JP2000144296A - High-strength and high-toughness aluminum alloy forged material - Google Patents
High-strength and high-toughness aluminum alloy forged materialInfo
- Publication number
- JP2000144296A JP2000144296A JP11224024A JP22402499A JP2000144296A JP 2000144296 A JP2000144296 A JP 2000144296A JP 11224024 A JP11224024 A JP 11224024A JP 22402499 A JP22402499 A JP 22402499A JP 2000144296 A JP2000144296 A JP 2000144296A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- toughness
- strength
- alloy
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に自動車のサス
ペンション部品などの輸送機の部品に好適な、Al-Mg-Si
系高強度高靱性アルミニウム合金鍛造材 (以下、アルミ
ニウムを単にAlと言う) に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Al-Mg-Si
The present invention relates to a high-strength, high-toughness aluminum alloy forged material (hereinafter, aluminum is simply referred to as Al).
【0002】[0002]
【従来の技術】周知の通り、自動車や車両などの輸送機
材の構造材あるいはナックル、ロアアーム、アッパーア
ームなどのサスペンション部品用として、軽量化を目的
として、成形性や焼付硬化性に優れたJIS 6000系(Al-Mg
-Si 系) などのAl合金が使用されている。このJIS 6000
系Al合金は、他の要求特性である伸びなどの機械的特性
や耐蝕性や応力腐食割れ性にも優れており、また、Mg量
などの合金量が少なく、スクラップをJIS 6000系Al合金
溶解原料として再利用できるリサイクル性の点からも優
れている。2. Description of the Related Art As is well known, JIS 6000, which is excellent in formability and bake hardenability, for the purpose of weight reduction, for structural materials of transportation equipment such as automobiles and vehicles or for suspension parts such as knuckles, lower arms, upper arms and the like. System (Al-Mg
Al alloys such as -Si) are used. This JIS 6000
Aluminum alloys have excellent mechanical properties such as elongation, corrosion resistance, and stress corrosion cracking, which are other required properties.Also, the amount of alloys such as Mg is small, and scrap can be melted using JIS 6000 series aluminum alloys. It is also excellent in terms of recyclability, which can be reused as a raw material.
【0003】前記自動車用のサスペンション部品を例に
とると、製造コストの低減や、複雑形状部品への加工の
点から、Al合金鋳造材やAl合金鍛造材が用いられる。こ
の内、より高強度で高靱性などの機械的性質が要求され
る部品には、Al合金鍛造材が用いられる。そして、これ
らAl合金鍛造材は、Al合金鋳造材を均質化熱処理後、メ
カニカル鍛造などの熱間鍛造およびT6などの調質処理や
時効処理が施されて製造される。[0003] Taking the above-mentioned suspension parts for automobiles as an example, cast aluminum alloys and forged aluminum alloys are used from the viewpoint of reduction in manufacturing cost and processing into parts having complicated shapes. Of these, forged parts requiring higher mechanical strength and mechanical properties such as high toughness use an Al alloy forging. These Al alloy forgings are manufactured by subjecting an Al alloy casting to a homogenizing heat treatment, followed by a hot forging such as a mechanical forging, a tempering treatment such as T6, and an aging treatment.
【0004】近年、これら自動車用のサスペンション部
品を含めて、より薄肉化や高強度化が求められており、
前記Al合金鍛造材も、より高強度で高靱性化する必要性
が生じている。しかし、現状でこれら用途に使用されて
いるJIS 6000系Al合金では、どうしても強度不足が生じ
てしまう。In recent years, there has been a demand for thinner and higher-strength parts including these automotive suspension parts.
There is a need for the Al alloy forging to have higher strength and higher toughness. However, JIS 6000 series Al alloys currently used for these applications inevitably have insufficient strength.
【0005】このため、従来からAl合金材料の側を改善
することが行われている。例えば、特開平06-256880 号
公報では、自動車用のサスペンションなどの部品として
用いられるAl合金鍛造材用鋳造材として、JIS 6000系(A
l-Mg-Si 系) 鋳造材のMg、Si等の成分を規定するととも
に、晶出物の平均粒径を8 μm 以下と小さくし、かつデ
ンドライト二次アーム間隔(DAS) を40μm 以下と細かく
して、Al合金鍛造材をより高強度で高靱性化することが
提案されている。For this reason, improvement of the Al alloy material has been conventionally performed. For example, in Japanese Patent Application Laid-Open No. 06-256880, a JIS 6000 series (A) is used as a casting material for an aluminum alloy forging used as a component such as a suspension for an automobile.
(l-Mg-Si system) Define the components such as Mg and Si of the cast material, reduce the average particle size of the crystallized substance to 8 μm or less, and finely reduce the dendrite secondary arm spacing (DAS) to 40 μm or less. Thus, it has been proposed to improve the strength and toughness of the forged Al alloy material.
【0006】[0006]
【発明が解決しようとする課題】しかし、この特開平06
-256880 号公報の実施例にも示されている通り、この従
来技術で得られるAl合金鍛造材のデンドライト二次アー
ム間隔(DAS) は、小さいものでも、せいぜい30μm 程度
であり、かつAl合金鍛造材の特性は、丸棒の据え込み鍛
造試験結果では、加工率 [( 元のインゴット高さd0−割
れが発生した高さd t ) /d0]が75% の場合、強度
(σB ) が39.2〜39.3kgf/mm2(384 〜385N/mm2)程度で、
また、靱性(IC ) も2.2 〜2.3kgf/mm2 (シャルピー衝撃
値で約22J/cm2)程度である。However, Japanese Patent Laid-Open Publication No.
As shown in the examples of JP-256880-A, the aluminum alloy forged material obtained by this prior art has a dendrite secondary arm spacing (DAS) of at most about 30 μm, even if it is small. characteristics of wood, in the forged test results upsetting round bar, working rate - if [(original ingot height d 0 height d t crack occurred) / d 0] is 75%, the strength
(σ B ) is about 39.2-39.3kgf / mm 2 (384-385N / mm 2 )
The toughness (I C ) is about 2.2 to 2.3 kgf / mm 2 (Charpy impact value is about 22 J / cm 2 ).
【0007】即ち、この従来技術のような丸棒の据え込
み鍛造試験では、丸棒の各部位は均一に加工される結
果、丸棒の各部位の機械的特性は均一なものとなる。し
かし、図2 に自動車用のサスペンション部品用のAl合金
鍛造材の一例を示す通り、実際のAl合金鍛造材では、メ
カニカル鍛造などの熱間鍛造によっても、部品の部位に
よっては、加工率が低くなる場合があり、鍛造材の各部
位の機械的特性は均一なものとならない。例えば、図2
のような形状の場合、図2 のT2部分などは、T1部分の加
工率が75% の場合でも、50% 程度の加工率にしかならな
い。そして、この加工率が低い部位の靱性は、鍛造され
ても鋳造組織が残るために、加工率が高い他の部位に比
して、必然的に低くなる傾向にある。That is, in the upsetting forging test of a round bar as in the prior art, each portion of the round bar is uniformly processed, so that the mechanical characteristics of each portion of the round bar become uniform. However, as shown in Fig. 2, an example of an Al alloy forged material for automotive suspension parts is that the working ratio of an actual Al alloy forged material is low depending on the part of the part even by hot forging such as mechanical forging. In some cases, the mechanical properties of each part of the forged material are not uniform. For example, Figure 2
For shapes such as, such as T 2 portions of FIG. 2, even when T 1 part of processing rate is 75%, not only the working ratio of 50%. The toughness of the part with a low working ratio tends to be necessarily lower than that of other parts with a high working ratio because the cast structure remains even after forging.
【0008】したがって、この従来技術で得られるAl合
金鍛造材の強度や靱性は、JIS 6061や6151などのAl合金
などよりも向上しているものの、加工率が低い部位が生
じることにより、この部位の靱性が低くなるようなAl合
金鍛造材に対しては、特にAl合金鍛造材の平均的な靱性
が不足する。即ち、前記従来技術では、加工率が75%未
満、更には50% 以下となる部位では、前記靱性のレベル
が更に低くなり、部品として要求される、部品全体とし
ての高耐力および高靱性値を得ることができない。Therefore, although the strength and toughness of the Al alloy forged material obtained by this conventional technique are higher than those of Al alloys such as JIS 6061 and 6151, a portion with a low processing rate is formed, and this portion is formed. In particular, the average toughness of an Al alloy forged material is insufficient for an Al alloy forged material having low toughness. That is, in the prior art, in a portion where the working ratio is less than 75%, and even 50% or less, the level of the toughness is further reduced, and the high yield strength and high toughness value of the whole part required as a part are reduced. I can't get it.
【0009】この結果、全体としてのより高強度で高靱
性が要求される部品、より具体的には、部品全体として
σ0.2 で315N/mm2以上の高強度およびシャルピー衝撃値
で20J/cm2 以上の靱性が要求される部品や部材には適用
できず、Al合金鍛造材自体の自動車用のサスペンション
部品への用途の拡大を妨げていた。As a result, components requiring higher strength and higher toughness as a whole, more specifically, high strength of 315 N / mm 2 or more at σ 0.2 and 20 J / cm 2 at Charpy impact value as a whole. It cannot be applied to parts and members requiring the above toughness, and has hindered the expansion of the use of the forged Al alloy itself as a suspension part for automobiles.
【0010】本発明はこの様な事情に着目してなされた
ものであって、その目的は、鍛造加工率の低い部位が存
在しても、鍛造材全体としての平均的な機械的特性が優
れ、鍛造材全体として、高強度で高靱性が要求される部
品や部材に適用することが可能な高強度高靱性Al合金鍛
造材を提供しようとするものである。[0010] The present invention has been made in view of such circumstances, and its purpose is to improve the average mechanical properties of the forged material as a whole, even if there are portions having a low forging rate. It is an object of the present invention to provide a high-strength and high-toughness Al alloy forging that can be applied to parts and members that require high strength and high toughness as a whole forged material.
