature is less than 480 ° C, the rolling load is high, causing ear cracks during rolling, and if the temperature exceeds 550 ° C, seizure occurs on the surface of the rolling roll. And in hot rolling, it is desirable to adjust and perform so that the material temperature after rolling may be 250 to 350 degreeC.
Then, it is set as predetermined plate | board thickness by cold rolling. When emphasizing strength, as described above, a solution treatment is performed at a temperature of 500 to 570 ° C. while leaving a cold rolling rate of 5 to 15% during cold rolling. In addition, when emphasizing electrical conductivity, annealing during cold rolling is not performed.
After the cold rolling, annealing is performed by a batch annealing furnace or a continuous annealing furnace in order to ensure electrical conductivity and forming processability. The heating temperature in this annealing differs depending on whether the electrical conductivity is particularly important or the strength is particularly important. When the electrical conductivity is particularly important, the annealing is performed at a temperature higher than 180 ° C. and not higher than 300 ° C. and 53% IACS or higher. Ensure conductivity and good moldability. On the other hand, when stress is particularly emphasized, annealing at 170 ° C. to 210 ° C. is performed to ensure strength of 200 MPa or more, conductivity of 50% IACS or more, and good moldability.
The obtained aluminum alloy plate is not limited to use in a specific application, but is preferably used for electronic video parts, electronic parts, general household appliance parts, etc. Suitable for use as a housing.
[0031]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
Example 1
A slab having a thickness of 44 mm, a width of 250 mm, and a length of 400 mm was cast from the alloy components shown in Table 1 by semi-continuous casting, and after a homogenization treatment at 560 ° C. × 8 hours, a face shaving piece surface of 5 mm was formed. After chamfering, heating to 510 ° C. was performed to obtain a plate material having a thickness of 7.0 mm (temperature after rolling: 300 ° C.), and further, a plate material having a thickness of 1.0 mm × width of 180 mm was produced by cold rolling. This was subjected to an annealing treatment for 4 hours while changing the heating temperature in a muffle furnace, and for the test material obtained above, No. 5 test piece defined in JISH4000 was taken in parallel with the rolling direction, and the tensile strength, yield strength, elongation rate were taken. Was measured. In addition, with respect to formability, a test piece having a width of 20 mm collected in parallel with the rolling direction was used, bent at an inner bend radius of 0.5 mm and 180 °, and the condition of the cracked outer peripheral surface and rough skin after the test was visually checked 1 A five-step evaluation of ~ 5 was performed. That is, it determined by the following evaluation criteria.
Evaluation 1: Good outer peripheral surface evaluation 2: Slightly observed rough skin on the outer peripheral surface Evaluation 3: Occurrence of rough skin (pass)
Evaluation 4: Occurrence of slight necking Evaluation 5: Occurrence of necking and cracking In addition, for the measurement of electrical conductivity, a specimen having a plate thickness × width 10 mm × length 550 mm was taken in parallel with the rolling direction, and the specific resistance was measured by the double bridge method. Was measured, and the electrical conductivity was calculated with the specific resistance value of pure copper as 100. The test results are shown in Table 2.
[0032]
In the invention examples shown in Table 2, high electrical conductivity (53% IACS or more) exceeding pure aluminum alloy 1100-H24 can be ensured by annealing treatment at 190 ° C. or higher, and excellent in strength and bending workability. Characteristics were secured. On the other hand, the test material of the comparative example is clearly inferior in any of conductivity, strength, and bending workability. Moreover, the test material of the comparative condition example manufactured by the comparative condition using the alloy for invention did not have sufficient bending workability due to the low annealing temperature in part. Further, when the annealing temperature was 350 ° C., the occurrence of skin cracks became obvious due to the coarsening of the crystal grain size.
[0033]
[Table 1]
Figure 2005008926
[0034]
[Table 2]
Figure 2005008926
[0035]
Example 2
A slab having a thickness of 44 mm, a width of 250 mm, and a length of 400 mm was cast with the alloy components shown in Table 3 and a part of Table 1 by semi-continuous casting. After homogenization at 560 ° C. × 8 hr, a face shaving face of 5 mm was formed. . After chamfering, the plate was heated to 510 ° C. to obtain a plate material having a thickness of 7.0 mm by hot rolling, and a plate material having a thickness of 1.05 to 1.2 mm × width of 180 mm was produced by cold rolling. This was heated at a heating rate of 5 ° C./min or more, and after a solution treatment of 560 ° C. × 40 sec, quenching was performed at a cooling rate of 5 ° C./sec or more. A plate material having a thickness of 1.00 mm × width of 180 mm × L was obtained again by cold rolling. After rolling, the heating temperature was changed in a muffle furnace, and an annealing treatment was performed for 4 hours to obtain a test material. With respect to the test material obtained above, No. 5 test piece defined in JISH4000 was taken in parallel with the rolling direction, and the tensile strength, yield strength, and elongation were measured. Further, for formability, a 20 mm wide test piece taken in parallel with the rolling direction was used to bend the inner bend radius 0.5 mm, 180 °, and the cracked outer peripheral surface after the test and the condition of rough skin were visually observed 1 to 1 Five grades of 5 were evaluated. In addition, the numerical value in a table | surface was shown by the average value of evaluation by n = 2. For the measurement of electrical conductivity, a specimen having a thickness of 10 mm and a length of 550 mm was taken in parallel with the rolling direction, the specific resistance was measured by the double bridge method, and the specific resistance value of pure copper was calculated as 100 to calculate the electrical conductivity.
[0036]
In the invention examples shown in Table 4, it was confirmed that all of the annealing treatments at 180 ° C. or higher had high electrical conductivity and proof stress of 200 MPa, and high molding performance could be secured by a bending test. On the other hand, in the comparative condition example manufactured according to the comparative condition, any one of conductivity, strength, and bending workability was inferior.
[0037]
[Table 3]
Figure 2005008926
[0038]
[Table 4]
Figure 2005008926
[0039]
【The invention's effect】
As described above, according to the aluminum alloy plate excellent in thermal conductivity and formability of the present invention, by mass%, Si: 0.2 to 1.5%, Mg: 0.2 to 1.5% , Cr: 0.02 to 0.1%, Fe: 0.3% or less, the balance is made of Al and unavoidable impurities, Ti in the unavoidable impurities is regulated to 0.015% or less, and conductive Since the rate is 50% IACS or higher and the thermal conductivity is 200 w / m · K or higher, excellent electrical conductivity, thermal conductivity, and high bending performance are ensured, greatly contributing to the use of plasma displays, electronic components, etc. be able to.
[0040]
Furthermore, according to one of the methods for producing an aluminum alloy plate excellent in thermal conductivity and formability of the present invention, after hot rolling an aluminum alloy having the composition described in the aluminum alloy plate of the present invention, Cold rolling to the final plate thickness without intermediate annealing, and after the cold rolling, annealing is performed to heat to over 180 ° C. to 300 ° C., so that the conductivity is 53% IACS or more and the thermal conductivity is 200 w / m. -It is K or more and can obtain the aluminum alloy plate which is excellent in especially electroconductivity.
[0041]
In addition, according to another method for producing an aluminum alloy plate excellent in heat conductivity and formability of the present invention, after hot rolling an aluminum alloy having the composition described in the aluminum alloy plate of the present invention, in the middle of cold rolling Solution treatment at 500 to 570 ° C. is performed, followed by annealing at 170 to 210 ° C. after cold rolling at a final cold rolling rate of 5 to 15%, so that the conductivity is 50% IACS or more and the thermal conductivity is 200 w. / M · K or more, proof stress is 200 MPa or more, and an aluminum alloy plate having particularly excellent strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the correlation between electrical conductivity and thermal conductivity.

Claims (5)

質量%で、Si:0.2〜1.5%、Mg:0.2〜1.5%、Cr:0.02〜0.1%、Fe:0.3%以下を含有し、残部がAlおよび不可避不純物からなり、該不可避不純物中のTiが0.015%以下に規制され、かつ導電率が50%IACS以上、熱伝導率が200w/m・K以上であることを特徴とする熱伝導性と成形性に優れたアルミニウム合金板。In mass%, Si: 0.2-1.5%, Mg: 0.2-1.5%, Cr: 0.02-0.1%, Fe: 0.3% or less, the balance being A heat characterized by comprising Al and inevitable impurities, Ti in the inevitable impurities being regulated to 0.015% or less, conductivity being 50% IACS or more, and thermal conductivity being 200 w / m · K or more. Aluminum alloy plate with excellent conductivity and formability. さらに、Cu:0.01〜1%を含有することを特徴とする請求項1に記載の熱伝導性と成形性に優れたアルミニウム合金板。Furthermore, Cu: 0.01-1% is contained, The aluminum alloy plate excellent in the heat conductivity and the moldability of Claim 1 characterized by the above-mentioned. 電気・電子部品用の放熱板または筐体に用いられることを特徴とする請求項1または2に記載の熱伝導性と成形性に優れたアルミニウム合金板。3. The aluminum alloy plate having excellent thermal conductivity and formability according to claim 1 or 2, wherein the aluminum alloy plate is used for a heat radiating plate or a casing for electric / electronic parts. 請求項1または2に記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で中間焼鈍を行わずに最終板厚まで冷間圧延し、該冷間圧延後、180℃超〜300℃に加熱する焼鈍を行って、導電率が53%IACS以上、熱伝導率が200w/m・K以上であるアルミニウム合金板を得ることを特徴とする熱伝導性と成形性に優れたアルミニウム合金板の製造方法。The aluminum alloy having the composition according to claim 1 or 2 is hot-rolled and then cold-rolled to the final thickness without intermediate annealing during the cold-rolling, and after the cold-rolling, more than 180 ° C to 300 ° C An aluminum alloy excellent in thermal conductivity and formability, characterized by obtaining an aluminum alloy plate having an electrical conductivity of 53% IACS or higher and a thermal conductivity of 200 w / m · K or higher by performing annealing heated to ° C. A manufacturing method of a board. 請求項1または2に記載の組成を有するアルミニウム合金を熱間圧延後、冷間圧延途中で500〜570℃の溶体化処理を行い、続いて最終冷延率5〜15%の冷間圧延後、170〜210℃に加熱する焼鈍を行って、導電率が50%IACS以上、熱伝導率が200w/m・K以上、耐力が200MPa以上であるアルミニウム合金板を得ることを特徴とする熱伝導性と成形性に優れたアルミニウム合金板の製造方法。After hot rolling the aluminum alloy having the composition according to claim 1 or 2, a solution treatment at 500 to 570 ° C. is performed in the middle of cold rolling, followed by cold rolling with a final cold rolling rate of 5 to 15%. , Annealing to 170-210 ° C. to obtain an aluminum alloy plate having an electrical conductivity of 50% IACS or higher, a thermal conductivity of 200 w / m · K or higher, and a proof stress of 200 MPa or higher. Method of aluminum alloy sheet with excellent properties and formability.
JP2003172872A 2003-06-18 2003-06-18 Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof Expired - Fee Related JP4130613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172872A JP4130613B2 (en) 2003-06-18 2003-06-18 Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172872A JP4130613B2 (en) 2003-06-18 2003-06-18 Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005008926A true JP2005008926A (en) 2005-01-13
JP4130613B2 JP4130613B2 (en) 2008-08-06

Family

ID=34096853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172872A Expired - Fee Related JP4130613B2 (en) 2003-06-18 2003-06-18 Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4130613B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2012062517A (en) * 2010-09-15 2012-03-29 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same
JP2015014027A (en) * 2013-07-05 2015-01-22 三菱アルミニウム株式会社 Aluminum alloy sheet for electrification part and production method thereof
WO2015020054A1 (en) * 2013-08-09 2015-02-12 株式会社神戸製鋼所 Electrically conductive aluminum alloy plate and method for manufacturing same
WO2015156319A1 (en) * 2014-04-10 2015-10-15 株式会社Uacj Bus bar aluminum alloy plate and method for producing same
CN106011561A (en) * 2016-08-09 2016-10-12 东北轻合金有限责任公司 High-performance Al-Mg alloy cold-worked plate manufacturing method
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179457A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
CN114875254A (en) * 2022-03-26 2022-08-09 河南中孚高精铝材有限公司 Production method of coiled material for aluminum alloy R0PP bottle cap

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2012062517A (en) * 2010-09-15 2012-03-29 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in thermal conductivity, strength and formability and method of manufacturing the same
JP2015014027A (en) * 2013-07-05 2015-01-22 三菱アルミニウム株式会社 Aluminum alloy sheet for electrification part and production method thereof
WO2015020054A1 (en) * 2013-08-09 2015-02-12 株式会社神戸製鋼所 Electrically conductive aluminum alloy plate and method for manufacturing same
JP2015057513A (en) * 2013-08-09 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for bus bar and manufacturing method thereof
KR101752108B1 (en) * 2013-08-09 2017-06-28 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet for electric conduction use and manufacturing method thereof
JP2015203117A (en) * 2014-04-10 2015-11-16 株式会社Uacj Aluminum alloy sheet for bus bar and method for producing the same
CN105917013A (en) * 2014-04-10 2016-08-31 株式会社Uacj Bus bar aluminum alloy plate and method for producing same
WO2015156319A1 (en) * 2014-04-10 2015-10-15 株式会社Uacj Bus bar aluminum alloy plate and method for producing same
EP3130684B1 (en) 2014-04-10 2019-01-30 UACJ Corporation Bus bar aluminum alloy plate and method for producing same
US10475547B2 (en) 2014-04-10 2019-11-12 Uacj Corporation Aluminum-alloy sheet for bus bar and manufacturing method thereof
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179457A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
CN106011561A (en) * 2016-08-09 2016-10-12 东北轻合金有限责任公司 High-performance Al-Mg alloy cold-worked plate manufacturing method
CN114875254A (en) * 2022-03-26 2022-08-09 河南中孚高精铝材有限公司 Production method of coiled material for aluminum alloy R0PP bottle cap

Also Published As

Publication number Publication date
JP4130613B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP2007009262A (en) Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP5847987B2 (en) Copper alloy containing silver
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2005264174A (en) Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP6385383B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP2008013836A (en) High-strength copper alloy sheet showing little anisotropy, and manufacturing method therefor
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP4130613B2 (en) Aluminum alloy plate excellent in thermal conductivity and formability and manufacturing method thereof
CN1086207C (en) Grain refined tin brass
JP5555580B2 (en) Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2009242813A (en) Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2008038231A (en) High-strength sheet material of copper alloy superior in bendability, and manufacturing method therefor
TWI509090B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
JP2004231985A (en) High strength copper alloy with excellent bendability
JP7422539B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
KR101822374B1 (en) Copper alloy strip, electronic component for heavy-current and electronic component for heat release containing the same
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4933326B2 (en) Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
JP2004323952A (en) Aluminum alloy sheet for forming, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4130613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees