JP2017179443A - Al-Mg-Si-BASED ALLOY MATERIAL - Google Patents

Al-Mg-Si-BASED ALLOY MATERIAL Download PDF

Info

Publication number
JP2017179443A
JP2017179443A JP2016067346A JP2016067346A JP2017179443A JP 2017179443 A JP2017179443 A JP 2017179443A JP 2016067346 A JP2016067346 A JP 2016067346A JP 2016067346 A JP2016067346 A JP 2016067346A JP 2017179443 A JP2017179443 A JP 2017179443A
Authority
JP
Japan
Prior art keywords
mass
less
alloy material
hot rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067346A
Other languages
Japanese (ja)
Other versions
JP6774197B2 (en
Inventor
眞二 籠重
Shinji Kagoshige
眞二 籠重
和章 谷口
Kazuaki Taniguchi
和章 谷口
西森 秀樹
Hideki Nishimori
秀樹 西森
智明 山ノ井
Tomoaki Yamanoi
智明 山ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016067346A priority Critical patent/JP6774197B2/en
Priority to PCT/JP2016/088715 priority patent/WO2017168890A1/en
Priority to CN201680082917.8A priority patent/CN108699641B/en
Priority to TW106103836A priority patent/TW201807210A/en
Publication of JP2017179443A publication Critical patent/JP2017179443A/en
Application granted granted Critical
Publication of JP6774197B2 publication Critical patent/JP6774197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based alloy material having high strength while having high conductivity and good processability.SOLUTION: An Al-Mg-Si-based alloy material having a chemical composition of Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less and Cu: 0.5 mass% or less in addition to Ti: 0.1 mass% or less or B: 0.1 mass% or less and the balance Al with inevitable impurities, has a tensile strength of 280 MPa or more and a conductivity of 54%IACS or more.SELECTED DRAWING: Figure 1

Description

この発明は、Al−Mg―Si系合金材、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg―Si系合金材に関する。   The present invention relates to an Al—Mg—Si based alloy material, and more particularly to an Al—Mg—Si based alloy material excellent in thermal conductivity, conductivity, strength and workability.

薄型テレビ、パーソナルコンピューター用薄型モニター、ノートパソコン、タブレットパソコン、カーナビゲーションシステム、ポータブルナビゲーションシステム、スマートフォンや携帯電話等の携帯端末等の製品のシャーシ、メタルベースプリント基板、内部カバーのように発熱体を内蔵または装着する部材材料においては、速やかに放熱するための優れた熱伝導性、強度および加工性が求められる。   Heating elements such as flat panel TVs, thin monitors for personal computers, laptop computers, tablet computers, car navigation systems, portable navigation systems, chassis of products such as mobile terminals such as smartphones and mobile phones, metal base printed boards, and internal covers In a member material to be built in or mounted, excellent thermal conductivity, strength, and workability for quickly radiating heat are required.

JIS1100、1050、1070等の純アルミニウム合金は熱伝導性に優れるが、強度が低い。高強材として用いられるJIS5052に等のAl−Mg合金(5000系合金)は、純アルミニウム系合金よりも熱伝導性および導電性が著しく劣る。   Pure aluminum alloys such as JIS 1100, 1050, and 1070 have excellent thermal conductivity but low strength. An Al—Mg alloy (5000-based alloy) such as JIS 5052 used as a high strength material is significantly inferior in thermal conductivity and conductivity to a pure aluminum-based alloy.

これに対しAl−Mg−Si系合金(6000系合金)は、熱伝導性および導電性が良く時効硬化により強度向上を図ることができるため、Al−Mg―Si系合金を用いて強度、熱伝導性、加工性に優れたアルミニウム合金板を得る方法が検討されている。   In contrast, Al—Mg—Si based alloys (6000 based alloys) have good thermal conductivity and electrical conductivity, and can be improved in strength by age hardening. A method for obtaining an aluminum alloy plate excellent in conductivity and workability has been studied.

例えば、特許文献1には、Mgを0.1〜0.34質量%、Siを0.2〜0.8質量%、Cuを0.22〜1.0質量%含有し、残部がAl及び不可避不純物からなり、Si/Mg含有量比が1.3以上であるAl−Mg―Si系合金を、半連続鋳造で厚さ250mm以上の鋳塊とし、400〜540℃の温度で予備加熱を経て熱間圧延、50〜85%の圧下率で冷間圧延を施した後、140〜280℃の温度で焼鈍をすることを特徴とする、Al−Mg−Si系合金圧延板の製造方法が開示されている。   For example, Patent Document 1 contains 0.1 to 0.34% by mass of Mg, 0.2 to 0.8% by mass of Si, 0.22 to 1.0% by mass of Cu, and the balance is Al and An Al—Mg—Si alloy composed of inevitable impurities and having a Si / Mg content ratio of 1.3 or more is made into an ingot having a thickness of 250 mm or more by semi-continuous casting and preheated at a temperature of 400 to 540 ° C. A method for producing an Al-Mg-Si alloy rolled sheet is characterized in that after hot rolling and cold rolling at a reduction rate of 50 to 85%, annealing is performed at a temperature of 140 to 280 ° C. It is disclosed.

特許文献2には、Si:0.2〜1.5質量%、Mg:0.2〜1.5質量%、Fe:0.3質量%以下を含有し、さらに、Mn:0.02〜0.15質量%、Cr:0.02〜0.15%の1種または2種を含有するとともに、残部がAlおよび不可避不純物中のTiが0.2%以下に規制するか、もしくはこれにCu:0.01〜1質量%か希土類元素:0.01〜0.2質量%の1種または2種を含有する組成を有するアルミニウム合金版を連続鋳造圧延により作製し、その後冷間圧延し、次いで500〜570℃の溶体化処理を行い、続いてさらに冷間圧延率5〜40%で冷間圧延を行い、冷間圧延後150〜190℃未満に加熱する時効処理を行うことを特徴とする熱伝導性、強度および曲げ加工性に優れたアルミニウム板の製造方法が記載されている。   Patent Document 2 contains Si: 0.2 to 1.5 mass%, Mg: 0.2 to 1.5 mass%, Fe: 0.3 mass% or less, and Mn: 0.02 to 0.15% by mass, Cr: 0.02 to 0.15% of 1 type or 2 types, and the balance of Al and Ti in unavoidable impurities is restricted to 0.2% or less, or An aluminum alloy plate having a composition containing one or two of Cu: 0.01 to 1% by mass or rare earth element: 0.01 to 0.2% by mass is produced by continuous casting and then cold rolled. Then, a solution treatment at 500 to 570 ° C. is performed, followed by further cold rolling at a cold rolling rate of 5 to 40%, and an aging treatment for heating to 150 to 190 ° C. after the cold rolling. Of aluminum plate with excellent thermal conductivity, strength and bending workability There has been described.

特許文献3には、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるか、もしくはさらに不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されているAl−Mg−Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg―Si系合金板の製造方法が示されている。   Patent Document 3 contains Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and It contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, and consists of the balance Al and inevitable impurities, or Mn and Cr as impurities are further Mn: 0.1% by mass %, Cr: A method for producing an alloy plate including a step of hot rolling an Al—Mg—Si alloy ingot regulated to 0.1% by mass or less and further cold rolling, There is shown a method for producing an Al—Mg—Si based alloy plate, characterized in that heat treatment is performed by holding at 200 to 400 ° C. for 1 hour or longer after cold rolling until the end of cold rolling.

なお、特許文献3に記載のとおり、JIS1000系から7000系のアルミニウム合金においては、熱伝導率と導電率が良好な相関性を示し、優れた熱伝導性を有するアルミニウム合金板は優れた導電率を有し、放熱部材材料はもちろん導電部材材料として用いることができる。   In addition, as described in Patent Document 3, in JIS 1000 series to 7000 series aluminum alloys, thermal conductivity and electrical conductivity have a good correlation, and an aluminum alloy plate having excellent thermal conductivity has excellent electrical conductivity. It can be used as a conductive member material as well as a heat radiating member material.

特開2012−62517号公報JP 2012-62517 A 特開2007−9262号公報JP 2007-9262 A 特開2003−321755号公報JP 2003-321755 A

上記のとおりAl−Mg―Si系合金板の改良がなされてきたが、アルミニウム合金部材材料を用いる製品の高性能化、小型化、薄型化に伴い、高い導電率と加工性に加え従来よりも更に高い強度を有することがAl−Mg−Si系合金板に求められているのに対し、特許文献1記載のAl−Mg−Si系合金板は比較的導電率が高いものの引張強度が低く、上記特許文献1、特許文献2および特許文献3記載の方法では高い導電率と加工性を維持しつつ必要な強度を得ることが困難であった。   As described above, Al-Mg-Si alloy plates have been improved, but along with higher performance, smaller size, and thinner products using aluminum alloy member materials, in addition to high conductivity and workability, The Al—Mg—Si based alloy plate is required to have higher strength, whereas the Al—Mg—Si based alloy plate described in Patent Document 1 has relatively high electrical conductivity but low tensile strength, In the methods described in Patent Document 1, Patent Document 2, and Patent Document 3, it is difficult to obtain a required strength while maintaining high conductivity and workability.

本発明は、上述した技術背景に鑑み、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金材を提供することを目的とする。   In view of the above-described technical background, an object of the present invention is to provide an Al—Mg—Si based alloy material having higher electrical conductivity and good workability while having higher strength.

上記課題は、以下の手段によって解決される。
(1)化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl−Mg−Si系合金材。
(2)不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金材。
(3)不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている前項1または前項2に記載のAl−Mg−Si系合金材。
(4)不純物としてのAgが0.05質量%以下に規制されている前項1ないし前項3の何れか1項に記載のAl−Mg−Si系合金材。
(5)不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている前項1ないし前項4の何れか1項に記載のAl−Mg−Si系合金材。
(6)0.2%耐力が230MPa以上である前項1ないし前項5の何れか1項に記載のAl−Mg−Si系合金材。
(7)引張強さが285MPa以上である前項1ないし前項6の何れか1項に記載のAl−Mg−Si系合金材。
The above problem is solved by the following means.
(1) Chemical composition contains Si: 0.2-0.8 mass%, Mg: 0.3-1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, Further, it contains at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance is Al and inevitable impurities, the tensile strength is 280 MPa or more, and the conductivity is 54% IACS or more. An Al—Mg—Si alloy material having a fiber structure.
(2) The Al—Mg—Si-based alloy material according to item 1, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less.
(3) The Al—Mg—Si-based alloy material according to item 1 or item 2, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05% by mass or less.
(4) The Al—Mg—Si based alloy material according to any one of the preceding items 1 to 3, wherein Ag as an impurity is regulated to 0.05 mass% or less.
(5) The Al—Mg—Si based alloy material according to any one of the preceding items 1 to 4, wherein the total content of rare earth elements as impurities is regulated to 0.1 mass% or less.
(6) The Al—Mg—Si alloy material according to any one of items 1 to 5, wherein the 0.2% proof stress is 230 MPa or more.
(7) The Al—Mg—Si alloy material according to any one of items 1 to 6, wherein the tensile strength is 285 MPa or more.

前項(1)に記載の発明によれば、化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、強度、熱伝導性、加工性に優れた繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (1), the chemical composition is Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, and Cu: 0 .5% by mass or less, further containing at least one of Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance being Al and inevitable impurities, strength, thermal conductivity, processing Al-Mg-Si alloy material having a fiber structure with excellent properties can be obtained.

前項(2)に記載の発明によれば、不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (2), since Mn, Cr, and Zn as impurities are each regulated to 0.1% by mass or less, a fiber structure excellent in strength, thermal conductivity, and workability Al—Mg—Si based alloy material having

前項(3)に記載の発明によれば、不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (3), since Ni, V, Ga, Pb, Sn, Bi and Zr as impurities are regulated to 0.05% by mass or less, respectively, strength, thermal conductivity, An Al—Mg—Si alloy material having a fiber structure excellent in workability can be obtained.

前項(4)に記載の発明によれば、不純物としてのAgが0.05質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in item (4) above, since Ag as an impurity is regulated to 0.05% by mass or less, Al—Mg—Si having a fiber structure excellent in strength, thermal conductivity, and workability. It can be made of an alloy material.

前項(5)に記載の発明によれば、不純物としての希土類元素の合計含有量が0.1質量%以下に規制されているから、強度、熱伝導性、加工性に優れた繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in (5) above, since the total content of rare earth elements as impurities is regulated to 0.1% by mass or less, it has a fiber structure excellent in strength, thermal conductivity, and workability. An Al—Mg—Si alloy material can be used.

前項(6)に記載の発明によれば、耐力が強い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (6), an Al—Mg—Si based alloy material having a fiber structure having a high yield strength can be obtained.

前項(7)に記載の発明によれば、引張強さが更に強い繊維組織を有するAl−Mg−Si系合金材となしうる。   According to the invention described in the preceding item (7), an Al—Mg—Si based alloy material having a fiber structure having a higher tensile strength can be obtained.

本願のAl−Mg―Si系合金材の繊維組織のモデル図である。It is a model figure of the fiber structure of the Al-Mg-Si type alloy material of this application.

本願発明者は、熱間圧延、冷間圧延を順次施するAl−Mg−Si系合金材の製造方法において、熱間圧延上がりの合金材の表面温度を所定の温度以下とするとともに、熱間圧延終了後であって冷間圧延終了前に時効処理としての熱処理を施すことにより、高い導電率と良好な加工性を有しつつ更に高い強度を有するAl−Mg−Si系合金材が得られることを見出し本願の発明に至った。   The inventor of the present application, in the method for producing an Al-Mg-Si alloy material that is sequentially subjected to hot rolling and cold rolling, reduces the surface temperature of the alloy material after hot rolling to a predetermined temperature or less, By performing a heat treatment as an aging treatment after the end of rolling and before the end of cold rolling, an Al—Mg—Si alloy material having a higher strength while having high conductivity and good workability can be obtained. As a result, the inventors have reached the present invention.

以下に、本願のAl−Mg−Si系合金板材について詳細に説明する。   Hereinafter, the Al—Mg—Si based alloy sheet of the present application will be described in detail.

本願のAl−Mg−Si系合金組成において、各元素の添加目的および含有量の限定理由は下記のとおりである。   In the Al—Mg—Si based alloy composition of the present application, the purpose of adding each element and the reason for limiting the content are as follows.

MgおよびSiは強度の発現に必要な元素であり、それぞれの含有量はSi:0.2質量%以上0.8質量%以下、Mg:0.3質量%以上1質量%以下とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下し、得られるアルミニウム合金板の成形加工性も悪くなる。Si含有量は0.2質量%以上0.6質量%以下が好ましく、更に0.32質量%以上0.60質量%以下が好ましい。Mg含有量は0.45質量%以上0.9質量%以下が好ましく、更に0.45質量%以上0.55質量%以下が好ましい。   Mg and Si are elements necessary for strength development, and the respective contents thereof are Si: 0.2 mass% to 0.8 mass%, and Mg: 0.3 mass% to 1 mass%. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, if the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling increases and the productivity decreases, and the formability of the resulting aluminum alloy sheet also increases. Deteriorate. The Si content is preferably 0.2% by mass or more and 0.6% by mass or less, and more preferably 0.32% by mass or more and 0.60% by mass or less. The Mg content is preferably 0.45 mass% or more and 0.9 mass% or less, and more preferably 0.45 mass% or more and 0.55 mass% or less.

FeおよびCuは成形加工上必要な成分であるが、多量に含有すると耐食性が低下する。本願においてFe含有量およびCu含有量はそれぞれ0.5質量%以下に規制する。Fe含有量は0.35質量%以下に規制することが好ましく、更に0.1質量%以上0.25質量%以下であることが好ましい。Cu含有量は0.1質量%以下であることが好ましい。   Fe and Cu are components necessary for molding, but if they are contained in a large amount, the corrosion resistance decreases. In the present application, the Fe content and the Cu content are each regulated to 0.5% by mass or less. The Fe content is preferably regulated to 0.35% by mass or less, and more preferably from 0.1% by mass to 0.25% by mass. The Cu content is preferably 0.1% by mass or less.

TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加により得られ、両方を添加してもよい。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、製品の加工性や熱伝導性および導電率が低下する。Ti含有量は0.1質量以下が好ましく、更に0.005質量%以上0.05質量%以下が好ましい。   Ti and B have the effect of reducing crystal grains and preventing solidification cracking when casting the alloy into a slab. The effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, a large amount of crystallized crystals are generated, and the workability, thermal conductivity, and conductivity of the product are lowered. The Ti content is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.

また、B含有量は0.1質量%以下が好ましく、特に0.06質量%以下が好ましい。   Further, the B content is preferably 0.1% by mass or less, particularly preferably 0.06% by mass or less.

また、合金元素には種々の不純物元素が不可避的に含有されるが、MnおよびCrは伝導性および導電性を低下させ、Znは含有量が多くなると合金材の耐食性を低下させるため少ないことが好ましい。不純物としてのMn、Cr、およびZnのそれぞれの含有量は0.1質量%以下が好ましく、更に0.05質量%以下が好ましい。   In addition, various impurity elements are unavoidably contained in the alloy element, but Mn and Cr decrease conductivity and conductivity, and Zn increases in content and decreases in corrosion resistance of the alloy material. preferable. The content of each of Mn, Cr, and Zn as impurities is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

上記以外のその他の不純物元素としては、Ni、V、Ga、Pb、Sn、Bi、Zr、Ag、希土類等が挙げられるが、これらに限定されるものではなく、これらその他の不純物元素のうち希土類以外は個々の元素の含有量として0.05質量%以下であることが好ましい。上記その他の不純物元素のうち希土類は、1種または複数種の元素が含まれていてもよく、ミッシュメタルの状態で含まれている鋳造用原料に由来するものでも良いが、希土類元素の合計含有量は0.1質量%以下であることが好ましく、更に0.05質量%以下であることが好ましい。   Other impurity elements other than the above include Ni, V, Ga, Pb, Sn, Bi, Zr, Ag, rare earth, etc., but are not limited to these, and among these other impurity elements, rare earth Other than the above, the content of each element is preferably 0.05% by mass or less. Among the other impurity elements, the rare earth may contain one or more kinds of elements, and may be derived from a casting raw material contained in the state of misch metal, but the total content of rare earth elements The amount is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.

次に、本願規定のAl−Mg―Si系合金材を得るための処理工程について記述する。
常法にて溶解成分調整し、Al−Mg―Si系合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。
Next, processing steps for obtaining the Al—Mg—Si based alloy material defined in the present application will be described.
The dissolved components are adjusted by a conventional method to obtain an Al—Mg—Si alloy ingot. The obtained alloy ingot is preferably subjected to a homogenization treatment as a step prior to heating before hot rolling.

前記均質化処理は、500℃以上で行うことが好ましい。   The homogenization treatment is preferably performed at 500 ° C. or higher.

前記熱間圧延前加熱はAl−Mg―Si系合金鋳塊中に晶出物およびMg、Siを固溶させ均一な組織とするために実施するが、温度が高すぎると鋳塊中で部分的な融解が起こる可能性があるため、450℃以上580℃以下で行うことが好ましく、特に500℃以上580℃以下で行うことが好ましい。   The heating before hot rolling is carried out in order to make the crystallized substance and Mg, Si dissolve in the Al—Mg—Si alloy ingot to form a uniform structure. Therefore, it is preferable to carry out at 450 ° C. or higher and 580 ° C. or lower, particularly preferably at 500 ° C. or higher and 580 ° C. or lower.

Al−Mg―Si系合金鋳塊に均質化処理を行った後冷却し、熱間圧延前加熱を行っても良いし、均質化処理と熱間圧延前加熱を連続して行っても良く、前記均質化処理および熱間圧延前加熱の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。   The Al-Mg-Si-based alloy ingot is cooled after being homogenized, and may be heated before hot rolling, or the homogenization and heating before hot rolling may be performed continuously, In the preferable temperature range of the homogenization treatment and heating before hot rolling, the homogenization treatment and the heating before hot rolling may be combined and heated at the same temperature.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。   It is preferable to chamfer the ingot to remove the impurity layer in the vicinity of the surface of the ingot before casting and before heating before hot rolling. The chamfering may be performed after casting and before homogenization treatment, or after homogenization treatment and before heating before hot rolling.

熱間圧延前加熱後のAl−Mg―Si系合金鋳塊に熱間圧延を施す。   The Al—Mg—Si alloy ingot after heating before hot rolling is hot rolled.

熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。   Hot rolling consists of rough hot rolling and finishing hot rolling, and after performing rough hot rolling consisting of multiple passes using a rough hot rolling mill, a finishing hot rolling mill different from the rough hot rolling mill is used. Finish hot rolling using. In the present application, when the final pass in the rough hot rolling mill is the final pass of hot rolling, the finish hot rolling can be omitted.

本願において、仕上げ熱間圧延は、上下一組のワークロールもしくは二組以上のワークロールが連続して設置された圧延機を用いて1方向からAl−Mg―Si系合金材を導入し1回のパスで実施される。   In the present application, finish hot rolling is performed once by introducing an Al—Mg—Si alloy material from one direction using a rolling mill in which a pair of upper and lower work rolls or two or more work rolls are continuously installed. It is carried out in the pass.

冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のAl−Mg―Si系合金材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、粗熱間圧延の最終パスを熱間圧延の最終パスとする場合は、粗熱間圧延の後、Al−Mg―Si系合金材を巻き取り装置にて巻き取って熱延コイルとしてもよい。   When cold rolling is performed with a coil, an Al—Mg—Si alloy material after finish hot rolling may be wound with a winding device to form a hot rolled coil. When finishing hot rolling is omitted and the final pass of rough hot rolling is used as the final pass of hot rolling, the Al-Mg-Si alloy material is taken up with a winding device after the hot rolling. It may be a hot rolled coil.

粗熱間圧延では、溶体化処理に準じてMgおよびSiが固溶された状態を保持した後、粗熱間圧延のパスによるAl−Mg―Si系合金材の冷却、もしくは粗熱間圧延のパス後とパス後の強制冷却による温度降下により焼き入れの効果を得ことができる。   In rough hot rolling, after maintaining the state in which Mg and Si are dissolved in accordance with the solution treatment, cooling of the Al-Mg-Si alloy material by a rough hot rolling pass, or rough hot rolling is performed. The quenching effect can be obtained by the temperature drop due to forced cooling after the pass and after the pass.

本願において粗熱間圧延の複数のパスのうち、パス直前のAl−Mg―Si系合金材の表面温度が350℃以上470℃以下でありパスによるAl−Mg―Si系合金材の冷却、もしくはパスとパス後の強制冷却による平均冷却速度が50℃/分以上であるパスを制御パスと呼ぶ。制御パス直前のAl−Mg―Si系合金材の表面温度を350℃以上470℃以下としたのは、350℃未満では粗熱間圧延における急冷による焼き入れの効果が小さく、470℃より高い温度ではパス上がりのAl−Mg―Si系合金材の急冷が困難であるからである。   In the present application, among the plurality of passes of rough hot rolling, the surface temperature of the Al—Mg—Si alloy material immediately before the pass is 350 ° C. or more and 470 ° C. or less, and the Al—Mg—Si alloy material is cooled by the pass, or A pass having an average cooling rate of 50 ° C./min or more by the pass and forced cooling after the pass is called a control pass. The reason why the surface temperature of the Al—Mg—Si based alloy material immediately before the control pass is set to 350 ° C. or more and 470 ° C. or less is that the effect of quenching by rapid cooling in rough hot rolling is small below 350 ° C. This is because it is difficult to rapidly cool the Al-Mg-Si based alloy material with a rising path.

上記平均冷却速度は制御パスにおいて強制冷却を行わない場合は制御パスの開始から終了まで、制御パス後に強制冷却を行う場合は制御パスの開始から強制冷却の終了までのAl−Mg―Si系合金材の温度降下(℃)を要した時間(分)で除した値とする。   The average cooling rate is the Al-Mg-Si alloy from the start of the control pass to the end when forced cooling is not performed in the control pass, and from the start of the control pass to the end of forced cooling when forced cooling is performed after the control pass. The value is obtained by dividing the temperature drop (° C) of the material by the time (minutes) required.

制御パス後の強制冷却は、Al−Mg―Si系合金材を圧延しながら圧延後の部位に対し順次実施してもよいし、Al−Mg―Si系合金材全体を圧延した後実施してもよい。強制冷却の方法は限定されないが、水冷であっても空冷であってもよいし、クーラントを利用してもよい。   Forced cooling after the control pass may be performed sequentially on the part after rolling while rolling the Al-Mg-Si alloy material, or after rolling the entire Al-Mg-Si alloy material. Also good. The method of forced cooling is not limited, but water cooling, air cooling, or coolant may be used.

前記制御パスは少なくとも1回実施することが好ましく、複数回実施しても良い。制御パスを複数回実施する場合、各々の制御パスについてパス後に強制冷却を行うか否かを選択できる。パス直前Al−Mg―Si系合金材の表面温度が470〜350℃であって冷却速度が50℃/分以上であれば制御パスは複数回実施することができるが、1回の制御パスでAl−Mg―Si系合金材の温度を350℃未満に降下させることにより効率よく効果的に焼き入れを行うことができる。   The control pass is preferably performed at least once, and may be performed a plurality of times. When performing the control pass a plurality of times, it is possible to select whether to perform forced cooling after each pass for each control pass. If the surface temperature of the Al—Mg—Si based alloy material immediately before the pass is 470 to 350 ° C. and the cooling rate is 50 ° C./min or more, the control pass can be performed a plurality of times. By lowering the temperature of the Al—Mg—Si alloy material to less than 350 ° C., quenching can be performed efficiently and effectively.

本願において、粗熱間圧延の最終パス後に強制冷却を行わない場合は、熱間圧延の最終パス直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とし、粗熱間圧延の最終パス後に強制冷却を行う場合は、強制冷却終了直後のAl−Mg―Si系合金材の表面温度を粗熱間圧延上がり温度とする。   In the present application, when forced cooling is not performed after the final pass of the rough hot rolling, the surface temperature of the Al-Mg-Si alloy material immediately after the final pass of the hot rolling is set as the temperature after the rough hot rolling, When forced cooling is performed after the final pass of rolling, the surface temperature of the Al—Mg—Si alloy material immediately after the end of forced cooling is set as the temperature after rough hot rolling.

本願において仕上げ熱間圧延を実施する場合は仕上げ熱間圧延の終了、仕上げ熱間圧延を実施しない場合は粗熱間圧延の最終パスの終了をもって熱間圧延の終了とし、熱間圧延終了直後のAl−Mg―Si系合金材の表面温度は170℃以下とすることが好ましい。熱間圧延終了直後の合金材の温度を170℃以下とすることにより有効な焼き入れ効果が得られ、その後の熱処理時により時効硬化するとともに導電率が向上する。   In the present application, when finishing hot rolling is performed, finishing hot rolling is completed. The surface temperature of the Al—Mg—Si based alloy material is preferably 170 ° C. or less. An effective quenching effect can be obtained by setting the temperature of the alloy material immediately after the end of hot rolling to 170 ° C. or less, and age hardening can be achieved during the subsequent heat treatment, and the conductivity can be improved.

熱間圧延終了直後のAl−Mg―Si系合金材の表面温度が高すぎると、焼き入れの効果が不足し、熱間圧延終了後冷間圧延終了前に熱処理を実施しても強度の向上が不十分となる。熱間圧延終了直後のアルミニウム板の表面温度は150℃以下が更に好ましく、特に130℃以下が好ましい。   If the surface temperature of the Al-Mg-Si alloy material immediately after the hot rolling is too high, the effect of quenching will be insufficient, and the strength will be improved even if the heat treatment is performed after the hot rolling and before the cold rolling. Is insufficient. The surface temperature of the aluminum plate immediately after completion of hot rolling is more preferably 150 ° C. or less, and particularly preferably 130 ° C. or less.

なお、粗熱間圧延の後仕上げ熱間圧延を行う場合は、仕上げ熱間圧延のパスによる焼き入れ効果を得るために、仕上げ熱間圧延直前のAl−Mg―Si系合金板の表面温度は280℃以下であることが好ましい。   In addition, when performing finish hot rolling after rough hot rolling, the surface temperature of the Al—Mg—Si based alloy plate immediately before finish hot rolling is: It is preferable that it is 280 degrees C or less.

また、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスではない場合も同様に、粗熱間圧延最終パス直前のAl−Mg―Si系合金板の表面温度は280℃以下が好ましい。   Similarly, when the final hot rolling is not performed and the final pass of the rough hot rolling is not the control pass, the surface temperature of the Al—Mg—Si alloy plate immediately before the final hot hot rolling pass is 280 ° C. or less. preferable.

一方、仕上げ熱間圧延を行わず粗熱間圧延の最終パスが制御パスである場合、制御パスが熱間圧延の最終パスとなるので、熱間圧延の最終パス直前のAl−Mg―Si系合金板の表面温度が470〜350℃であって圧延もしくは圧延と圧延後の強制冷却により冷却速度が50℃/分以上の冷却速度で合金板の表面温度が170℃以下となるように制御パスを実施することが好ましい。   On the other hand, when final hot rolling is not performed and the final pass of rough hot rolling is a control pass, the control pass becomes the final pass of hot rolling, so the Al—Mg—Si system immediately before the final pass of hot rolling Control pass so that the surface temperature of the alloy plate is 470 to 350 ° C., and the surface temperature of the alloy plate is 170 ° C. or less at a cooling rate of 50 ° C./min or more by rolling or forced cooling after rolling and rolling. It is preferable to implement.

熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金材に熱処理を施し、時効硬化させるとともに導電率を向上させる。   A heat treatment is applied to the Al—Mg—Si based alloy material after the hot rolling and before the cold rolling to age-harden and improve the conductivity.

本願において熱間圧延終了後冷間圧延終了前のAl−Mg―Si系合金材への熱処理は時効硬化および導電率向上の効果を得るために120℃以上200℃未満の温度で実施することが好ましい。前記熱処理の温度は130℃以上190℃以下が更に好ましく、特に140℃以上180℃以下が好ましい。   In the present application, the heat treatment of the Al—Mg—Si alloy material after the end of hot rolling and before the end of cold rolling may be performed at a temperature of 120 ° C. or more and less than 200 ° C. in order to obtain the effects of age hardening and conductivity improvement. preferable. The temperature of the heat treatment is more preferably 130 ° C. or higher and 190 ° C. or lower, and particularly preferably 140 ° C. or higher and 180 ° C. or lower.

前記熱間圧延終了後冷間圧延終了前において120℃以上200℃未満の温度で実施するAl−Mg―Si系合金材の熱処理の時間は特に限定されないが、時効硬化および導電率向上の効果が得られるように所定の温度で時間を調節すればよく、例えば、1〜12時間の範囲で時間を調節して熱処理を実施すればよい。   The time for heat treatment of the Al—Mg—Si based alloy material performed at a temperature of 120 ° C. or more and less than 200 ° C. after the end of the hot rolling and before the end of the cold rolling is not particularly limited. What is necessary is just to adjust time at predetermined temperature so that it may be obtained, for example, heat processing may be implemented by adjusting time in the range of 1 to 12 hours.

前記熱処理の後、冷間圧延を実施することにより加工硬化し強度が更に向上する。   After the heat treatment, by cold rolling, the work hardening is achieved and the strength is further improved.

前記熱処理は時効硬化させたAl−Mg―Si系合金材の冷間圧延による強度向上効果を高めるため、熱間圧延終了後冷間圧延開始前に実施することが好ましい。   The heat treatment is preferably performed after the end of hot rolling and before the start of cold rolling in order to enhance the effect of improving the strength of the age-hardened Al—Mg—Si based alloy material by cold rolling.

前記熱処理後の冷間圧延により所定の厚さのAl−Mg―Si系合金材とする。熱処理後の冷間圧延は強度向上と加工性の改善の為50%以上の圧延率で実施されることが好ましい。熱処理後の冷間圧延によるAl−Mg―Si系合金材の圧延率は更に60%以上が好ましく、特に70%以上が好ましい。   The Al—Mg—Si alloy material having a predetermined thickness is obtained by cold rolling after the heat treatment. The cold rolling after the heat treatment is preferably performed at a rolling rate of 50% or more in order to improve strength and improve workability. The rolling rate of the Al—Mg—Si alloy material by cold rolling after the heat treatment is further preferably 60% or more, particularly preferably 70% or more.

冷間圧延後のAl−Mg―Si系合金材に必要に応じて洗浄を実施しても良い。   The Al—Mg—Si alloy material after cold rolling may be cleaned as necessary.

Al−Mg―Si系合金材の加工性を更に重視する場合は冷間圧延後に最終焼鈍を実施しても良い。最終焼鈍はAl−Mg―Si系合金材の強度が低くなりすぎないようにする為に180℃以下で実施することが好ましく、更に160℃以下、特に140℃以下で実施することが好ましい。   When the workability of the Al—Mg—Si based alloy material is further emphasized, final annealing may be performed after cold rolling. The final annealing is preferably performed at 180 ° C. or lower, and more preferably 160 ° C. or lower, particularly 140 ° C. or lower, so that the strength of the Al—Mg—Si based alloy material does not become too low.

前記180℃以下の温度で実施するAl−Mg―Si系合金材の最終焼鈍の時間は必要な加工性および強度が得られるよう調節すればよく、例えば、1〜10時間の範囲で最終焼鈍の温度により選択すれば良い。   The final annealing time of the Al—Mg—Si based alloy material carried out at the temperature of 180 ° C. or lower may be adjusted so as to obtain necessary workability and strength. For example, the final annealing time is in the range of 1 to 10 hours. What is necessary is just to select by temperature.

なお、本願のAl−Mg―Si系合金材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程でAl−Mg―Si系合金材を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットし条にしても良い。   The production of the Al—Mg—Si based alloy material of the present application may be performed by a coil or a single plate. Further, the Al—Mg—Si based alloy material may be cut in an arbitrary step after the cold rolling, and the step after the cutting may be performed with a single plate, or may be slit and formed depending on the application.

上記の製造方法によれば、高い導電率を得つつ、強度を向上させることができ、高強度であるにも関わらず加工性も優れたAl−Mg―Si系合金材が得られる。   According to the above production method, an Al—Mg—Si based alloy material that can improve strength while obtaining high electrical conductivity and is excellent in workability despite being high in strength can be obtained.

本願のAl−Mg―Si系合金材の導電率は54%IACS以上、引張強さは280MPa以上と規定する。引張強さは285MPa以上が好ましく、290MPa以上が更に好ましい。本願のAl−Mg―Si系合金材の0.2%耐力は、230MPa以上が好ましく、更に240MPa以上が好ましく、特に250MPa以上が好ましい。   The electrical conductivity of the Al—Mg—Si based alloy material of the present application is defined as 54% IACS or more, and the tensile strength is defined as 280 MPa or more. The tensile strength is preferably 285 MPa or more, and more preferably 290 MPa or more. The 0.2% yield strength of the Al—Mg—Si based alloy material of the present application is preferably 230 MPa or more, more preferably 240 MPa or more, and particularly preferably 250 MPa or more.

本願のAl−Mg―Si系合金材は繊維組織を有する。繊維組織は塑性加工により伸ばされた金属組織である。   The Al—Mg—Si alloy material of the present application has a fiber structure. The fiber structure is a metal structure stretched by plastic working.

図1に本願のAl−Mg―Si系合金材の繊維組織のモデル図を示す。   FIG. 1 shows a model diagram of the fiber structure of the Al—Mg—Si alloy material of the present application.

図1に示すように、本願において、観察面の法線がAl−Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるように金属組織を露出させ、光学顕微鏡で観察した観察面の金属組織の加工面法線方向の粒界が3本/100μm以上であり、加工方向の長さが300μm以上の粒界が存在する金属組織を繊維組織と規定する。なお、塑性加工が圧延の場合、加工方向は圧延方向であり、加工面は圧延面であり、観察面は圧延方向に対し平行に切断した厚さ方向の断面となる。   As shown in FIG. 1, in the present application, the metal structure is exposed so that the normal of the observation surface is perpendicular to both the processing direction vector of the Al—Mg—Si alloy material and the normal direction vector of the processing surface, A metal structure in which the grain boundary in the normal direction of the processed surface of the metal structure of the observation surface observed with an optical microscope is 3 lines / 100 μm or more and the grain boundary having a length in the processing direction of 300 μm or more is defined as a fiber structure. . When the plastic processing is rolling, the processing direction is the rolling direction, the processing surface is the rolling surface, and the observation surface is a cross section in the thickness direction cut in parallel to the rolling direction.

金属組織を露出させる方法としては、法線がAl−Mg―Si系合金材の加工方向ベクトルおよび加工面の法線方向ベクトルの両方に垂直となるAl−Mg―Si系合金材の面を研磨した後、研磨面を陽極酸化処理する方法を例示できる。陽極酸化処理液はバーカー氏液(3%ホウフッ化水素酸水溶液)を好適に用いることができる。   As a method of exposing the metal structure, the surface of the Al-Mg-Si alloy material whose normal is perpendicular to both the processing direction vector of the Al-Mg-Si alloy material and the normal direction vector of the processing surface is polished. Then, a method of anodizing the polished surface can be exemplified. Barker's solution (3% borohydrofluoric acid aqueous solution) can be preferably used as the anodizing solution.

以下に本発明の実施例および比較例を示す。   Examples of the present invention and comparative examples are shown below.

表1に示す化学組成の異なるアルミニウム合金スラブをDC鋳造法により得た。   Aluminum alloy slabs having different chemical compositions shown in Table 1 were obtained by the DC casting method.

[実施例1]
表1の化学組成番号1のアルミニウム合金スラブに面削を施した。次に、面削後の合金スラブに対し加熱炉中で570℃3hの均質化処理を実施した後、同じ炉中で温度を変化させ540℃4hの熱間圧延前加熱を実施した。熱間圧延前加熱後540℃のスラブを加熱炉中から取り出し、粗熱間圧延を開始した。粗熱間圧延中の合金板の厚さが25mmとなった後、パス直前の合金板温度451℃から平均冷却速度80℃/分にて、粗熱間圧延の最終パスを実施し、粗熱間圧延上がり温度222℃厚さ12mmの合金板とした。なお、粗熱間圧延の最終パスでは、圧延しながら合金板を移動させ、圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷による強制冷却を実施した。
[Example 1]
The aluminum alloy slab having the chemical composition number 1 in Table 1 was chamfered. Next, the homogenized treatment at 570 ° C. for 3 hours was performed on the alloy slab after chamfering in a heating furnace, and then the temperature was changed in the same furnace to perform heating before hot rolling at 540 ° C. for 4 hours. After heating before hot rolling, a 540 ° C. slab was taken out from the heating furnace, and rough hot rolling was started. After the thickness of the alloy plate during the rough hot rolling reaches 25 mm, the final pass of the rough hot rolling is performed at an average cooling rate of 80 ° C./min from the alloy plate temperature of 451 ° C. immediately before the pass. An alloy plate having a hot rolling temperature of 222 ° C. and a thickness of 12 mm was obtained. In the final pass of the rough hot rolling, the alloy plate was moved while rolling, and forced cooling was performed by water cooling in which water was sprayed on the alloy plate sequentially from above and below the portion of the rolled alloy plate.

粗熱間圧延の後、合金板に仕上げ熱間圧延直前温度220℃から仕上げ熱間圧延を実施し、厚さ7.0mmの合金板を得た。仕上げ熱間圧延直後の合金板の温度は111℃であった。仕上げ熱間圧延後の合金板に170℃5hの熱処理を施した後、圧延率98%の冷間圧延を実施し、製品板厚0.15mmのアルミニウム合金板を得た。   After the rough hot rolling, the alloy plate was subjected to finish hot rolling from a temperature immediately before finish hot rolling of 220 ° C. to obtain an alloy plate having a thickness of 7.0 mm. The temperature of the alloy sheet immediately after the finish hot rolling was 111 ° C. The alloy plate after finish hot rolling was heat treated at 170 ° C. for 5 hours, and then cold rolled at a rolling rate of 98% to obtain an aluminum alloy plate having a product plate thickness of 0.15 mm.

Figure 2017179443
Figure 2017179443

[実施例2〜42、比較例1〜6]
表1に記載のアルミニウム合金スラブに面削を施した後、表2〜表6に記載の条件で、処理を施し、アルミニウム合金板を得た。なお、実施例1と同様に全ての実施例および比較例において均質化処理と熱間圧延前加熱は同じ炉で連続して実施し、粗熱間圧延最終パス後の強制冷却は、圧延しながら合金板を移動させ圧延後の合金板の部位に対し順次上下から水を合金板に噴霧する水冷または粗熱間圧延最終パス完了後に送風冷却する空冷のどちらかを選択した。また、一部の実施例では冷間圧延後に最終焼鈍を実施した。
[Examples 2 to 42, Comparative Examples 1 to 6]
After chamfering the aluminum alloy slab described in Table 1, treatment was performed under the conditions described in Tables 2 to 6 to obtain an aluminum alloy plate. As in Example 1, in all Examples and Comparative Examples, homogenization treatment and heating before hot rolling are continuously performed in the same furnace, and forced cooling after the final pass of rough hot rolling is performed while rolling. Either water cooling in which the alloy plate is moved and water is sprayed on the alloy plate in order from the top and bottom of the rolled alloy plate portion or air cooling in which the air is cooled after completion of the final hot-rolling pass is selected. In some examples, final annealing was performed after cold rolling.

実施例15では、粗熱間圧延の最終パスを熱間圧延の最終パスとし、仕上げ熱間圧延を実施しなかった。   In Example 15, the final pass of rough hot rolling was used as the final pass of hot rolling, and the finish hot rolling was not performed.

比較例1および比較例2では、冷間圧延の途中に550℃1分の熱処理を施した後5℃/秒以上の速度での冷却を行う溶体化処理を実施した。比較例1および比較例2において、冷間圧延率は溶体化処理後の冷間圧延の合計圧延率であり、溶体化処理後の冷間圧延は、溶体化処理後の合金材の厚さからの冷間圧延率が30%となるように実施した。   In Comparative Example 1 and Comparative Example 2, a solution treatment was performed in which heat treatment was performed at 550 ° C. for 1 minute during the cold rolling, followed by cooling at a rate of 5 ° C./second or more. In Comparative Example 1 and Comparative Example 2, the cold rolling rate is the total rolling rate of the cold rolling after the solution treatment, and the cold rolling after the solution treatment is based on the thickness of the alloy material after the solution treatment. The cold rolling rate was 30%.

Figure 2017179443
Figure 2017179443

Figure 2017179443
Figure 2017179443

Figure 2017179443
Figure 2017179443

Figure 2017179443
Figure 2017179443

Figure 2017179443
Figure 2017179443

得られた合金板の引張強さ、0.2%耐力、導電率、加工性を以下の方法により評価した。   The tensile strength, 0.2% yield strength, electrical conductivity, and workability of the obtained alloy plate were evaluated by the following methods.

引張強さおよび0.2%耐力は、JIS5号試験片について、常温で常法により測定した。   Tensile strength and 0.2% proof stress were measured for JIS No. 5 test pieces at ordinary temperature by a conventional method.

導電率は、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10−2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。 The electrical conductivity was determined as a relative value (% IACS) when the electrical conductivity of annealed standard annealed copper (volume low efficiency 1.7241 × 10 −2 μΩm) adopted internationally was 100% IACS.

加工性は、曲げ角度を90°、合金板の厚さが0.4mm以上の場合はそれぞれの合金板の板厚を曲げ内側半径、合金板の厚さが0.4mm未満の場合は曲げ内側半径を0として、JIS Z 2248金属材料曲げ試験方法の6.3 Vブロック法による曲げ試験を実施し、割れが発生しなかったものを○、割れが発生したものを×として評価した。   As for workability, when the bending angle is 90 °, the thickness of the alloy plate is 0.4 mm or more, the thickness of each alloy plate is bent inside radius, and when the thickness of the alloy plate is less than 0.4 mm, the bending inside The bending test by the 6.3 V block method of the JIS Z 2248 metal material bending test method was carried out with the radius set to 0, and the case where no crack was generated was evaluated as ◯, and the case where the crack was generated was evaluated as ×.

実施例および比較例において、圧延方向に対し平行に切断した厚さ方向のAl−Mg―Si系合金板の断面の金属組織を露出させたとき 光学顕微鏡で観察される金属組織の圧延面法線方向の粒界が3本/100μm以上であり、圧延方向の長さが300μm以上の粒界が存在する金属組織を繊維組織とした。   In Examples and Comparative Examples, when the metal structure of the cross section of the Al-Mg-Si alloy plate in the thickness direction cut parallel to the rolling direction is exposed, the rolling surface normal of the metal structure observed with an optical microscope The metal structure in which the grain boundary in the direction is 3 lines / 100 μm or more and the grain boundary having a length in the rolling direction of 300 μm or more is defined as the fiber structure.

金属組織を露出させる方法としては、Al−Mg―Si系合金板を圧延方向に対し平行に切断した断面をエメリー紙にて研磨し、荒バフ研磨、仕上げ研磨を施した後、水洗、乾燥を実施し、更に、バーカー氏液(3%ホウフッ化水素酸水溶液)中で、浴温:28℃、印加電圧:30V、印加時間:90秒条件で陽極酸化処理を施す方法を適用した。   As a method of exposing the metal structure, an Al-Mg-Si alloy plate cut in parallel to the rolling direction is polished with emery paper, subjected to rough buffing and final polishing, and then washed with water and dried. Furthermore, a method of applying anodizing treatment in a Barker solution (3% aqueous borofluoric acid solution) under conditions of bath temperature: 28 ° C., applied voltage: 30 V, applied time: 90 seconds was applied.

引張強さ、0.2%耐力、導電率、および加工性の評価結果、およびAl−Mg―Si系合金板が繊維組織を有するか否かを表7および表8に示す。   Tables 7 and 8 show the evaluation results of tensile strength, 0.2% proof stress, electrical conductivity, and workability, and whether the Al—Mg—Si based alloy sheet has a fiber structure.

Figure 2017179443
Figure 2017179443

Figure 2017179443
Figure 2017179443

本願規定の化学組成、引張強さ、および導電率を満足し、繊維組織を有する実施例記載のAl−Mg−Si系合金材は加工性も良好である。一方、冷間圧延の途中に溶体化処理を実施した比較例1および比較例2は導電率が本願実施に劣り、化学組成が本願規定範囲を満足しない比較例3〜比較例6は引張強さもしくは導電率の少なくともどちらかが実施例に劣り、加工性に劣るものもある。   The Al—Mg—Si based alloy materials described in the examples satisfying the chemical composition, tensile strength, and conductivity defined in the present application and having a fiber structure have good workability. On the other hand, Comparative Example 1 and Comparative Example 2 in which solution treatment was performed in the middle of cold rolling had inferior electrical conductivity compared to the present application, and Comparative Examples 3 to 6 in which the chemical composition did not satisfy the specified range were tensile strength. Alternatively, at least one of the conductivity is inferior to that of the example, and some of the conductivity is poor.

Claims (7)

化学組成が、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下およびCu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Al及び不可避不純物からなり、引張強さが280MPa以上、導電率が54%IACS以上であり繊維組織を有するAl−Mg−Si系合金材。   Chemical composition contains Si: 0.2-0.8 mass%, Mg: 0.3-1 mass%, Fe: 0.5 mass% or less, and Cu: 0.5 mass% or less, and also Ti: 0.1 mass% or less or B: containing at least one kind of 0.1 mass% or less, the balance consisting of Al and inevitable impurities, tensile strength of 280 MPa or more, conductivity of 54% IACS or more, Al-Mg-Si based alloy material. 不純物としてのMn、Cr、およびZnが、それぞれ0.1質量%以下に規制されている請求項1に記載のAl−Mg−Si系合金材。   2. The Al—Mg—Si based alloy material according to claim 1, wherein Mn, Cr, and Zn as impurities are each regulated to 0.1 mass% or less. 不純物としてのNi、V、Ga、Pb、Sn、BiおよびZrが、それぞれ0.05質量%以下に規制されている請求項1または請求項2に記載のAl−Mg−Si系合金材。   The Al—Mg—Si based alloy material according to claim 1, wherein Ni, V, Ga, Pb, Sn, Bi, and Zr as impurities are each regulated to 0.05 mass% or less. 不純物としてのAgが0.05質量%以下に規制されている請求項1ないし請求項3の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 3, wherein Ag as an impurity is regulated to 0.05 mass% or less. 不純物としての希土類元素の合計含有量が0.1質量%以下に規制されている請求項1ないし請求項4の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 4, wherein a total content of rare earth elements as impurities is regulated to 0.1 mass% or less. 引張強さが285MPa以上である請求項1ないし請求項5の何れか1項に記載のAl−Mg−Si系合金材。   The Al-Mg-Si alloy material according to any one of claims 1 to 5, wherein the tensile strength is 285 MPa or more. 0.2%耐力が230MPa以上である請求項1ないし請求項6の何れか1項に記載のAl−Mg−Si系合金材。
The Al-Mg-Si alloy material according to any one of claims 1 to 6, wherein a 0.2% proof stress is 230 MPa or more.
JP2016067346A 2016-03-30 2016-03-30 Al-Mg-Si based alloy material Active JP6774197B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016067346A JP6774197B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy material
PCT/JP2016/088715 WO2017168890A1 (en) 2016-03-30 2016-12-26 Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
CN201680082917.8A CN108699641B (en) 2016-03-30 2016-12-26 Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet
TW106103836A TW201807210A (en) 2016-03-30 2017-02-06 Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067346A JP6774197B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy material

Publications (2)

Publication Number Publication Date
JP2017179443A true JP2017179443A (en) 2017-10-05
JP6774197B2 JP6774197B2 (en) 2020-10-21

Family

ID=60006667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067346A Active JP6774197B2 (en) 2016-03-30 2016-03-30 Al-Mg-Si based alloy material

Country Status (1)

Country Link
JP (1) JP6774197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033608A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) 2019-11-25 2024-03-04 堺アルミ株式会社 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123914A (en) * 1976-04-12 1977-10-18 Furukawa Electric Co Ltd:The Production of high tensile al alloy conductor
JPS52123915A (en) * 1976-04-12 1977-10-18 Furukawa Electric Co Ltd:The Production of high tensile al alloy conductor
JPS6353132A (en) * 1986-08-20 1988-03-07 アルキャン・インタ−ナショナル・リミテッド Contact conductor
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123914A (en) * 1976-04-12 1977-10-18 Furukawa Electric Co Ltd:The Production of high tensile al alloy conductor
JPS52123915A (en) * 1976-04-12 1977-10-18 Furukawa Electric Co Ltd:The Production of high tensile al alloy conductor
JPS6353132A (en) * 1986-08-20 1988-03-07 アルキャン・インタ−ナショナル・リミテッド Contact conductor
JP2005264174A (en) * 2004-03-16 2005-09-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet having excellent thermal conductivity and formability and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033608A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7442304B2 (en) 2019-11-25 2024-03-04 堺アルミ株式会社 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Also Published As

Publication number Publication date
JP6774197B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP6774196B2 (en) Al-Mg-Si based alloy material
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6695725B2 (en) Al-Mg-Si alloy plate
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7262947B2 (en) Al-Mg-Si alloy plate
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774197B2 (en) Al-Mg-Si based alloy material
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
WO2017168891A1 (en) Method for producing al-mg-si alloy plate
JP2021105198A (en) Rolled aluminum alloy material having excellent thermal conductivity, conductivity and strength and method for producing the same
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JP6774198B2 (en) Al-Mg-Si based alloy plate
JP2017179451A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179450A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250