【0011】[0011]
【課題を解決するための手段】この目的を達成するため
に、本発明Al合金鍛造材の要旨は、Mg:0.6〜1.6% (質量
% 、以下同じ) 、Si:0.6〜1.8%、Cu:0.05 〜1.0%を含む
とともに、Feを0.30%以下に規制し、Mn:0.15 〜0.6%、C
r:0.1〜0.2%、Zr:0.05 〜0.2%の一種または二種以上を
含み、更に、水素:0.25 cc/100g Al以下とし、残部Alお
よび不可避的不純物からなるAl合金鍛造材であって、10
℃/sec以上の冷却速度で鋳造されたAl合金鋳塊を、530
〜 600℃の温度で均質化熱処理した後に、熱間鍛造して
鍛造材とされ、該鍛造材におけるAl合金組織中のMg2Si
とAl-Fe-Si-(Mn、Cr、Zr) 系の晶出物の合計の面積率を
単位面積当たり1.5%以下としたことである。In order to achieve this object, the gist of the forged Al alloy of the present invention is as follows: Mg: 0.6 to 1.6% (mass
%, The same applies hereinafter), Si: 0.6 to 1.8%, Cu: 0.05 to 1.0%, Fe is controlled to 0.30% or less, Mn: 0.15 to 0.6%, C
r: 0.1 to 0.2%, Zr: containing one or more of 0.05 to 0.2%, hydrogen: 0.25 cc / 100 g Al or less, an aluminum alloy forging material consisting of the balance Al and unavoidable impurities, Ten
Al alloy ingot cast at a cooling rate of
After a homogenizing heat treatment at a temperature of ~ 600 ° C, the forged material is hot forged, and the Mg 2 Si in the Al alloy structure in the forged material is obtained.
And the total area ratio of Al-Fe-Si- (Mn, Cr, Zr) -based crystallized substances is set to 1.5% or less per unit area.
【0012】本発明者らは、鋳造により晶出する晶出物
と、鍛造されたAl合金組織の靱性との関係について検討
した結果、特定の晶出物の面積率が鍛造されたAl合金組
織の靱性と深く関わっていることを知見した。The present inventors have studied the relationship between the crystallized material crystallized by casting and the toughness of the forged Al alloy structure. As a result, the area ratio of the specific crystallized material is reduced to the forged Al alloy structure. It was found that it was closely related to the toughness of steel.
【0013】即ち、本発明者らは、鍛造されたAl合金組
織の破壊の起点 (ディンプルの起点)となっているの
は、Al合金鋳塊の晶出物の内、Mg2Si およびAl-Fe-Si-M
n 、Al-Fe-Si-Cr 、Al-Fe-Si-Zr 等のAl-Fe-Si-(Mn、C
r、Zr) 系の晶出物であることを知見した。In other words, the inventors of the present invention have found that the starting point of the fracture of the forged Al alloy structure (the starting point of the dimple) is Mg 2 Si and Al— Fe-Si-M
n, Al-Fe-Si-Cr, Al-Fe-Si-Zr and other Al-Fe-Si- (Mn, C
(r, Zr) system.
【0014】そして、更に重要なことは、Al合金組織に
存在するこれら晶出物が大きく乃至長くつながった形状
ではなく、互いに間隔を開けて分散していることが靱性
の向上に寄与することを知見した。即ち、これら晶出物
は、特に必要な強度を確保するために寄与している点か
らは、単純に低減乃至無くすことはできない。しかし、
必然的に存在乃至必要により存在しているこれら晶出物
の形態を制御することで、必要な強度の確保と、鍛造加
工率が低くても乃至鍛造加工率が低い部分があっても、
高い平均的な靱性が確保できることを知見した。More importantly, the fact that these crystallized substances present in the Al alloy structure are dispersed not at a large or long shape but at intervals from each other contributes to the improvement of toughness. I learned. That is, these crystallized substances cannot be simply reduced or eliminated from the viewpoint that they contribute to securing particularly necessary strength. But,
By controlling the morphology of these crystallized substances that are inevitably present or necessary, securing the necessary strength, even if the forging rate is low or there is a part where the forging rate is low,
It has been found that high average toughness can be secured.
【0015】例えば、前記特開平06-256880 号公報のよ
うな晶出物の形態制御、即ち、単に鋳塊の晶出物の平均
粒径を小さくするだけでは靱性の向上に多く寄与しな
い。本発明者らは、前記特開平06-256880 号公報のよう
な思想に反して、例え鋳塊の晶出物の平均粒径が大きく
ても、それが間隔を開けて分散している (まばらに存在
する) ならば、靱性の向上に寄与することを知見した。
つまり、晶出物の平均粒径が小さくても、互いの間隔が
小さく密集した状態乃至つながった状態では、靱性、特
に破壊靱性を劣化させる。そして、一方、本発明では、
これらMg2Si およびAl-Fe-Si-(Mn、Cr、Zr) 系の晶出物
等の晶出物量自体も、必要な強度確保分以外は制御乃至
低減する。For example, morphological control of the crystallized substance as disclosed in JP-A-06-256880, that is, simply reducing the average particle size of the crystallized substance of the ingot does not contribute much to the improvement of toughness. Contrary to the idea as disclosed in JP-A-06-256880, even if the average particle size of the ingot crystallized matter is large, it is dispersed at intervals. ) Is found to contribute to the improvement of toughness.
That is, even if the average particle size of the crystallized product is small, the toughness, particularly the fracture toughness, is deteriorated when the space between the crystallized materials is small and dense or connected. And, on the other hand, in the present invention,
The crystallized amount itself such as Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) based crystallized materials is controlled or reduced except for the necessary strength.
【0016】そして、この晶出物量の制御と、晶出物が
互いに間隔を開けて分散している(晶出物の互いの間隔
が小さく密集した状態乃至つながった状態ではない)状
況に良く対応する指標として、本発明では、単位面積当
たりの、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系の晶出物の
合計の面積率を選択する。[0016] The control of the amount of the crystallized substance and the coping with the situation where the crystallized substance is dispersed at a distance from each other (the crystallized substance is not in a state where the distance between the crystallized particles is small or dense or connected) are well handled. In the present invention, the total area ratio of Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) -based crystallization per unit area is selected as an index to be used.
【0017】これらの晶出物の面積率は、Al合金鋳塊乃
至鍛造材の厚み方向断面の組織の、800 倍の走査型電子
顕微鏡(SEM) の目視観察乃至画像解析観察によって行
う。この走査型電子顕微鏡の倍率は、400 〜800 までの
倍率で測定しても面積率はあまり変わらないが、これ以
外の倍率では、測定対象となる晶出物の数が全く異なっ
てくる。このため、倍率が異なると、測定される面積率
が大きく異なり、面積率規定の再現性を失う。したがっ
て、本発明で晶出物の面積率規定の基準とする走査型電
子顕微鏡の倍率は800 倍と定める。また、面積率測定の
再現性をもたせるためには、晶出物の面積率を測定する
対象部位の視野数 (測定ポイント) を5 〜20視野として
観察し、各視野での晶出物の測定面積率の平均をとるの
が好ましい。The area ratio of these crystallized substances is determined by visual observation or image analysis observation of the structure of the cross section in the thickness direction of the Al alloy ingot or forged material by 800 times scanning electron microscope (SEM). The magnification of the scanning electron microscope does not change much even when measured at a magnification of 400 to 800, but at other magnifications, the number of crystallized substances to be measured is completely different. For this reason, when the magnification is different, the measured area ratio is significantly different, and the reproducibility of the area ratio is lost. Therefore, in the present invention, the magnification of the scanning electron microscope, which is the standard for defining the area ratio of the crystallized substance, is set to 800 times. Also, in order to provide reproducibility of the area ratio measurement, observe the number of visual fields (measurement points) of the target area for measuring the area ratio of the crystallized substance as 5 to 20 visual fields, and measure the crystallized substance in each visual field. It is preferable to take the average of the area ratios.
【0018】[0018]
【発明の実施の形態】本発明における晶出物の規定につ
いて説明する。800 倍の走査型電子顕微鏡(SEM) の目視
観察乃至画像解析観察によるMg2Si とAl-Fe-Si-(Mn、C
r、Zr) 系晶出物の合計の面積率が、単位面積当たり1.5
%以下、好ましくは、1.0%以下とすることにより、自動
車用のサスペンション部品などに要求される、より高強
度で高靱性、好ましくは、耐力 (σ0.2)の平均値が350N
/mm2以上を有する場合の、平均値30J/cm2 以上の高靱性
を得ることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The definition of a crystallized substance in the present invention will be described. Mg 2 by visual observation or image analysis observation of 800 times the scanning electron microscope (SEM) Si and Al-Fe-Si- (Mn, C
(r, Zr) is 1.5% per unit area
% Or less, preferably 1.0% or less, higher strength and high toughness required for automotive suspension parts, etc., preferably, the average value of proof stress (σ 0.2 ) is 350N
/ mm 2 or more, high toughness with an average value of 30 J / cm 2 or more can be obtained.
【0019】一方、前記晶出物の合計の面積率が、単位
面積当たり1.5%を越えた場合には、特に、熱間鍛造によ
っても加工率が低くなる (加工率が75% 未満となる) 部
品の部位の靱性が顕著に低くなることを含め、部品全体
としての平均的な高靱性値を得ることができない。On the other hand, when the total area ratio of the crystallized substances exceeds 1.5% per unit area, the working ratio is reduced even by hot forging (the working ratio is less than 75%). It is not possible to obtain an average high toughness value for the entire part, including the fact that the toughness of the part of the part is significantly reduced.
【0020】図1 は後述する実施例にて製造したAl合金
鍛造材の、図2 におけるT1部位の厚み方向断面における
800 倍の走査型電子顕微鏡(SEM) によるミクロ組織を示
す図である (SEM による顕微鏡写真を図面化したもので
ある) 。同図において、2 はMg2Si 晶出物、3 はAl-Fe-
Si-(Mn、Cr、Zr) 系晶出物である。ここにおいて、図1
(a)の本発明に係るAl合金鍛造材のAl-Fe-Si-(Mn、Cr、Z
r) 系晶出物3 は互いに間隔を開けて細かく分散してい
る。これに対し、従来技術に係るAl合金鍛造材の図1(b)
のAl-Fe-Si-(Mn、Cr、Zr) 系晶出物3 は、晶出物同士が
長くつながった形状をしている。[0020] Figure 1 is an Al alloy forged material manufactured in examples described later, in the thickness direction cross section of the T 1 site in FIG. 2
It is a figure which shows the microstructure by the scanning electron microscope (SEM) of 800 times (micrograph by SEM). In the figure, 2 is the crystallized Mg 2 Si, 3 is Al-Fe-
It is a Si- (Mn, Cr, Zr) crystallized substance. Here, Figure 1
(a) Al-forged Al alloy according to the present invention Al-Fe-Si- (Mn, Cr, Z
r) The systemic crystals 3 are finely dispersed at intervals. In contrast, Fig. 1 (b)
The Al-Fe-Si- (Mn, Cr, Zr) -based crystallized substance 3 has a shape in which the crystallized substances are long connected.
【0021】そして、図1(a)のAl合金鍛造材はσ0.2 で
350N/mm2以上の高強度を有するとともに、30J/cm2 以上
の高靱性を有するのに対し、図1(b)のAl合金鍛造材は20
J/cm 2 以下の靱性であり、両者は靱性に顕著な相違があ
る。そして、更に、この図1(a)、(b) のいずれの個々の
Al-Fe-Si-(Mn、Cr、Zr) 系晶出物3 の大きさは、前記特
開平06-256880 号公報で言う、平均粒径が8 μm 以下で
ある。したがって、単に鋳塊 (鋳造材) の晶出物の平均
粒径を小さくするだけでは靱性の向上に多く寄与せず、
例え鋳塊の晶出物の平均粒径が大きくても、それが間隔
を開けて分散している (まばらに存在する) ならば、言
い換えると、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物
の合計の面積率が低ければ、より高強度で高靱性のAl合
金鍛造材が得られることが裏付けられる。The forged Al alloy shown in FIG.0.2 so
350N / mmTwoWith the above high strength, 30J / cmTwothat's all
In contrast to the high toughness, the forged Al alloy in Fig.
J / cm TwoThe toughness is as follows.
You. Further, in addition, each of FIGS. 1 (a) and 1 (b)
The size of the Al-Fe-Si- (Mn, Cr, Zr) -based
According to Kaihei 06-256880, the average particle size is 8 μm or less.
is there. Therefore, the average of the ingot (cast material)
Simply reducing the grain size does not contribute much to improving toughness,
Even if the average particle size of the ingot crystallized matter is large,
If they are open and dispersed (sparsely present), the words
In other words, MgTwoSi and Al-Fe-Si- (Mn, Cr, Zr) crystallized material
The lower the total area ratio of the aluminum alloy, the higher the strength and toughness of the aluminum alloy.
This confirms that a gold forging can be obtained.
【0022】勿論、他の晶出物の面積率も靱性に影響す
る。他の晶出物として代表的なものは、例えば、Si単体
の晶出物や、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)A
l6、CuやMgのAlとの化合物相の晶出物、Al2Cu2Mg、Al2C
u2などである。この内、Si単体の晶出物は、材料破壊の
起点となり、靱性を著しく低下させる。したがって、Si
単体の晶出物は実質的に存在しないことが必要であり、
より具体的には、800 倍の走査型電子顕微鏡によりSi単
体の晶出物が観察されないことが必要である。ただ、後
述する通常の製造方法による場合、Al合金鋳塊乃至Al合
金鍛造材の組織中には、Si単体の晶出物は実質的に存在
しない。Of course, the area ratio of other crystals also affects toughness. Typical examples of other crystallized substances include, for example, a crystallized substance of Si alone, Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, Mn) A
l 6 , Cu or Mg crystallized compound phase with Al, Al 2 Cu 2 Mg, Al 2 C
u 2, and the like. Among them, the crystallized substance of Si alone serves as a starting point of material destruction and significantly lowers toughness. Therefore, Si
It is necessary that there is substantially no single crystallized substance,
More specifically, it is necessary that a crystallized substance of Si alone is not observed by a scanning electron microscope of 800 times. However, in the case of the usual manufacturing method described later, the crystal structure of Si alone does not substantially exist in the structure of the Al alloy ingot or the Al alloy forged material.
【0023】また、他のAl7Cu2Fe、Al12(Fe,Mn)3Cu2 、
(Fe,Mn)Al6、Al2Cu2Mg、Al2Cu2等の晶出物については、
前記Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物と同様に
面積率を低くすることが靱性の向上のために必要であ
る。しかし、これら晶出物は、前記Mg2Si とAl-Fe-Si-
(Mn、Cr、Zr) 系晶出物の量に比して絶対量が少なく、
しかも、前記Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物
の合計の面積率さえ低くすれば、これに伴い、必然的に
面積率が減されるものである。したがって、本発明で
は、前記Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物以外
の晶出物については、特に規定しない。Also, other Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 ,
(Fe, Mn) Al 6 , Al 2 Cu 2 Mg, about the crystallized material such as Al 2 Cu 2 ,
As in the case of the Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) crystallized materials, it is necessary to reduce the area ratio in order to improve the toughness. However, these crystallized substances are Mg 2 Si and Al-Fe-Si-
(Mn, Cr, Zr) Absolute amount is smaller than the amount of crystallized material,
Moreover, if the total area ratio of the Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystallized products is reduced, the area ratio is inevitably reduced. . Therefore, in the present invention, the crystallized substances other than the Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) crystallized substances are not particularly defined.
【0024】そして、本発明におけるAl合金鍛造材の晶
出物の規定を満足し、Al合金鍛造材が高強度および高靱
性を保証するためには、晶出物の生成を支配する鋳塊お
よび鋳塊の均質化熱処理の段階で、Mg2Si とAl-Fe-Si-
(Mn、Cr、Zr) 系の晶出物の合計の面積率を単位面積当
たり1.5%以下とすることが重要である。即ち、生成晶出
物の面積率の制御は、鍛造工程では実質的に不可能であ
り、本発明における鍛造材の晶出物の面積率の制御は、
鋳塊および鋳塊の均質化熱処理の段階において行う。In order to satisfy the requirements for the crystallized product of the Al alloy forged material in the present invention and to ensure that the Al alloy forged material has high strength and high toughness, the ingot and the ingot that govern the generation of the crystallized product are required. In the stage of heat treatment for ingot homogenization, Mg 2 Si and Al-Fe-Si-
It is important that the total area ratio of the (Mn, Cr, Zr) -based crystallized material be 1.5% or less per unit area. That is, the control of the area ratio of the crystallized product is substantially impossible in the forging step, and the control of the area ratio of the crystallized material of the forged material in the present invention is as follows.
It is performed in the stage of ingot and homogenizing heat treatment of the ingot.
【0025】なお、本発明で言う耐力や靱性の平均値と
は、図2 を例にすると、加工率が最も高い= 耐力や靱性
が最も高いT1部分 (加工率75%)と、加工率が最も低い=
耐力や靱性が最も低いT2部分 (加工率50%)の平均を言
う。勿論、これは、単にこれら2 点のみの値を平均する
ことを意味するだけではなく、部材乃至部材の形状によ
っては、更に機械的性質の保証が必要となる複数の部位
の値の平均をとっても良い。The average value of proof stress and toughness referred to in the present invention means, for example in FIG. 2, the highest working rate = the T 1 portion (75% working rate) having the highest proof stress and toughness, and the working rate Is lowest =
It refers to the average of the lowest T 2 portions strength and toughness (working ratio 50%). Of course, this does not only mean averaging the values of only these two points, but also averaging the values of a plurality of parts that require further assurance of mechanical properties depending on the member or the shape of the member. good.
【0026】(鋳塊) 更に、本発明における鍛造材用の
鋳塊は、Al合金鍛造材の高靱性化を保証するために、鋳
塊のデンドライト二次アーム間隔(DAS) を30μm 以下と
する。これにより、Al合金鋳塊およびAl合金鍛造材の結
晶粒を微細化させるとともに、Mg2Si とAl-Fe-Si-(Mn、
Cr、Zr) 系晶出物の合計の面積率を低くし、Al合金鍛造
材の靱性を向上させる。この鋳塊のデンドライト二次ア
ーム間隔(DAS) が30μmを越えて大きくなった場合、前
記特開平06-256880 号公報のAl合金鍛造材のデンドライ
ト二次アーム間隔(DAS) が30μm 程度の場合のように、
鍛造加工率の低い部位が存在した場合に、Al合金鍛造材
全体の靱性を向上させることができない。(Ingot) In the ingot for a forging material according to the present invention, the secondary dendrite arm spacing (DAS) of the ingot is set to 30 μm or less in order to ensure the toughness of the forged Al alloy. . As a result, the crystal grains of the Al alloy ingot and the Al alloy forged material are refined, and Mg 2 Si and Al-Fe-Si- (Mn,
It lowers the total area ratio of (Cr, Zr) -based crystallization and improves the toughness of the forged Al alloy. When the dendrite secondary arm spacing (DAS) of this ingot becomes larger than 30 μm, the dendrite secondary arm spacing (DAS) of the Al alloy forged material of JP-A-06-256880 is about 30 μm. like,
When there is a portion having a low forging rate, the toughness of the entire Al alloy forging cannot be improved.
【0027】なお、鍛造材は、鋳塊を直接熱間鍛造する
場合や、更に鋳塊を一旦押出加工して熱間鍛造する場合
も含む。したがって、鋳塊の形状は、丸棒などのインゴ
ットやスラブ形状、或いは成品形状に近いニアネットシ
ェイプ等があり、特に制限されるものではない。The forged material includes a case where the ingot is directly hot forged and a case where the ingot is once extruded and then hot forged. Therefore, the shape of the ingot includes an ingot such as a round bar, a slab shape, and a near net shape close to a product shape, and is not particularly limited.
【0028】(本発明Al合金の化学成分組成) 次に、本
発明Al合金における、化学成分組成について説明する。
本発明のAl合金は、自動車、船舶などの輸送機材や構造
材あるいは部品用としての強度、伸び、靱性などの機械
的特性や、耐蝕性や応力腐食割れ性、あるいは合金量が
少ないリサイクル性などの特性を満足する必要がある。
この内、特に自動車のサスペンション部品としては、好
ましくは、σ0.2 で350N/mm2以上の高強度および30J/cm
2 以上の平均高靱性を得ることが必要である。(Chemical Composition of the Al Alloy of the Present Invention) Next, the chemical composition of the Al alloy of the present invention will be described.
The Al alloy of the present invention has mechanical properties such as strength, elongation, and toughness, as well as corrosion resistance, stress corrosion cracking resistance, or recyclability with a small amount of alloy, for use in transportation equipment such as automobiles and ships, and structural materials or parts. Needs to be satisfied.
Among them, particularly as a suspension component for an automobile, preferably, a high strength of 350 N / mm 2 or more at σ 0.2 and 30 J / cm 2
It is necessary to obtain an average high toughness of 2 or more.
【0029】したがって、本発明Al合金の化学成分組成
は、前記諸特性を満足するために、Al-Mg-Si系のJIS 60
00系Al合金の成分規格 (JIS 6101、6003、6151、6061、
6N01、6063など) に相当するものとして、基本的にMg:
0.6〜1.6%、Si:0.6〜1.8%、Cu:0.05 〜1.0%を含むとと
もに、Feを0.30% 以下に規制し、Mn:0.15 〜0.6%、Cr:
0.1〜0.2%、Zr:0.05 〜0.2%の一種または二種以上を含
み、更に、水素:0.25 cc/100g Al以下とし、残部Alおよ
び不可避的不純物からなるAl合金とする。その他、Zn:
0.005〜1.0%、Ti:0.001〜0.1%、B:1.〜300ppmなどを必
要により選択的に含む。しかし、JIS 6000系Al合金の各
成分規格通りにならずとも、前記基本的な特性を有して
さえいれば、更なる特性の向上や他の特性を付加するた
めの、適宜成分組成の変更は許容される。この点、上記
元素の成分範囲の変更や、より具体的な用途および要求
特性に応じて、Ni、V 、Sc、Agなどの他の元素を適宜含
むことは許容される。また、溶解原料スクラップなどか
ら必然的に混入される不純物も、本発明鍛造材の品質を
阻害しない範囲で許容される。Therefore, in order to satisfy the above-mentioned properties, the chemical composition of the Al alloy of the present invention must be in accordance with JIS 60 of Al-Mg-Si system.
00 series Al alloy component standard (JIS 6101, 6003, 6151, 6061,
6N01, 6063, etc.)
0.6-1.6%, Si: 0.6-1.8%, Cu: 0.05-1.0%, Fe is controlled to 0.30% or less, Mn: 0.15-0.6%, Cr:
An Al alloy containing one or more of 0.1 to 0.2% and Zr: 0.05 to 0.2%, hydrogen: 0.25 cc / 100 g Al or less, and the balance being Al and unavoidable impurities. Other, Zn:
0.005 to 1.0%, Ti: 0.001 to 0.1%, B: 1. to 300 ppm and the like are selectively contained as necessary. However, even if it does not conform to each component standard of JIS 6000 series Al alloy, as long as it has the above-mentioned basic characteristics, to further improve the characteristics and add other characteristics, change the component composition as appropriate Is acceptable. In this regard, it is permissible to include other elements such as Ni, V, Sc, and Ag as appropriate in accordance with a change in the component range of the above elements and more specific applications and required characteristics. Further, impurities that are inevitably mixed in from the raw material scrap and the like are allowed as long as the quality of the forged material of the present invention is not impaired.
【0030】(本発明Al合金の元素量) 次に、本発明Al
合金材の各元素の含有量について、臨界的意義や好まし
い範囲について説明する。(Elemental Content of Al Alloy of the Present Invention)
Regarding the content of each element in the alloy material, critical significance and preferred ranges will be described.
【0031】Mg:0.6〜1.6%。Mgは人工時効により、Siと
ともにMg2 Siとして析出して、また、Cu含有組成では更
にCu、Alと化合物相を形成して、最終製品使用時の高強
度 (耐力) を付与するために必須の元素である。Mgの0.
6%未満の含有では加工硬化量が低下し、人工時効でもσ
0.2 で315N/mm2以上の高い強度が得られない。一方、1.
6%を越えて含有されると、強度 (耐力) が高くなりす
ぎ、鍛造性を阻害し、前記Mg2Si 晶出物の合計の面積率
を、単位面積当たり1.5%以下、好ましくは、1.0%以下と
できず、靱性が低くなり、高靱性を得ることができな
い。したがって、Mgの含有量は0.6 〜1.6%の範囲とす
る。Mg: 0.6-1.6%. Mg is precipitated by artificial aging as Mg 2 Si together with Si, and in the case of Cu-containing composition, forms a compound phase with Cu and Al further, and is essential for imparting high strength (proof stress) when using final products Element. Mg 0.
When the content is less than 6%, the amount of work hardening decreases, and even when artificial aging is performed, σ
With 0.2 , high strength of 315 N / mm 2 or more cannot be obtained. Meanwhile, 1.
If the content exceeds 6%, the strength (proof stress) becomes too high, impairs the forgeability, and the total area ratio of the Mg 2 Si crystallized product is 1.5% or less per unit area, preferably 1.0% or less. % Or less, the toughness is reduced, and high toughness cannot be obtained. Therefore, the content of Mg is set in the range of 0.6 to 1.6%.
【0032】Si:0.6〜1.8%。SiもMgとともに、人工時効
処理により、Mg2 Siとして析出して、最終製品使用時の
高強度 (耐力) を付与するために必須の元素である。Si
の0.6%未満の含有では人工時効で十分な強度が得られ
ず、σ0.2 で315N/mm2以上の高い強度が得られない。一
方、1.8%を越えて含有されると、鋳造時および焼き入れ
時に粗大な単体Si粒子として析出して、前記した通り靱
性を低下させる。また、Mg2Si とAl-Fe-Si-(Mn、Cr、Z
r) 系晶出物の合計の面積率が、単位面積当たり1.5%以
下、好ましくは、1.0%以下とすることができず、高靱性
を得ることができない。更に伸びが低くなるなど、成形
性も阻害する。したがって、Siの含有量は0.6 〜1.8%の
範囲とする。Si: 0.6-1.8%. Si, together with Mg, is precipitated as Mg 2 Si by artificial aging and is an essential element for imparting high strength (proof stress) when the final product is used. Si
If the content is less than 0.6%, sufficient strength cannot be obtained by artificial aging, and a high strength of 315 N / mm 2 or more cannot be obtained at σ 0.2 . On the other hand, if it is contained in excess of 1.8%, it precipitates as coarse single Si particles during casting and quenching, and as described above, lowers toughness. In addition, Mg 2 Si and Al-Fe-Si- (Mn, Cr, Z
r) The total area ratio of the system crystallization cannot be 1.5% or less per unit area, preferably 1.0% or less, and high toughness cannot be obtained. Further, the moldability is impaired, for example, the elongation is reduced. Therefore, the content of Si is set in the range of 0.6 to 1.8%.
【0033】Cu:0.05 〜1.0%。Cuは、Mg、Alと化合物相
を形成して析出し、マトリックス強度の向上に寄与する
他、時効処理に際して、他の合金元素の析出に対する核
の作用を生じ、析出物を微細に均一分散させ、最終製品
の時効硬化を著しく促進する効果を有する。Cuの含有量
が0.05% 未満では、これらの効果が発揮されない。一
方、Cuの含有量が1.0%を越えると、これらの効果が飽和
するとともに、却って靱性乃至熱間鍛造性を低下させ
る。また、Cuの含有量が0.3%を越えると耐食性が低下し
やすいので、耐食性の点からは、Cuの含有量を0.3%以下
とすることが好ましい。したがって、Cuの含有量は0.05
〜1.0%、好ましくは0.05〜0.3%とする。Cu: 0.05-1.0%. Cu forms a compound phase with Mg and Al to precipitate and contributes to the improvement of matrix strength.At the time of aging treatment, it also acts as a nucleus for the precipitation of other alloying elements and finely and uniformly disperses the precipitate. Has the effect of significantly promoting age hardening of the final product. If the Cu content is less than 0.05%, these effects cannot be exhibited. On the other hand, when the content of Cu exceeds 1.0%, these effects are saturated, and on the contrary, the toughness or hot forgeability is reduced. Further, if the Cu content exceeds 0.3%, the corrosion resistance tends to decrease, so from the viewpoint of corrosion resistance, the Cu content is preferably 0.3% or less. Therefore, the content of Cu is 0.05
To 1.0%, preferably 0.05 to 0.3%.
【0034】Mn:0.15 〜0.6%、Cr:0.1〜0.2%、Zr:0.05
〜0.2%の一種または二種以上。こらの元素は均質化熱処
理時およびその後の熱間鍛造時に、Al20Cu2Mn3、Al12Mg
2Cr、Al3Zr などの分散粒子 (分散相) を生成する。こ
れらの分散粒子は再結晶後の粒界移動を妨げる効果があ
るため、微細な結晶粒を得ることができる。また、これ
らの元素の内でも、Zrは、他のMn、Crとともに複合して
含有した場合に、数十から数百オングトロームのサイズ
の、Al-Mn 系やAl-Cr 系の分散粒子よりも、より微細な
Al-Zr 系分散粒子が析出する。このため、Zrは、Mn、Cr
とともに含有した場合に、結晶粒界や亜結晶粒界の移動
を阻止し、結晶粒の成長を抑制する効果が大きく、破壊
靱性や疲労特性などの向上効果が大きい。一方、これら
の元素の過剰な含有は溶解、鋳造時に粗大なAl-Fe-Si-
(Mn、Cr、Zr) 系の金属間化合物や晶出物を生成しやす
く、破壊の起点となり、靱性を低下させる原因となる。
したがって、Al-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の
面積率が、単位面積当たり1.5%以下、好ましくは、1.0%
以下とすることができず、高靱性を得ることができな
い。このため、これらの元素の含有量は各々、Mn:0.15
〜0.6%、Cr:0.1〜0.2%、Zr:0.05 〜0.2%とする。Mn: 0.15 to 0.6%, Cr: 0.1 to 0.2%, Zr: 0.05
~ 0.2% of one or more species. These elements are subjected to Al 20 Cu 2 Mn 3 , Al 12 Mg
2 Cr, and generates dispersed particles such as Al 3 Zr (dispersed phase). Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. Also, among these elements, when Zr is contained in combination with other Mn and Cr, Zr is smaller than dispersed particles of Al-Mn-based or Al-Cr-based having a size of tens to hundreds of angstroms. , More fine
Al-Zr-based dispersed particles precipitate. Therefore, Zr is Mn, Cr
When they are contained together, the effect of inhibiting the movement of crystal grain boundaries and sub-crystal grain boundaries, suppressing the growth of crystal grains is great, and the effect of improving fracture toughness and fatigue properties is great. On the other hand, excessive content of these elements can cause dissolution and coarse Al-Fe-Si-
An (Mn, Cr, Zr) -based intermetallic compound or crystallized substance is easily formed, becomes a starting point of fracture, and causes a decrease in toughness.
Therefore, the total area ratio of the Al-Fe-Si- (Mn, Cr, Zr) crystallized material is 1.5% or less per unit area, preferably 1.0%.
Or less, and high toughness cannot be obtained. Therefore, the content of each of these elements is Mn: 0.15
0.6%, Cr: 0.1 to 0.2%, Zr: 0.05 to 0.2%.
【0035】Fe:0.30%以下。Al合金に不純物として含ま
れるFeは、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6、
或いは本発明で問題とする粗大なAl-Fe-Si-(Mn、Cr、Z
r) 系の晶出物を生成する。これらの晶出物は、前記し
た通り、破壊靱性および疲労特性などを劣化させる。特
に、Feの含有量が0.3%、より厳密には0.25% を越える
と、Al-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の面積率
が、単位面積当たり1.5%以下、好ましくは、1.0%以下と
することができず、自動車用のサスペンション部品など
に要求される、より高強度で高靱性を得ることができな
い。したがって、Feの含有量は0.30% 以下、より好まし
くは0.25% 以下とすることが好ましい。Fe: 0.30% or less. Fe contained as impurities in the Al alloy is Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, Mn) Al 6 ,
Alternatively, coarse Al-Fe-Si- (Mn, Cr, Z
r) Produces systemic crystals. As described above, these crystals degrade the fracture toughness and the fatigue properties. In particular, when the Fe content exceeds 0.3%, more strictly 0.25%, the total area ratio of Al-Fe-Si- (Mn, Cr, Zr) -based crystallized substances is 1.5% or less per unit area. Preferably, it cannot be 1.0% or less, and it is not possible to obtain higher strength and higher toughness required for suspension parts for automobiles and the like. Therefore, the content of Fe is preferably 0.30% or less, more preferably 0.25% or less.
【0036】水素:0.25 cc/100g Al以下。水素は、靱性
を著しく低下させ、耐衝撃破壊性を著しく劣化させる。
そして、薄肉化や高強度化した自動車用のサスペンショ
ン部品などにおいては、特に水素による耐衝撃破壊性劣
化の影響が大きい。したがって、水素は0.25 cc/100g A
l 以下のできるだけ少ない含有量とする。Hydrogen: 0.25 cc / 100 g Al or less. Hydrogen significantly reduces toughness and significantly degrades impact fracture resistance.
In addition, in the case of a thinned or high-strength automobile suspension part, the influence of hydrogen on the deterioration of impact fracture resistance is particularly large. Therefore, hydrogen is 0.25 cc / 100g A
l Make the content as low as possible.
【0037】(Zn、Ti、B 、Be、V 等) 次に、Zn、Ti、B
、Be、V 等は、各々目的に応じて、選択的に含有され
る元素である。Zn:0.005 〜1.0%。Znは人工時効時にお
いて、MgZn2 を微細かつ高密度に析出させ高い強度を実
現させる。しかし、Znの0.005%未満の含有では人工時効
で十分な強度が得られず、一方、1.0%を越えて含有され
ると、耐蝕性が顕著に低下する。したがって、Znの含有
量は0.005 〜1.0%の範囲とすることが好ましい。(Zn, Ti, B, Be, V, etc.) Next, Zn, Ti, B
, Be, V and the like are elements that are selectively contained depending on the purpose. Zn: 0.005 to 1.0%. Zn achieves high strength by precipitating MgZn 2 finely and at high density during artificial aging. However, if the content of Zn is less than 0.005%, sufficient strength cannot be obtained by artificial aging, whereas if the content exceeds 1.0%, the corrosion resistance is significantly reduced. Therefore, the content of Zn is preferably in the range of 0.005 to 1.0%.
【0038】Ti:0.001〜0.1%。Tiは鋳塊の結晶粒を微細
化し、プレス成形性を向上させるために添加する元素で
ある。しかし、Tiの0.001%未満の含有では、この効果が
得られず、一方、Tiを0.1%を越えて含有すると、粗大な
晶出物を形成し、成形性を低下させる。したがって、Ti
の含有量は0.001 〜0.1%の範囲とすることが好ましい。Ti: 0.001 to 0.1%. Ti is an element added to refine the crystal grains of the ingot and improve press formability. However, if the content of Ti is less than 0.001%, this effect cannot be obtained. On the other hand, if the content of Ti exceeds 0.1%, coarse crystals are formed and the formability is reduced. Therefore, Ti
Is preferably in the range of 0.001 to 0.1%.
【0039】B:1 〜300ppm。B はTiと同様、鋳塊の結晶
粒を微細化し、プレス成形性を向上させるために添加す
る元素である。しかし、B の1ppm未満の含有では、この
効果が得られず、一方、300ppmを越えて含有されると、
やはり粗大な晶出物を形成し、成形性を低下させる。し
たがって、B の含有量は1 〜300ppmの範囲とすることが
好ましい。B: 1 to 300 ppm. B, like Ti, is an element added to refine the crystal grains of the ingot and improve press formability. However, if the content of B is less than 1 ppm, this effect cannot be obtained, while if the content is more than 300 ppm,
Again, coarse crystals are formed and formability is reduced. Therefore, the content of B is preferably in the range of 1 to 300 ppm.
【0040】Be:0.1〜100ppm。Beは空気中におけるAl溶
湯の再酸化を防止するために含有させる元素である。し
かし、0.1ppm未満の含有では、この効果が得られず、一
方、100ppmを越えて含有されると、材料硬度が増大し、
成形性を低下させる。したがって、Beの含有量は0.1 〜
100ppmの範囲とすることが好ましい。Be: 0.1 to 100 ppm. Be is an element contained to prevent re-oxidation of the Al melt in the air. However, if the content is less than 0.1 ppm, this effect cannot be obtained, while if the content exceeds 100 ppm, the material hardness increases,
Decreases moldability. Therefore, the content of Be is 0.1 to
It is preferable to be in the range of 100 ppm.
【0041】V:0.15% 以下。V は、Mn、Cr、Zrなどと同
様に、均質化熱処理時およびその後の熱間鍛造時に、分
散粒子 (分散相) を生成する。これらの分散粒子は再結
晶後の粒界移動を妨げる効果があるため、微細な結晶粒
を得ることができる。しかし過剰な含有は溶解、鋳造時
に粗大なAl-Fe-Si-V系の金属間化合物や晶出物を生成し
やすく、破壊の起点となり、靱性を低下させる原因とな
る。したがって、V を含有させる場合は0.15% 以下とす
る。V: 0.15% or less. V forms dispersed particles (dispersed phase) during homogenizing heat treatment and subsequent hot forging, like Mn, Cr, and Zr. Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. However, an excessive content tends to generate a coarse Al-Fe-Si-V-based intermetallic compound or crystallized substance during melting and casting, becomes a starting point of fracture, and causes a decrease in toughness. Therefore, when V is contained, the content should be 0.15% or less.
【0042】次に、本発明におけるAl合金鍛造材の好ま
しい製造方法について述べる。本発明におけるAl合金鍛
造材の製造自体は常法により製造が可能である。例え
ば、前記Al合金成分範囲内に溶解調整されたAl合金溶湯
を鋳造する場合には、例えば、連続鋳造圧延法、半連続
鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の
溶解鋳造法を適宜選択して鋳造する。Next, a preferred method of manufacturing the forged Al alloy according to the present invention will be described. The production of the forged Al alloy in the present invention itself can be carried out by an ordinary method. For example, when casting an Al alloy melt that has been melt-adjusted within the range of the above-mentioned Al alloy components, for example, a normal melt casting such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), and a hot top casting method. Casting is performed by appropriately selecting a method.
【0043】しかし、Al合金鍛造材の靱性向上のため
に、Al合金鋳塊の結晶粒を微細化させる、およひ前記Mg
2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の面積率
を低くするためにはAl合金溶湯を、10℃/sec以上の冷却
速度で鋳造して鋳塊とすることが必要である。鋳塊の冷
却速度が10℃/sec未満では、結晶粒が粗大化し、鋳塊の
デンドライト二次アーム間隔(DAS) を30μm 以下とする
ことができない。また、Mg2 SiとAl-Fe-Si-(Mn、Cr、Z
r) 系晶出物の合計の面積率が、単位面積当たり1.5%以
下、好ましくは、1.0%以下とすることができず、自動車
用のサスペンション部品などに要求される、より高強度
で高靱性を得ることができない。However, in order to improve the toughness of the forged Al alloy, the crystal grains of the ingot of the Al alloy are refined, and
2 To reduce the total area ratio of Si and Al-Fe-Si- (Mn, Cr, Zr) crystallized materials, cast an Al alloy melt at a cooling rate of 10 ° C / sec or more. It is necessary to When the cooling rate of the ingot is less than 10 ° C./sec, the crystal grains become coarse, and the dendrite secondary arm interval (DAS) of the ingot cannot be reduced to 30 μm or less. In addition, Mg 2 Si and Al-Fe-Si- (Mn, Cr, Z
r) The total area ratio of the crystallized system cannot be 1.5% or less per unit area, preferably 1.0% or less, and higher strength and toughness required for suspension parts for automobiles and the like. Can not get.
【0044】次いで、このAl合金鋳塊 (鋳造材) の均質
化熱処理温度は530 〜 600℃の温度範囲とすることが必
要である。この種Al合金鋳造材の通常の均質化熱処理温
度は、470 〜480 ℃程度であるが、本発明では、前記し
た通り、靱性の向上のために、Mn、Cr、Zrの一種または
二種以上を含有させて、均質化熱処理時に、Al20Cu2M
n3、Al12Mg2Cr 、Al3Zr などの分散粒子 (分散相) を生
成して、微細な結晶粒を得る。また、Al合金鍛造材の高
耐力化や高靱性化を図るためには、この均質化熱処理の
段階で、Mg2Si 系晶出物を充分に固溶させる必要があ
る。Next, the homogenizing heat treatment temperature of the Al alloy ingot (cast material) needs to be in a temperature range of 530 to 600 ° C. The normal homogenization heat treatment temperature of this type of Al alloy casting material is about 470 to 480 ° C., but in the present invention, as described above, one or more of Mn, Cr, and Zr are used to improve toughness. Al 20 Cu 2 M
Generate dispersed particles (dispersed phase) such as n 3 , Al 12 Mg 2 Cr, and Al 3 Zr to obtain fine crystal grains. Further, in order to increase the yield strength and toughness of the forged Al alloy, it is necessary to sufficiently dissolve the Mg 2 Si-based crystallized solid in the homogenization heat treatment.
【0045】このためには、前記530 〜 600℃の高温で
の均質化熱処理が必要で、均質化熱処理温度が530 ℃未
満の温度では、前記分散粒子の数が不足して、結晶粒が
大きくなる。また、Mg2Si 系晶出物の固溶量も不足し、
Mg2 SiとAl-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の面積
率が、単位面積当たり1.5%以下、好ましくは、1.0%以下
とすることができず、自動車用のサスペンション部品な
どに要求される、より高強度で高靱性、より具体的に
は、σ0.2 で315N/mm2以上の高強度を有する場合の、シ
ャルピー衝撃値が20J/cm2 以上の高靱性を得ることがで
きない。一方、均質化熱処理温度が600 ℃を越えても、
効果は変わらず、却って、Al合金鋳塊 (鋳造材) の溶損
等の問題を生じる。For this purpose, the homogenizing heat treatment at a high temperature of 530 to 600 ° C. is required. If the temperature of the homogenizing heat treatment is lower than 530 ° C., the number of the dispersed particles is insufficient, and the crystal grains are large. Become. In addition, the amount of solid solution of Mg 2 Si crystallized material was insufficient,
The total area ratio of Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystallization products cannot be less than 1.5% per unit area, preferably less than 1.0%, and Higher toughness and higher toughness required for suspension parts, etc. More specifically, high toughness with a Charpy impact value of 20 J / cm 2 or more when having high strength of 315 N / mm 2 or more at σ 0.2 Can not get. On the other hand, even when the homogenization heat treatment temperature exceeds 600 ° C,
The effect does not change, but rather causes problems such as erosion of the Al alloy ingot (cast material).
【0046】均質化熱処理の後に、メカニカル鍛造や油
圧鍛造等により熱間鍛造して、最終製品形状( ニアネッ
トシェイプ) のAl合金鍛造材に成形する。そして、鍛造
後、必要な強度および靱性を得るためのT6処理 (溶体化
処理後焼入れ) などの調質熱処理および時効処理が行わ
れる。After the homogenizing heat treatment, hot forging is performed by mechanical forging, hydraulic forging, or the like to form an Al alloy forging in a final product shape (near net shape). After forging, heat treatment and aging treatment such as T6 treatment (hardening after solution treatment) to obtain necessary strength and toughness are performed.
【0047】なお、Al合金鍛造材に残留する鋳造組織を
無くし、強度と靱性をより向上させるために、Al合金鋳
塊を均質化熱処理後、押出加工した後に、前記鍛造を行
っても良い。In order to eliminate the cast structure remaining in the Al alloy forged material and to improve the strength and toughness, the forging may be performed after the Al alloy ingot is subjected to a homogenizing heat treatment and then extruded.
【0048】[0048]
【実施例】次に、本発明の実施例を説明する。表1 に示
すAl合金鋳塊 (Al合金鋳造材、いずれもφ68mm径×580m
m 長さの丸棒) を、表2 、3 に示す鋳造方法(DC 鋳造
法、ホットトップ鋳造法) および冷却速度( ℃/ sec)に
より溶製後、表2 に示す温度で、いずれも8 時間均質化
熱処理を施し、表2 、3 に示す加工率で、自動車サスペ
ンション部品形状に、メカニカル鍛造により熱間鍛造
し、図1 に示す形状のAl合金鍛造材1 を製造した。次
に、このAl合金鍛造材1 を硝石炉を用いて560 ℃で1 時
間の溶体化処理した後水冷 (水焼入れ) を行い、その後
180 ℃×5 時間の時効処理を行った。なお、表3 の発明
例No.5の鋳塊は、前記均質化熱処理を行った後、押出比
6 で押出加工を行った後、熱間鍛造した。Next, embodiments of the present invention will be described. Al alloy ingots shown in Table 1 (Al alloy castings, all φ68 mm diameter × 580 m
m) with the casting method (DC casting method, hot-top casting method) and cooling rate (° C / sec) shown in Tables 2 and 3, and at the temperature shown in Table 2, A time-homogenized heat treatment was carried out, and hot-forging was performed by mechanical forging on the shape of an automobile suspension component at a processing rate shown in Tables 2 and 3 to produce an Al alloy forged material 1 having a shape shown in FIG. Next, this Al alloy forging 1 was subjected to a solution treatment at 560 ° C. for 1 hour using a nitrite furnace, followed by water cooling (water quenching).
Aging treatment was performed at 180 ° C for 5 hours. The ingot of Invention Example No. 5 in Table 3 was subjected to the extrusion ratio after the homogenization heat treatment was performed.
After performing the extrusion process in 6, hot forging was performed.
【0049】そして、前記Al合金鋳塊およびAl合金鍛造
材1 から各々試験片を採取し、鋳塊およびAl合金鍛造材
1 の厚み方向の断面の組織を、800 倍の倍率の走査型電
子顕微鏡(SEM) により、試験片の視野数 (測定ポイン
ト) を10視野として観察および画像解析を行い、Mg2Si
とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の単位面積
(0.0127mm2)当たりの面積率 (各視野の平均) を求め
た。また、Al合金鋳塊のデンドライト二次アーム間隔(D
AS、μm)も、鋳塊のミクロ組織写真から「アルミニウム
のデンドライトアームスペーシングと冷却速度の測定方
法」(1988.8,軽金属学会研究委員会) に規定される交線
方法により求めた。これらの結果を表2 、3 に示す。Then, test pieces were taken from the Al alloy ingot and the Al alloy forged material 1, respectively, and the ingot and the Al alloy forged material were obtained.
1 in the thickness direction of the cross section of the tissue, the 800-fold magnification of a scanning electron microscope (SEM), field number of the specimen (measurement points) performs observation and image analysis as 10 field, Mg 2 Si
And total area of Al-Fe-Si- (Mn, Cr, Zr) crystallized material
The area ratio per (0.0127 mm 2 ) (average of each visual field) was determined. Also, the dendrite secondary arm spacing (D
AS, μm) were also determined from the microstructure photograph of the ingot by the crossing method specified in “Method for measuring aluminum dendrite arm spacing and cooling rate” (1988.8, Research Committee of the Institute of Light Metals). The results are shown in Tables 2 and 3.
【0050】更にAl合金鍛造材1 から採取した試験片の
引張強度 (σB 、N/mm2)、耐力 (σ 0.2 、N/mm2)、伸び
(δ、%)、靱性= シャルピー衝撃値(J/cm2) 等の機械的
特性を測定した。この際、Al合金鍛造材1 の各部位にお
ける、鍛造加工率の違いによる機械的特性のばらつきを
見るために、試験片の採取部位は、図1 の鍛造加工率が
最も高くなるT1および鍛造加工率が最も低くなるT2とし
た。なお、鍛造加工率は断面積の減少率として計算し
た。そして、これらの部位の機械的特性の平均も求め、
Al合金鍛造材1 全体としての平均的な機械的特性を求め
た。これらの結果も表2 、3 に示す。Further, the test piece taken from the Al alloy forged material 1
Tensile strength (σB, N / mmTwo), Proof stress (σ 0.2, N / mmTwo), Elongation
(δ,%), toughness = Charpy impact value (J / cmTwo) Etc. mechanical
The properties were measured. At this time, each part of the forged aluminum alloy 1
The variation in mechanical properties due to differences in forging rate
As can be seen, the sampled area was the same as the forging rate in Fig. 1.
The highest T1And the lowest forging rate TTwoage
Was. The forging rate is calculated as the cross-sectional area reduction rate.
Was. And the average of the mechanical properties of these parts is also found,
Al alloy forging 1 Determine the average mechanical properties of the whole
Was. These results are also shown in Tables 2 and 3.
【0051】表2 から明らかな通り、Fe含有量を0.30%
以下、水素の含有量を0.25 cc/100gAl以下に低く抑える
など、本発明範囲内の化学成分組成とした、表1 のAl合
金No.1を用い、かつ鋳造冷却速度と均質化処理温度が本
発明製造方法を満たす発明例No.1、5 は、鍛造加工率が
50% と最も低くなるT2においても、高強度と高靱性を確
保しており、Al合金鍛造材全体としての平均的な機械的
特性、特に耐力 (σ0. 2)が350N/mm2以上で、かつ平均靱
性値が30J/cm2 以上を確保している。そして、これら発
明例のAl合金鍛造材組織は、前記図1(a)に示した通り A
l-Fe-Si-(Mn 、Cr、Zr) 系晶出物3 が互いに間隔を開け
て細かく分散している組織を有していた。As is clear from Table 2, the Fe content was 0.30%
In the following, using Al alloy No. 1 in Table 1 with a chemical composition within the scope of the present invention, such as keeping the hydrogen content to 0.25 cc / 100 g Al or less, and the casting cooling rate and homogenization treatment temperature were Inventive Examples Nos. 1 and 5 that satisfy the inventive manufacturing method have a forging rate of
Even at 50 percent the lowest T 2, which ensure high strength and high toughness, the average mechanical properties of the entire Al alloy forging, in particular yield strength (σ 0. 2) is 350 N / mm 2 or more And an average toughness value of 30 J / cm 2 or more. And, the Al alloy forged material structure of these invention examples is A as shown in FIG.
The l-Fe-Si- (Mn, Cr, Zr) -based crystallized substance 3 had a structure in which it was finely dispersed at intervals.
【0052】なお、表2 の発明例の中でも、発明例No.
1、5 に対し、発明例No.2は鋳造冷却速度が比較的低
く、デンドライト二次アーム間隔(DAS) が比較的大きく
なっている。また、発明例No.4は均質化処理温度が比較
的低く、Mn、Cr、Zrなどの分散粒子生成が少なく、結晶
粒が比較的粗大となっている。更に、発明例No.3は相対
的にSi量、Fe量、Mg量が高い表1 のNo.2のAl合金を用
い、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出物の合計の
面積率が比較的高くなっている。この結果、これらの発
明例は、Al合金鍛造材全体としての平均的な機械的特
性、特に平均耐力 (σ0. 2)が315N/mm2以上で、かつ平均
靱性値が20J/cm2 以上を確保しているものの、鍛造加工
率が50% と最も低くなるT2における強度と靱性が、発明
例No.1、5 よりは劣っている。Among the invention examples shown in Table 2, invention example No.
In contrast to Examples 1 and 5, Invention Example No. 2 has a relatively low casting cooling rate and a relatively large dendrite secondary arm spacing (DAS). In addition, Invention Example No. 4 has a relatively low homogenization treatment temperature, little generation of dispersed particles such as Mn, Cr, and Zr, and relatively coarse crystal grains. In addition, Invention Example No. 3 uses the Al alloy of No. 2 in Table 1 having relatively high Si content, Fe content, and Mg content, and Mg 2 Si and Al-Fe-Si- (Mn, Cr, Zr). The total area ratio of the system crystallization is relatively high. As a result, these inventive examples, Al average mechanical properties of the entire alloy forging, in particular, the average yield strength (σ 0. 2) is 315N / mm 2 or more, and an average toughness value of 20 J / cm 2 or more although ensuring the strength and toughness in the T 2 where the forging ratio becomes the lowest 50% have inferior to the invention examples Nanba1,5.
【0053】更に、Mn、Crと共にZrを含む発明例No.1
と、Zrを含まない以外は組成が殆ど同じ発明例No.6 (表
3)との比較において、発明例No.1の靱性値の方が高い。
この結果から、前記したZrの優れた靱性向上効果が分か
る。Invention Example No. 1 containing Zr together with Mn and Cr
Invention Example No. 6 having almost the same composition except that it does not contain Zr (Table
In comparison with 3), the toughness value of Invention Example No. 1 is higher.
From this result, it can be seen that the above-mentioned excellent effect of improving the toughness of Zr.
【0054】一方、表3 から明らかな通り、特にFe量が
本発明範囲を高めに外れた表1 のNo.3のAl合金を用いた
比較例No.7は、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶出
物の合計の面積率が本発明範囲を外れている。また、鋳
造冷却速度が本発明製造方法よりも低い比較例No.8は、
デンドライト二次アーム間隔(DAS) が本発明範囲を外れ
ている。更に、比較例No.9は、均質化処理温度が本発明
製造方法よりも低くなり、Mn、Cr、Zrなどの分散粒子生
成が少なく、結晶粒が比較的粗大となっている。したが
って、これら比較例はいずれも、特に鍛造加工率が50%
と最も低くなるT2における強度と靱性が低く、Al合金鍛
造材1 全体としての平均的な機械的特性は、耐力 (σ
0.2)が315N/mm2以下で、かつ平均靱性値が20J/cm2 以下
である。そして、水素量が本発明範囲を高めに外れた表
1 のNo.5のAl合金を用いた比較例No.10 も、他の比較例
と同様に、Al合金鍛造材1 全体としての平均的な機械的
特性は、耐力 (σ0.2)が315N/mm2以下で、かつ平均靱性
値が20J/cm2 以下と著しく低い。On the other hand, as is clear from Table 3, in particular, Comparative Example No. 7 using the No. 3 Al alloy of Table 1 in which the amount of Fe deviated from the range of the present invention was higher than that of Mg 2 Si and Al-Fe The total area ratio of -Si- (Mn, Cr, Zr) -based crystallization is out of the range of the present invention. Further, Comparative Example No. 8 in which the casting cooling rate is lower than the production method of the present invention,
Dendrite secondary arm spacing (DAS) is outside the scope of the present invention. Further, in Comparative Example No. 9, the homogenization treatment temperature was lower than that of the production method of the present invention, the generation of dispersed particles such as Mn, Cr, and Zr was small, and the crystal grains were relatively coarse. Therefore, all of these comparative examples have a forging rate of 50%, in particular.
The strength and toughness are low in the lowest becomes T 2, the average mechanical properties of the entire Al alloy forged material 1, proof stress (sigma
0.2 ) is 315 N / mm 2 or less, and the average toughness value is 20 J / cm 2 or less. And, the amount of hydrogen deviated from the range of the present invention to a higher level
Comparative Example No. 10 using Al alloy of No. 5 of No. 1 also has the same average mechanical properties as Al alloy forged material 1 as the other comparative examples, except that the proof stress (σ 0.2 ) is 315 N / mm 2 or less, and an average toughness value of 20 J / cm 2 or less and extremely low.
【0055】そして、比較例No.7のAl-Fe-Si-(Mn、Cr、
Zr) 系晶出物は、前記図1(b)に示す通り、晶出物同士が
長くつながった形状をしていた。The Al-Fe-Si- (Mn, Cr,
As shown in FIG. 1 (b), the Zr) -based crystallized product had a shape in which the crystallized products were long connected.
【0056】以上の実施例から、本発明によれば、特
に、自動車や車両などの輸送機材の構造材あるいはナッ
クル、ロアアーム、アッパーアームなどのサスペンショ
ン部品用など、種々の形状の鍛造材について、熱間鍛造
により、部品の部位によって加工率が低くなる場合で
も、全体として、σ0.2 が315N/mm2以上および20J/cm2
以上の高強度高靱性アルミニウム合金鍛造材を得ること
ができることが分かる。したがって、本発明高強度高靱
性アルミニウム合金鍛造材および加工用アルミニウム合
金素材、更にアルミニウム合金鍛造材の製造方法におけ
る各要件の臨界的な意義が裏付けられる。According to the present invention, according to the present invention, in particular, forged materials of various shapes, such as structural materials of transportation equipment such as automobiles and vehicles or suspension parts such as knuckles, lower arms, and upper arms, are used. As a whole, σ 0.2 is 315 N / mm 2 or more and 20 J / cm 2
It can be seen that the above-mentioned high strength and high toughness aluminum alloy forged material can be obtained. Therefore, the critical significance of each requirement in the method for manufacturing the high-strength high-toughness aluminum alloy forged material of the present invention, the aluminum alloy material for processing, and the aluminum alloy forged material is supported.
【0057】[0057]
【表1】 [Table 1]
【0058】[0058]
【表2】 [Table 2]
【0059】[0059]
【表3】 [Table 3]
【0060】[0060]
【発明の効果】本発明によれば、熱間鍛造の加工率が低
くなる場合でも、σ0.2 が350N/mm2以上および靱性が30
J/cm2 以上の、より高強度で高靱性が要求される部品や
部材に適用することが可能な高強度高靱性Al合金鍛造材
を提供することができる。したがって、Al-Mg-Si系Al合
金鍛造材の自動車、車両、船舶などの輸送機材用への用
途の拡大を図ることができる点で、多大な工業的な価値
を有するものである。According to the present invention, σ 0.2 is 350 N / mm 2 or more and toughness is 30 even when the working ratio of hot forging is low.
It is possible to provide a high-strength and high-toughness Al alloy forged material having a strength of J / cm 2 or more and which can be applied to parts and members requiring higher strength and higher toughness. Therefore, the use of forged Al-Mg-Si-based Al alloys in automobiles, vehicles, ships, and other transporting equipment can be expanded, which is of great industrial value.
【図1】図1(a)は本発明、図1(b)は従来技術に各々係
る、Al合金鍛造材のミクロ組織を示す説明図である。FIG. 1 (a) is an explanatory view showing a microstructure of an Al alloy forged material according to the present invention, and FIG. 1 (b) is a prior art, respectively.
【図2】自動車用のサスペンション部品用のAl合金鍛造
材の一例を示す説明図である。FIG. 2 is an explanatory view showing an example of an Al alloy forging material for a suspension component for an automobile.
1:Al合金鍛造材、2:Mg2Si 晶出物、3:Al-Fe-Si-(Mn、C
r、Zr) 系晶出物、1: Al alloy forging, 2: Mg 2 Si crystallization, 3: Al-Fe-Si- (Mn, C
r, Zr)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 612 C22F 1/00 612 630 630A 630B 681 681 682 682 683 683 691 691B 692 692A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 612 C22F 1/00 612 630 630A 630B 681 681 682 682 683 683 683 691 691B 692 692A 694 694A
Claims (9)
i:0.6〜1.8%、Cu:0.05 〜1.0%を含むとともに、Feを0.3
0% 以下に規制し、Mn:0.15 〜0.6%、Cr:0.1〜0.2%、Zr:
0.05 〜0.2%の一種または二種以上を含み、更に、水素:
0.25 cc/100gAl以下とし、残部Alおよび不可避的不純物
からなるアルミニウム合金鍛造材であって、10℃/sec以
上の冷却速度で鋳造されたアルミニウム合金鋳塊を、53
0 〜 600℃の温度で均質化熱処理した後に、熱間鍛造し
て鍛造材とされ、該鍛造材におけるアルミニウム合金組
織中のMg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系の晶出物の合
計の面積率を単位面積当たり1.5%以下としたことを特徴
とする高強度高靱性アルミニウム合金鍛造材。(1) Mg: 0.6 to 1.6% (mass%, hereinafter the same), S
i: 0.6 to 1.8%, Cu: 0.05 to 1.0%, and 0.3% Fe
Mn: 0.15 to 0.6%, Cr: 0.1 to 0.2%, Zr:
One or more of 0.05 to 0.2%, and hydrogen:
0.25 cc / 100gAl or less, aluminum alloy forging material consisting of the balance Al and unavoidable impurities, the aluminum alloy ingot cast at a cooling rate of 10 ° C. / sec or more, 53
After a homogenizing heat treatment at a temperature of 0 to 600 ° C., the forged material is hot forged, and Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) in the aluminum alloy structure of the forged material are used. A high-strength, high-toughness aluminum alloy forged material, characterized in that the total area ratio of the crystallized product of the above is 1.5% or less per unit area.
の晶出物の面積率が単位面積当たり1.0%以下である請求
項1に記載の高強度高靱性アルミニウム合金鍛造材。2. The high-strength and toughness according to claim 1, wherein the area ratio of the Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) crystallized material is 1.0% or less per unit area. Forged aluminum alloy.
または2に記載の高強度高靱性アルミニウム合金鍛造
材。3. The method according to claim 1, wherein the content of Fe is regulated to 0.25% or less.
Or a high-strength, high-toughness aluminum alloy forging according to item 2.
ト二次アーム間隔(DAS) が30μm 以下である請求項1乃
至3の何れか1項に記載の高強度高靱性アルミニウム合
金鍛造材。4. The high-strength, high-toughness aluminum alloy forging according to claim 1, wherein a dendrite secondary arm interval (DAS) of the aluminum alloy ingot is 30 μm or less.
加工する請求項1乃至4の何れか1項に記載の高強度高
靱性アルミニウム合金鍛造材。5. The high-strength, high-toughness aluminum alloy forged material according to claim 1, wherein the aluminum alloy ingot is cast and then extruded.
上およびシャルピー衝撃値の平均値が30J/cm2 以上であ
る請求項1乃至5の何れか1項に記載の高強度高靱性ア
ルミニウム合金鍛造材。6. The high strength according to claim 1, wherein the average value of the proof stress (σ 0.2 ) is 350 N / mm 2 or more and the average value of the Charpy impact value is 30 J / cm 2 or more. High toughness aluminum alloy forging.
造の加工率が75% 未満の部位を有する請求項1乃至6の
何れか1項に記載の高強度高靱性アルミニウム合金鍛造
材。7. The high-strength, high-toughness aluminum alloy forging according to claim 1, wherein the aluminum alloy forging has a portion where the hot forging rate is less than 75%.
の部品用である請求項1乃至7の何れか1項に記載の高
強度高靱性アルミニウム合金鍛造材。8. The high-strength, high-toughness aluminum alloy forging according to claim 1, wherein the aluminum alloy forging is used for parts of a transport machine.
のサスペンション部品用である請求項1乃至8の何れか
1項に記載の高強度高靱性アルミニウム合金鍛造材。9. The high-strength and high-toughness aluminum alloy forging according to claim 1, wherein the aluminum alloy forging is used for suspension parts of automobiles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22402499A JP3684313B2 (en) | 1998-08-25 | 1999-08-06 | High-strength, high-toughness aluminum alloy forgings for automotive suspension parts |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-238564 | 1998-08-25 | ||
JP23856498 | 1998-08-25 | ||
JP22402499A JP3684313B2 (en) | 1998-08-25 | 1999-08-06 | High-strength, high-toughness aluminum alloy forgings for automotive suspension parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144296A true JP2000144296A (en) | 2000-05-26 |
JP3684313B2 JP3684313B2 (en) | 2005-08-17 |
Family
ID=26525808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22402499A Expired - Lifetime JP3684313B2 (en) | 1998-08-25 | 1999-08-06 | High-strength, high-toughness aluminum alloy forgings for automotive suspension parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3684313B2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275567A (en) * | 2001-03-19 | 2002-09-25 | Asahi Tec Corp | PRECIPITATION-HARDENING Al ALLOY, AND METHOD OF HEAT TREATMENT FOR PRECIPITATION-HARDENING ALLOY |
JP2002294383A (en) * | 2001-03-30 | 2002-10-09 | Showa Denko Kk | Aluminum alloy ingot for plastic working, method for producing aluminum alloy ingot for plastic working, method for producing aluminum alloy plastic worked product and aluminum alloy plastic worked product |
JP2006104537A (en) * | 2004-10-06 | 2006-04-20 | Nissin Kogyo Co Ltd | Method for casting aluminum alloy |
US7070735B2 (en) | 2002-07-22 | 2006-07-04 | Honda Giken Kogyo Kabushiki Kaisha | Aluminum alloy material for forging and continuous casting process therefor |
WO2007114078A1 (en) | 2006-03-31 | 2007-10-11 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy forging member and process for producing the same |
JP2008223108A (en) * | 2007-03-14 | 2008-09-25 | Kobe Steel Ltd | Forged material of aluminum alloy and manufacturing method therefor |
JP2009079299A (en) * | 2008-10-31 | 2009-04-16 | Showa Denko Kk | Automotive parts |
JP2011068994A (en) * | 2010-11-05 | 2011-04-07 | Showa Denko Kk | Aluminum alloy ingot for plastic working |
WO2011122263A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社神戸製鋼所 | Aluminium alloy forging and method of manufacture for same |
JP2011225988A (en) * | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | Aluminum alloy forged material and method for producing the same |
JP2012036504A (en) * | 2011-09-29 | 2012-02-23 | Showa Denko Kk | Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic worked article, and aluminum alloy plastic worked article |
JP2013209715A (en) * | 2012-03-30 | 2013-10-10 | Kobe Steel Ltd | Aluminum alloy forged material for automobile and production method of the material |
JP2014025149A (en) * | 2013-09-10 | 2014-02-06 | Showa Denko Kk | Aluminum alloy plastic worked product |
JP2014208879A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Automobile aluminum alloy forged material, and manufacturing method therefor |
EP2644725B1 (en) | 2012-03-30 | 2015-09-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy forged material for automobile and method for manufacturing the same |
EP2811042A4 (en) * | 2012-02-02 | 2016-06-08 | Kobe Steel Ltd | Forged aluminum alloy material and method for producing same |
KR20200106037A (en) * | 2018-01-12 | 2020-09-10 | 애큐라이드코포레이션 | Aluminum alloys and manufacturing methods for applications such as wheels |
US11136657B2 (en) | 2015-02-10 | 2021-10-05 | Showa Denko K.K. | Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component |
WO2021230080A1 (en) * | 2020-05-13 | 2021-11-18 | 日本軽金属株式会社 | Aluminum alloy forging material and method for manufacturing same |
WO2023139960A1 (en) * | 2022-01-18 | 2023-07-27 | 株式会社レゾナック | Aluminum alloy forged product, and manufacturing method thereof |
JP7528475B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528476B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528473B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528474B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7533745B2 (en) | 2022-12-15 | 2024-08-14 | 株式会社レゾナック | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof |
JP7533746B2 (en) | 2022-12-15 | 2024-08-14 | 株式会社レゾナック | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101583886B1 (en) | 2013-12-18 | 2016-01-08 | 현대자동차주식회사 | Aluminum alloy and vehicle part using the same |
-
1999
- 1999-08-06 JP JP22402499A patent/JP3684313B2/en not_active Expired - Lifetime
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275567A (en) * | 2001-03-19 | 2002-09-25 | Asahi Tec Corp | PRECIPITATION-HARDENING Al ALLOY, AND METHOD OF HEAT TREATMENT FOR PRECIPITATION-HARDENING ALLOY |
JP2002294383A (en) * | 2001-03-30 | 2002-10-09 | Showa Denko Kk | Aluminum alloy ingot for plastic working, method for producing aluminum alloy ingot for plastic working, method for producing aluminum alloy plastic worked product and aluminum alloy plastic worked product |
US7070735B2 (en) | 2002-07-22 | 2006-07-04 | Honda Giken Kogyo Kabushiki Kaisha | Aluminum alloy material for forging and continuous casting process therefor |
JP2006104537A (en) * | 2004-10-06 | 2006-04-20 | Nissin Kogyo Co Ltd | Method for casting aluminum alloy |
WO2007114078A1 (en) | 2006-03-31 | 2007-10-11 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy forging member and process for producing the same |
JP2008163445A (en) * | 2006-03-31 | 2008-07-17 | Kobe Steel Ltd | Automobile chassis parts and its manufacturing method |
US8152940B2 (en) | 2006-03-31 | 2012-04-10 | Kobe Steel, Ltd. | Aluminum alloy forging member and process for producing the same |
JP2008223108A (en) * | 2007-03-14 | 2008-09-25 | Kobe Steel Ltd | Forged material of aluminum alloy and manufacturing method therefor |
US8372220B2 (en) * | 2007-03-14 | 2013-02-12 | Kobe Steel, Ltd. | Aluminum alloy forgings and process for production thereof |
JP2009079299A (en) * | 2008-10-31 | 2009-04-16 | Showa Denko Kk | Automotive parts |
WO2011122263A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社神戸製鋼所 | Aluminium alloy forging and method of manufacture for same |
JP2011214093A (en) * | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Aluminum alloy forging and method for manufacturing same |
JP2011225988A (en) * | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | Aluminum alloy forged material and method for producing the same |
US9481920B2 (en) | 2010-03-31 | 2016-11-01 | Kobe Steel, Ltd. | Aluminium alloy forging and method of manufacture for same |
JP2011068994A (en) * | 2010-11-05 | 2011-04-07 | Showa Denko Kk | Aluminum alloy ingot for plastic working |
JP2012036504A (en) * | 2011-09-29 | 2012-02-23 | Showa Denko Kk | Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic worked article, and aluminum alloy plastic worked article |
EP2811042B1 (en) | 2012-02-02 | 2017-06-21 | Kabushiki Kaisha Kobe Seiko Sho | ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME |
EP2811042A4 (en) * | 2012-02-02 | 2016-06-08 | Kobe Steel Ltd | Forged aluminum alloy material and method for producing same |
EP2644725B1 (en) | 2012-03-30 | 2015-09-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy forged material for automobile and method for manufacturing the same |
JP2013209715A (en) * | 2012-03-30 | 2013-10-10 | Kobe Steel Ltd | Aluminum alloy forged material for automobile and production method of the material |
JP2014208879A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Automobile aluminum alloy forged material, and manufacturing method therefor |
JP2014025149A (en) * | 2013-09-10 | 2014-02-06 | Showa Denko Kk | Aluminum alloy plastic worked product |
DE112015000499B4 (en) | 2015-02-10 | 2023-09-28 | Resonac Corporation | Method for producing a plastically deformed aluminum alloy product |
US11136657B2 (en) | 2015-02-10 | 2021-10-05 | Showa Denko K.K. | Aluminum alloy plastic worked article, method for manufacturing the same, and automobile component |
US11420249B2 (en) | 2018-01-12 | 2022-08-23 | Accuride Corporation | Aluminum wheels and methods of manufacture |
KR102417740B1 (en) * | 2018-01-12 | 2022-07-08 | 애큐라이드코포레이션 | Aluminum alloys and manufacturing methods for applications such as wheels |
KR20200106037A (en) * | 2018-01-12 | 2020-09-10 | 애큐라이드코포레이션 | Aluminum alloys and manufacturing methods for applications such as wheels |
JP7528475B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528476B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528473B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JP7528474B2 (en) | 2020-03-11 | 2024-08-06 | 株式会社レゾナック | Aluminum alloy forgings and manufacturing method thereof |
JPWO2021230080A1 (en) * | 2020-05-13 | 2021-11-18 | ||
WO2021230080A1 (en) * | 2020-05-13 | 2021-11-18 | 日本軽金属株式会社 | Aluminum alloy forging material and method for manufacturing same |
EP4151764A4 (en) * | 2020-05-13 | 2024-05-01 | Nippon Light Metal Co., Ltd. | Aluminum alloy forging material and method for manufacturing same |
WO2023139960A1 (en) * | 2022-01-18 | 2023-07-27 | 株式会社レゾナック | Aluminum alloy forged product, and manufacturing method thereof |
JP7533745B2 (en) | 2022-12-15 | 2024-08-14 | 株式会社レゾナック | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof |
JP7533746B2 (en) | 2022-12-15 | 2024-08-14 | 株式会社レゾナック | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3684313B2 (en) | 2005-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3684313B2 (en) | High-strength, high-toughness aluminum alloy forgings for automotive suspension parts | |
US11519058B2 (en) | 6XXX aluminium alloy extruded forging stock and method of manufacturing thereof | |
CN101365818B (en) | Aluminum alloy forging member and process for producing the same | |
EP0987344B1 (en) | High strength aluminium alloy forgings | |
US8133331B2 (en) | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same | |
WO2011134486A1 (en) | Damage tolerant aluminium material having a layered microstructure | |
JP2013209715A (en) | Aluminum alloy forged material for automobile and production method of the material | |
EP2072628A1 (en) | High strength crash resistant aluminium alloy | |
JP7044863B2 (en) | Al-Mg-Si based aluminum alloy material | |
JP3766357B2 (en) | Aluminum alloy forging material for strength member and forging material | |
WO2019025227A1 (en) | 6xxxx-series rolled sheet product with improved formability | |
JP2020066752A (en) | Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUSION MATERIAL AND METHOD FOR MANUFACTURING THE SAME | |
JP2004292937A (en) | Aluminum alloy forging material for transport carrier structural material, and production method therefor | |
US20050173032A1 (en) | Casting of an aluminium alloy | |
JP2004084058A (en) | Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging | |
JP3726087B2 (en) | Aluminum alloy forged material for transport machine structural material and method for producing the same | |
JP3721020B2 (en) | High strength, high toughness aluminum alloy forging with excellent corrosion resistance | |
JP2006274415A (en) | Aluminum alloy forging for high strength structural member | |
JP2003277868A (en) | Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging | |
JP2001181771A (en) | High strength and heat resistant aluminum alloy material | |
JP5575028B2 (en) | High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method | |
CN115896558A (en) | 4xxx series aluminum alloy forging and preparation method thereof | |
JPH06330264A (en) | Production of aluminum alloy forged material excellent in strength and toughness | |
JP2003155535A (en) | Aluminum alloy extruded material for automobile bracket, and production method therefor | |
JP7459496B2 (en) | Manufacturing method for aluminum alloy forgings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3684313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080603 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |