JP3721020B2 - High strength, high toughness aluminum alloy forging with excellent corrosion resistance - Google Patents

High strength, high toughness aluminum alloy forging with excellent corrosion resistance Download PDF

Info

Publication number
JP3721020B2
JP3721020B2 JP28537299A JP28537299A JP3721020B2 JP 3721020 B2 JP3721020 B2 JP 3721020B2 JP 28537299 A JP28537299 A JP 28537299A JP 28537299 A JP28537299 A JP 28537299A JP 3721020 B2 JP3721020 B2 JP 3721020B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
forging
strength
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28537299A
Other languages
Japanese (ja)
Other versions
JP2001107168A (en
Inventor
学 中井
洋樹 澤田
佳也 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28537299A priority Critical patent/JP3721020B2/en
Publication of JP2001107168A publication Critical patent/JP2001107168A/en
Application granted granted Critical
Publication of JP3721020B2 publication Critical patent/JP3721020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、輸送機の構造材部品に好適な、耐応力腐食割れ性などの耐食性に優れたAl-Mg-Si系高強度高靱性アルミニウム合金鍛造材 (以下、アルミニウムを単にAlと言う) に関するものである。
【0002】
【従来の技術】
周知の通り、車両、船舶、航空機、自動二輪あるいは自動車などの輸送機の構造材乃至部品用として、JIS 6000系(Al-Mg-Si 系) などのAl合金が使用されている。このJIS 6000系Al合金は、比較的耐食性にも優れており、また、スクラップをJIS 6000系Al合金溶解原料として再利用できるリサイクル性の点からも優れている。
【0003】
前記輸送機の構造材を例にとると、製造コストの低減や、複雑形状部品への加工の点から、Al合金鋳造材やAl合金鍛造材が用いられる。この内、より高強度で高靱性などの機械的性質が要求される部品には、Al合金鍛造材が主として用いられる。そして、これらAl合金鍛造材は、Al合金鋳造材を均質化熱処理後、メカニカル鍛造、油圧鍛造などの熱間鍛造し、その後T6などの調質処理が施されて製造される。なお、鍛造素材には、鋳造材を一旦押出した押出材が用いられることもある。
【0004】
近年、これら輸送機の構造材においても、より薄肉化や高強度化が求められており、前記Al合金鍛造材も、より高強度で高靱性化する必要性が生じている。しかし、現状でこれら用途に使用されているJIS 6000系Al合金では、どうしても強度不足が生じてしまう。
【0005】
このため、従来からAl合金材料の側を改善することが行われている。例えば、特開平06-256880 号公報では、Al合金鍛造材用鋳造材として、JIS 6000系(Al-Mg-Si 系) 鋳造材のMg、Si等の成分を規定するとともに、晶析出物 (晶出物や析出物) の平均粒径を8 μm 以下と小さくし、かつデンドライト二次アーム間隔(DAS) を40μm 以下と細かくして、Al合金鍛造材をより高強度で高靱性化することが提案されている。
【0006】
しかし、この特開平06-256880 号公報の実施例にも示されている通り、この従来技術で得られるAl合金鍛造材のデンドライト二次アーム間隔(DAS) は、小さいものでも、せいぜい30μm 程度と極めて大きい。
【0007】
実際のAl合金鍛造材では、メカニカル鍛造などの熱間鍛造によっても、鍛造材部品の大きさや形状、厚み、或いは部品の部位によっては、加工率が低くなる場合がある。例えば、自動車用のサスペンション部品としてのアーム類のような形状の場合、50% 程度の低い加工率にしかならない場合がある。そして、この加工率が低い部位では、鍛造されても鋳造組織が残るために、加工率が高い他の部位に比して、特に靱性は、必然的に低くなる傾向にある。
【0008】
したがって、この従来技術で得られるAl合金鍛造材の強度や靱性は、JIS 6061や6151などのAl合金などよりも向上しているものの、加工率が低い部位が生じることにより、この部位の靱性が低くなるようなAl合金鍛造材に対しては、特にAl合金鍛造材の靱性が不足する。即ち、前記従来技術では、加工率が低い部位が存在する鍛造材製品では、部品全体としての高靱性値を得ることができない。
【0009】
この結果、鋳塊の晶出物なり、DAS を小さくしても、鍛造品では高靱性化を達成できず、全体としてのより高強度で高靱性が要求される構造材には適用できずに、輸送機の構造材への用途の拡大を妨げていた。
【0010】
これに対し、本発明者らは、Al合金鍛造材の高強度化、高靱性化のために、特願平10-238564 号によって、Mg:0.6〜1.6%(mass%、以下同じ) 、Si:0.8〜1.8%、Cu:0.1〜1.0%を含むとともに、Feを0.30% 以下に規制し、更にMn:0.15 〜0.6%、Cr:0.1〜0.2%、Zr:0.1〜0.2%の一種または二種以上を含み、残部Alおよび不可避的不純物からなるアルミニウム合金鍛造材であって、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物の合計の面積率が単位面積当たり1.5%以下であり、耐力 (σ0.2)の平均値が350N/mm2以上およびシャルピー衝撃値の平均値が30J/cm2 以上を達成できる高強度で高靱性なAl合金鍛造材を提案した。
【0011】
この特願平10-238564 号の発明では、Al合金鋳造材の晶析出物の内、鍛造されたAl合金組織の破壊の起点となる特定の晶析出物、Mg2Si およびAl-Fe-Si-Mn 、Al-Fe-Si-Cr 、Al-Fe-Si-Zr 等のAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を、互いに間隔を開けて分散させる(晶析出物の合計の面積率で規定する)ことにより、高い靱性を確保するものである。
【0012】
なお、特願平10-238564 号のように、Al合金鍛造材の分野では、鍛造材を高強度化する場合、通常、過剰Siを多くしたり、あるいはCuのような高強度化元素を添加する。
【0013】
【発明が解決しようとする課題】
しかし、前記のように、過剰Siを多くしたり、あるいはCuのような高強度化元素を含んだ場合には、Al合金鍛造材の組織の、粒界腐食や応力腐食割れの感受性が著しく高くなり、耐食性が低下するという、別の問題が生じる。そして、この耐食性低下の問題は、構造材としての基本的な要求特性である耐久性や信頼性にかかわる問題として重大となる。
【0014】
例えば、輸送機などの構造材は、基本的に無塗装 (裸) で使用されるとともに、自動車の走行乃至使用環境としても、海水や塩水を含み、氷点下以下の低温から真夏の高温までの、厳しい塩水腐食環境下となる。そして、これら構造材は、これら塩水腐食環境下で、荷重乃至応力、或いは衝撃が付加された状態で使用される。そして、これらの条件は、全て、粒界腐食や、更には応力腐食割れを著しく促進する要因となる。
【0015】
更に、輸送機などの構造材では、構成がAl合金鍛造材だけではなく、Al合金よりも貴な他の金属材料と組み合わせたり、接合されて用いられることも多い。そして、このように、Al合金鍛造材がAl合金よりも貴な他の金属材料と接合されて用いられる場合には、粒界腐食や、更には応力腐食割れを、非常に生じやすい使用環境となっている。
【0016】
また、使用状況によっては、製品の特定の部位で、鍛流線に対して直角方向( 板材でのST方向に対応) に引張応力が付加される場合がある。一般的に、このような部位での靱性ならびに耐応力腐食割れ性は低く、機械的な破壊ならびに腐食に起因する破壊は、まず、このような部位で発生する。
【0017】
したがって、このような過酷な使用環境下にあっても、また、前記した通り、過剰Si量を多く含んだ場合や、Cuのような高強度化元素を含んだ場合にも、粒界腐食や応力腐食割れが生じず、かつ、高強度、高靱性であるという、厳しい乃至相矛盾しているとも言える要求特性および技術的課題が、Al合金鍛造材にはある。
【0018】
本発明はこの様な事情に着目してなされたものであって、その目的は、高強度高靱性であるとともに、耐食性や耐久性に優れたAl合金鍛造材を提供しようとするものである。
【0019】
【課題を解決するための手段】
この目的を達成するために、本発明Al合金鍛造材の要旨は、Mg:0.6〜1.8% (質量% 、以下同じ) 、Si:0.6〜1.8%を含み、更に、Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種または二種を含むとともに、Cu:0.25%以下、Mn:0.05%以下、Fe:0.30%以下、水素:0.25 cc/100g Al以下、に各々規制し、残部Alおよび不可避的不純物からなり、アルミニウム合金組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を、鍛造材の鍛流線 L 方向に対して直角の板厚方向を ST 方向、前記L 方向と直角の板幅方向をLT方向とした際のLT-ST 面の中心部位における鍛造材の表面から中央部位までを20等分した各位置での測定箇所20視野の400 倍の光学顕微鏡または500 倍の走査型電子顕微鏡による目視観察または画像解析の結果の平均によって測定した際に、1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とすることである。
【0020】
また、本発明Al合金鍛造材は、耐食性を向上させるために、後述する通り、アルミニウム合金鋳塊を530 〜 595℃の温度で均質化熱処理した後に、熱間鍛造して得られることが好ましい (請求項2 に対応) 。そして、必要な機械的特性を得るために、鍛造材がT6、T7、T8で調質処理されて使用されることが好ましい (請求項3 に対応) 。
【0021】
また、本発明Al合金鍛造材を高靱性化させるために、後述する通り、デンドライト二次アーム間隔(DAS) が30μm 以下となるように鋳造した鋳塊を用いることが好ましい (請求項4 に対応) 。そして、Al合金鍛造材を高靱性化させるためには、前記鋳塊を押出或いは圧延により加工後に鍛造することも好ましい (請求項5 に対応) 。
【0022】
更に、本発明Al合金鍛造材は、特に、鋳塊からの加工率が75% 未満の部位を有し、靱性が低下しやすいAl合金鍛造材に好適である (請求項6 に対応) 。また、より好適には、耐食性が低下しやすい、鍛流線に対して直角方向に引張応力が付加されて使用されるAl合金鍛造材や輸送機の構造材用に好適である (請求項7 、8 に対応) 。
【0023】
本発明では、高靱性化したAl合金鍛造材の、前記過酷な腐食環境下での使用であっても、また、過剰Siを多くしたり、Cuのような高強度化元素を含んだ場合にでも、耐粒界腐食性や耐応力腐食割れ性を向上させるために、組成を規定すると同時に、更に、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物 (晶出物や析出物) の平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とする。
【0024】
例えば、前記特開平06-256880 号公報のような晶析出物の形態制御、即ち、単に鋳塊の晶析出物の平均粒径を小さくするだけでは靱性の向上に多く寄与しない。本発明者らは、前記特開平06-256880 号公報のような思想に反して、晶析出物の平均粒径が大きくても、それが間隔を開けて分散している (まばらに存在する) ならば、靱性の向上に寄与する。つまり、晶析出物の平均粒径が小さくても、互いの間隔が小さく密集した状態乃至つながった状態では、靱性等の機械的特性を劣化させる。
【0025】
即ち、Mg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物が粒界上に密に存在すると、これら晶析出物自身および周囲が溶出するため、粒界腐食や応力腐食割れを著しく生じやすくなる。
【0026】
このため、本発明では、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の形態制御を行う。しかし、粒界上に存在する晶析出物の平均粒径を単に小さくするだけでは、耐応力腐食割れや耐粒界腐食性を向上に多く寄与しない。これら耐食性を向上させるために重要なことは、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物同士が、互いに間隔を開けて分散している (まばらに存在する) ことが必須となる。これに対し、晶析出物の平均粒径が小さくても、互いの間隔が小さく密集した状態乃至長くつながった状態では、前記応力腐食割れや粒界腐食の粒界に沿った伝播を防止することができず、靱性も低下させる。
【0027】
そして、この晶析出物の大きさ制御と、晶析出物が互いに間隔を開けて分散している(晶析出物の互いの間隔が小さく密集した状態乃至つながった状態ではない)状況に良く対応する指標として、本発明では、晶析出物の平均粒径と、該晶析出物間の平均間隔を選択する。
【0028】
【発明の実施の形態】
粒界上の晶析出物の平均粒径と平均間隔。
次に、本発明における粒界上に存在する晶析出物の平均径と平均間隔の規定について、更に具体的に説明する。本発明で規定する、粒界のMg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物は、前記面積率を規定している晶析出物と同じである。そして、本発明では、前記した通り、Al合金鍛造材の靱性および耐応力腐食割れ性や耐粒界腐食性の向上のために、これら粒界上に存在する晶析出物の、平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とする。
【0029】
これら粒界上のMg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物同士の平均間隔が3.0 μm 未満の場合、たとえ晶析出物の平均粒径が1.2 μm 以下と小さくても、互いの間隔が小さく密集した状態乃至つながった状態となり、前記靱性および耐応力腐食割れ性や耐粒界腐食性を向上させることができない。また、晶析出物同士の間隔を3.0 μm 以上としても、晶析出物の平均粒径が1.2 μm を越える場合、結果として、晶析出物が密集した状態乃至つながった状態となり、前記靱性および耐応力腐食割れ性や耐粒界腐食性を向上させることができない。
【0030】
これら晶析出物の平均粒径と、晶析出物間の平均間隔の測定は、Al合金鍛造材の組織を、400 倍の光学顕微鏡または500 倍の走査型電子顕微鏡(SEM) により、材質のバラツキを考慮するためAl合金鍛造材の測定箇所20視野の目視観察乃至画像解析結果の平均によって行う。測定部位は、鍛造材の表面から中央部位までを20等分した各位置で行う。
【0031】
ここにおいて、本発明で言う粒界上の晶析出物の平均粒径とは、前記各視野の粒界上に存在するMg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物粒子の平均の長さを言い、前記各視野で測定される平均の長さを、前記20視野で平均値化したものとする。
【0032】
また、本発明で言う晶析出物間の間隔とは、各視野で測定される粒界の長さを、各視野の粒界上に観察される晶析出物粒子の数で除した値を、前記20視野で平均値化したものとする。
【0033】
Al合金鍛造材用鋳塊。
本発明における鍛造材用の鋳塊は、Al合金鍛造材の高靱性化を保証するために、鋳塊のデンドライト二次アーム間隔(DAS) を30μm 以下とすることが好ましい。これにより、Al合金鋳塊およびAl合金鍛造材の結晶粒を微細化させるとともに、Mg2Si とAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積率を低くし、Al合金鍛造材の靱性を向上させる。この鋳塊のデンドライト二次アーム間隔(DAS) が30μm を越えて大きくなった場合、前記特開平06-256880 号公報のAl合金鍛造材のデンドライト二次アーム間隔(DAS) が30μm 程度の場合のように、鋳塊からの加工率 (鋳塊を鍛造のみ行う場合や、鋳塊を押出や圧延後鍛造する場合の全体の加工率) の低い部位が存在した場合に、Al合金鍛造材全体の靱性を向上させることができない可能性がある。
【0034】
なお、鍛造材は、鋳塊を直接熱間鍛造する場合や、更に鋳塊を一旦押出加工や圧延加工して熱間鍛造する場合も含む。したがって、鋳塊の形状は、丸棒などのインゴットやスラブ形状、或いは成品形状に近いニアネットシェイプ等があり、特に制限されるものではない。
【0035】
Al合金の化学成分組成。
次に、本発明Al合金における、化学成分組成について説明する。本発明のAl合金は、自動車、船舶などの輸送機材や構造材あるいは部品用として、高強度、高靱性および高耐食性などの高い耐久性を保証する必要がある。
【0036】
したがって、本発明Al合金の化学成分組成は、Al-Mg-Si系のJIS 6000系Al合金の成分規格 (JIS 6101、6111、6003、6151、6061、6N01、6063など) に相当するものとして、基本的には、Mg:0.6〜1.6%、Si:0.6〜1.8%を含み、更に、Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種または二種を含むとともに、Cu:0.20%以下、Mn:0.05%以下、Fe:0.30%以下、更に好ましくは、水素:0.25 cc/100g Al以下に各々規制し、残部Alおよび不可避的不純物からなるAl合金とする。
【0037】
しかし、JIS 6000系Al合金の各成分規格通りにならずとも、前記前記諸特性を満足してさえいれば、更なる特性の向上や他の特性を付加するための、他の元素を適宜含むなどの成分組成の変更は適宜許容される。また、溶解原料スクラップなどから必然的に混入される不純物も、本発明鍛造材の品質を阻害しない範囲で許容される。
【0038】
Al合金の元素量。
次に、本発明Al合金材の各元素の含有量について、臨界的意義や好ましい範囲について説明する。
【0039】
Mg:0.6〜1.8%。
Mgは人工時効により、SiとともにMg2 Si (β' 相) として析出し、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Mgの0.6%未満の含有では時効硬化量が低下する。一方、1.8%を越えて含有されると、強度 (耐力) が高くなりすぎ、鍛造性を阻害する。また、溶体化処理後の焼き入れ途中に多量のMg2 Siが析出しやすく、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とすることができない。したがって、Mgの含有量は0.6 〜1.8%の範囲とする。
【0040】
Si:0.6〜1.8%。
SiもMgとともに、人工時効処理により、Mg2 Si (β' 相) として析出して、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Siの0.6%未満の含有では人工時効で十分な強度が得られない。一方、1.8%を越えて含有されると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出して、前記した通り、耐食性と靱性を低下させる。また、過剰Siが多くなって、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とすることができず、高耐食性と高靱性を得ることができない。更に伸びが低くなるなど、加工性も阻害する。したがって、Siの含有量は0.6 〜1.8%の範囲とし、この範囲の中でも、Mg含有量との関係で、できるだけ過剰Siは少なくするこのが好ましい。
【0041】
Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種または二種。
これらの元素は均質化熱処理時およびその後の熱間鍛造時に、Al12Mg2Cr 、Al-Cr 系、Al-Zr 系などの分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒や亜結晶粒を得ることができる。また、これらの元素の内でも、Zrは、数十から数百オングトロームのサイズの、Al-Mn 系やAl-Cr 系の分散粒子よりも、より微細なAl-Zr 系分散粒子が析出する。このため、特にZrは、結晶粒界や亜結晶粒界の移動を阻止し、結晶粒の微細化、亜結晶粒化する効果が大きく、破壊靱性や疲労特性などの向上効果が大きい。含有量が少なすぎると、これらの効果が期待できず、一方、これらの元素の過剰な含有は溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。したがって、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積率が、単位面積当たり1.5%以下、好ましくは、1.0%以下とすることができず、高靱性や高疲労特性を得ることができない。このため、これらの元素の含有量は各々、Cr:0.1〜0.2%、Zr:0.1〜0.2%とする。
【0042】
Cu:0.25%以下。
Cuは、Al合金鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、Al合金鍛造材の耐食性や耐久性を低下させる。したがって、本発明では、この観点からCu含有量をできるだけ少なく規制する。しかし、一方で、Cuは固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有する。なお、Cu含有量を少なくすると、高純度地金を使用する必要があり、鋳造コストがかかる問題もある。したがって、Cuは0.25% 以下の含有まで許容する。
【0043】
Mn:0.05%以下。
MnはAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成する。このため、Mnの含有量が多いと、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径、晶析出物同士の平均間隔を、本発明で規定する範囲にすることができなくなる。したがって、本発明では、Al合金鍛造材の高強度、高靱性および高耐食性を保証する観点からMn含有量をできるだけ少なく規制する。しかし、一方で、Mnは、Cr、Zrと同様に、均質化熱処理時およびその後の熱間鍛造時に、Al20Cu2Mn3などのAl-Mn 系の分散粒子を生成し、この分散粒子により、再結晶後の粒界移動を妨げ、微細な結晶粒を得る効果もある。そして、固溶による強度およびヤング率の増大も見込める。また、Mnの含有量を少なくするために、鋳造コストがかかる問題もある。したがって、Mnは0.05% 以下の含有まで許容する。
【0044】
Fe:0.30%以下。
Al合金に不純物として含まれるFeは、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6、或いは本発明で問題とする粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の晶析出物を生成する。これらの晶析出物は、前記した通り、破壊靱性および疲労特性などを劣化させる。特に、Feの含有量が0.30% 、より厳密には0.25% を越えると、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物の合計の面積率が、単位面積当たり1.5%以下、好ましくは、1.0%以下とすることができず、輸送機の構造材などに要求される、より高強度で高靱性を得ることができない。したがって、Feの含有量は0.30% 以下、より好ましくは0.25% 以下とすることが好ましい。
【0045】
水素:0.25 cc/100g Al以下。
水素(H2)は、特に、鍛造材の加工度が小さくなる場合、水素に起因する気泡が鍛造等加工で圧着せず、破壊の起点となるため、靱性や疲労特性を著しく低下させる。そして、高強度化した輸送機の構造材などにおいては、特に水素による影響が大きい。したがって、水素は0.25 cc/100g Al 以下のできるだけ少ない含有量とする。
【0046】
Zn、Ti、B 、Be、V 等。
Zn、Ti、B 、Be、V 等は、各々目的に応じて、選択的に含有される元素である。
Zn:0.005〜1.0%。
Znは人工時効時において、MgZn2 を微細かつ高密度に析出させ高い強度を実現させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界からではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果が期待できる。しかし、Znの0.005%未満の含有では人工時効で十分な強度が得られず、前記耐食性の向上効果もない。一方、1.0%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znの含有量は0.005 〜1.0%の範囲とすることが好ましい。
【0047】
Ti:0.001〜0.1%。
Tiは鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、Tiの0.001%未満の含有では、加工性向上の効果が得られず、一方、Tiを0.1%を越えて含有すると、粗大な晶析出物を形成し、前記加工性を低下させる。したがって、Tiの含有量は0.001 〜0.1%の範囲とすることが好ましい。
【0048】
B:1 〜300ppm。
B はTiと同様、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、B の1ppm未満の含有では、この効果が得られず、一方、300ppmを越えて含有されると、やはり粗大な晶析出物を形成し、前記加工性を低下させる。したがって、B の含有量は1 〜300ppmの範囲とすることが好ましい。
【0049】
Be:0.1〜100ppm。
Beは空気中におけるAl溶湯の再酸化を防止するために含有させる元素である。しかし、0.1ppm未満の含有では、この効果が得られず、一方、100ppmを越えて含有されると、材料硬度が増大し、前記加工性を低下させる。したがって、Beの含有量は0.1 〜100ppmの範囲とすることが好ましい。
【0050】
V:0.15% 以下。
V は、Mn、Cr、Zrなどと同様に、均質化熱処理時およびその後の熱間鍛造時に、分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる。しかし過剰な含有は溶解、鋳造時に粗大なAl-Fe-Si-V系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり、靱性を低下させる原因となる。したがって、V を含有させる場合は0.15% 以下とする。
【0051】
Al合金鍛造材の製造方法。
次に、本発明におけるAl合金鍛造材の好ましい製造方法について述べる。本発明におけるAl合金鍛造材の製造自体は常法により製造が可能である。例えば、前記Al合金成分範囲内に溶解調整されたAl合金溶湯を鋳造する場合には、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。
【0052】
しかし、Al合金鋳塊の結晶粒を微細化し、かつ、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径、晶析出物同士の平均間隔を、本発明で規定する範囲にするためには、Al合金溶湯を、10℃/sec以上の冷却速度で鋳造して鋳塊とすることが好ましい。また、鋳塊の冷却速度が10℃/sec以上とすることにより、鋳塊のデンドライト二次アーム間隔(DAS) を30μm 以下とすることができる。一方、これ以上冷却速度が遅いと、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径、晶析出物同士の平均間隔を、本発明で規定する範囲にできず、かつ結晶粒が粗大化し、鋳塊のデンドライト二次アーム間隔(DAS) を30μm 以下とすることができなくなる可能性がある。
【0053】
次いで、このAl合金鋳塊 (鋳造材) の均質化熱処理温度は530 〜 595℃の温度範囲とすることが好ましい。この種Al合金鋳造材の通常の均質化熱処理温度は、500 〜520 ℃程度であるが、本発明では、前記した通り、耐食性および靱性の向上のために、均質化熱処理時に、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物を十分に固溶させ、調質処理後の鍛造材の組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とする必要がある。
【0054】
このためには、前記530 〜 595℃の高温での均質化熱処理が必要で、均質化熱処理温度が530 ℃未満の温度では、Al-Fe-Si-(Mn、Cr、Zr) 系晶析出物が十分に固溶せず、調質処理後の鍛造材の組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とすることが難しくなる。一方、均質化熱処理温度が595 ℃を越えると、却って、Al合金鋳塊 (鋳造材) にバーニング (溶損) 等が生じ、熱間加工時に割れが生じやすくなる。また、最終鍛造材の靱性や疲労特性等の機械的特性を著しく低下させる可能性がある。
【0055】
均質化熱処理の後に、メカニカル鍛造や油圧鍛造等により熱間鍛造して、最終製品形状( ニアネットシェイプ) のAl合金鍛造材に成形する。そして、鍛造後、必要な強度および靱性、耐食性を得るためのT6 (溶体化処理後、最大強さを得る人工時効硬化処理) 、T7 (溶体化処理後、最大強さを得る人工時効硬化処理条件を超えて過剰時効処理) 、T8 (溶体化処理後、冷間加工を行い、更に最大強さを得る人工時効硬化処理) 等の調質処理を適宜行う。また、均質化熱処理、溶体化処理には、空気炉、誘導加熱炉、硝石炉などが適宜用いられる。更に、人工時効硬化処理には、空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。
【0056】
なお、Al合金鍛造材に残留する鋳造組織を無くし、強度と靱性をより向上させるために、Al合金鋳塊を均質化熱処理後、押出や圧延加工した後に、前記鍛造を行っても良い。
【0057】
【実施例】
次に、本発明の実施例を説明する。表1 に示す化学成分組成のAl合金鋳塊 (Al合金鋳造材、いずれもφ68mm径の丸棒) を、ホットトップ鋳造法により、20℃/ sec の冷却速度により鋳造した。この鋳塊を550 ℃の温度で8 時間均質化熱処理を施し、400 ℃に再加熱後メカニカル鍛造により熱間で広げ鍛造し、厚さ20mmの板状のAl合金鍛造材を製造した。次に、このAl合金鍛造材を空気炉を用いて、加熱速度300 ℃/hr で昇温し、540 ℃で1 時間の溶体化処理した後水冷 (水焼入れ) を行い、その後室温(20 〜30℃) で1 時間放置したのち、175 ℃×8 時間の時効処理(T6 処理) を行った。なお、表2 の比較例No.11 の鋳塊のみは、前記均質化熱処理温度を470 ℃の低めとした。
【0058】
そして、前記Al合金鍛造材から各々試験片を採取し、種々の調査を行った。なお、各試験における試験片の方向を明確にするため、板状のAl合金鍛造材 (試験片) の、板の最も伸長した長手方向をL 方向、最も圧縮された板厚方向をST方向、前記L 方向と直角の板幅方向をLT方向と言う。
【0059】
(粒界上の晶析出物)
Al合金鍛造材組織の粒界上に存在する前記晶析出物の平均径と、晶析出物間の平均間隔の測定を、400 倍の光学顕微鏡により行った。測定面は、前記した通り、鍛流線(L方向) に対して直角の板厚方向(ST 方向に対応) に引張応力が付加され、機械的な破壊や腐食に起因する破壊が生じやすい、鍛造材のLT-ST 面 (板を縦断する面) の中心部位とした。そして、この中心部位で、測定箇所20視野の目視観察結果の平均によって行った。これらの結果を表2 に示す。
【0060】
(粒界腐食試験)
次に、Al合金鍛造材から各々試験片を採取し、粒界腐食試験を行った。試験片の腐食試験面は、前記粒界上の晶析出物測定面と同じく、また同じ理由で、前記LT-ST 面とした (腐食の伝播方向はL 方向) 。粒界腐食試験はJIS W 1103法の4.4.3 項に記載の方法により行い、粒界腐食割れ性を評価した。粒界腐食試験条件は、まず、93℃のエッチング溶液(70%濃硝酸50ml、48% ふっ化水素酸5ml 、蒸留水945ml の組成) に1 分間浸漬後、蒸留水で洗浄し、乾燥させた試験片を、LT-ST 面を背面とするC 字状のリング(Cリング) に変形させ、応力を負荷した状態で、30℃の腐食促進液(NaCl57g、30% 過酸化水素水10mlを蒸留水で1lに希釈したもの) に6 時間浸漬した。そして、断面試験片 (試験片の断面) を、エッチング溶液(70%濃硝酸2.5ml 、濃塩酸1.5ml 、48% ふっ化水素酸1.0ml 、蒸留水95.0mlの組成) に10秒間浸漬後、蒸留水で洗浄して乾燥し、LT-ST 面の腐食状況を200 倍の金属顕微鏡により観察した。
【0061】
粒界腐食の観察は、前記顕微鏡視野内において、他の孔食腐食や全面腐食などと区別して、結晶粒界に沿って腐食が進展し、典型的に粒界腐食と判断される腐食が発生しているか否かを評価した。これらの結果を、粒界腐食が発生している場合を×、発生していない場合を○として、表2 に示す。
【0062】
(応力腐食割れ試験)
また、同じく、Al合金鍛造材から各々、LT-ST 面を背面とする Cリングの試験片を採取し、応力腐食割れ試験を行った。応力腐食割れ試験条件は、ASTM G47の Cリングを用いた交互浸漬法の規定に準じて行った。試験条件は、試験片のLT方向の耐力の75% の応力を負荷した状態で、10間3.5%、30℃のNaCl水溶液に浸漬後に40分間大気放置する交互浸漬のサイクルを90日間行い、試験片の応力腐食割れ発生の有無を確認した。これらの結果を、応力腐食割れが発生している場合を×、発生していない場合を○として、表2 に示す。
【0063】
(引張試験)
更に、Al合金鍛造材から複数個採取した試験片の引張強度 (σB 、MPa)、耐力 (σ0.2 、MPa)、伸び (δ、%)、靱性= シャルピー衝撃値(J/cm2) 等の機械的特性を測定した。引張試験片の長手方向はLT方向で、LT方向に引張を行った。また、シャルピー衝撃試験の長手方向はLT方向で、LT-ST 面を破断面とした。これらの結果も表2 に示す。
【0064】
表2 から明らかな通り、表1 のNo.1〜5 までの本発明範囲内の化学成分組成とし、550 ℃の温度で8 時間均質化熱処理を施した発明例No.1〜5 は、組織において粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径が1.2 μm 以下であるとともに、これら晶析出物同士の平均間隔が3.0 μm 以上であった。そして、これら発明例の粒界上のAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の形態を観察したところでも、晶析出物が小さく、かつ晶析出物同士が互いに間隔を開けて細かく分散していることが裏付けられた。
【0065】
この結果、各発明例は、鍛造加工率が50% と低くても、耐力 (σ0.2)の平均値が300MPa以上およびシャルピー衝撃値の平均値が10J/cm2 以上と、高強度と高靱性を確保している。因みに、表1 のNo.1〜5 までの発明例を他の条件は同じとして、75% の鍛造加工率で熱間鍛造したものは、耐力 (σ0.2)の平均値で350MPa以上およびシャルピー衝撃値の平均値で20J/cm2 以上が得られた。
【0066】
更に、発明例No.1〜5 は、耐粒界腐食性や耐応力腐食割れ性にも優れていることが分かる。
【0067】
一方、表1 、2 から明らかな通り、Cu量が本発明範囲を高めに外れた比較例No.6 (表1 のNo.6のAl合金) 、Fe量が本発明範囲を高めに外れた比較例No.7 (表1 のNo.7のAl合金) 、Mn量が本発明範囲を高めに外れた比較例No.8 (表1 のNo.8のAl合金) 、水素量が本発明範囲を高めに外れた比較例No.9 (表1 のNo.9のAl合金) 、均質化熱処理温度が本発明の好ましい範囲を低めに外れた比較例No.10(表1 のNo.10 のAl合金) は、いずれも、粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物も、平均粒径が1.2 μm を越えて大きいか、平均間隔が3.0 μm 未満と小さい。そして、これら比較例のAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の形態を、発明例と同様に観察したところ、晶析出物同士が比較的大きく、かつ長くつながった形状をしていた。
【0068】
この結果、まず、Al合金鍛造材全体としての平均的な引張特性は、比較例No.10 を除いて、発明例と同等であるものの、シャルピー衝撃値の平均値は、発明例No.6を除いて、10J/cm2 未満である。そして、これら比較例は、耐粒界腐食性や耐応力腐食割れ性も、比較例No.9を除いて、発明例に比して著しく劣っている。したがって、これら比較例は、引張特性、シャルピー衝撃値、耐食性を、いずれも兼備していないことが分かる。したがって、これら比較例は、耐久性などの構造材としての信頼性の問題から、使用することが出来ないことが分かる。また、本発明の組織の要件の臨界的な意義が分かる。
【0069】
【表1】

Figure 0003721020
【0070】
【表2】
Figure 0003721020
【0071】
【発明の効果】
本発明によれば、高強度、高靱性で、耐食性にも優れたAl合金鍛造材を提供することができる。したがって、Al-Mg-Si系Al合金鍛造材の輸送機用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al-Mg-Si high-strength, high-toughness aluminum alloy forging material (hereinafter, aluminum is simply referred to as Al), which is suitable for structural material parts of transportation equipment and has excellent corrosion resistance such as stress corrosion cracking resistance. Is.
[0002]
[Prior art]
As is well known, Al alloys such as JIS 6000 series (Al-Mg-Si series) are used for structural materials and parts of transport equipment such as vehicles, ships, aircraft, motorcycles and automobiles. This JIS 6000 series Al alloy is relatively excellent in corrosion resistance, and is also excellent in terms of recyclability in which scrap can be reused as a JIS 6000 series Al alloy melting raw material.
[0003]
Taking the structural material of the transport aircraft as an example, an Al alloy cast material or an Al alloy forged material is used from the viewpoint of reducing manufacturing costs and processing into complex shaped parts. Among these, Al alloy forgings are mainly used for parts that require mechanical properties such as higher strength and higher toughness. These Al alloy forgings are produced by homogenizing heat treatment of the Al alloy cast material, followed by hot forging such as mechanical forging and hydraulic forging, followed by tempering treatment such as T6. In addition, the extrusion material which once extruded the cast material may be used for a forging material.
[0004]
In recent years, the structural materials for these transport aircraft are also required to be thinner and stronger, and the Al alloy forged material is also required to have higher strength and higher toughness. However, the JIS 6000 series Al alloys currently used for these applications inevitably have insufficient strength.
[0005]
For this reason, improving the side of Al alloy material conventionally is performed. For example, in Japanese Patent Laid-Open No. 06-256880, as a casting material for an Al alloy forging material, Mg, Si, and other components of a JIS 6000 series (Al-Mg-Si series) casting material are defined, and crystal precipitates (crystal It is possible to make the Al alloy forging material higher in strength and toughness by reducing the average particle size of the product (precipitates and precipitates) to 8 μm or less and the dendrite secondary arm spacing (DAS) to 40 μm or less. Proposed.
[0006]
However, as shown in the examples of this Japanese Patent Application Laid-Open No. 06-256880, even if the dendrite secondary arm interval (DAS) of the Al alloy forging obtained by this prior art is small, it is about 30 μm at most. Very large.
[0007]
In an actual Al alloy forged material, even with hot forging such as mechanical forging, the processing rate may be lowered depending on the size, shape, thickness, or part of the forged material part. For example, in the case of a shape such as an arm as a suspension part for an automobile, the processing rate may be as low as about 50%. And in this site | part with a low work rate, since a cast structure | tissue remains even if it forges, compared with the other site | part with a high work rate, especially toughness tends to become low inevitably.
[0008]
Therefore, although the strength and toughness of the Al alloy forging obtained by this prior art is improved compared to Al alloys such as JIS 6061 and 6151, the toughness of this part is reduced due to the occurrence of a part with a low processing rate. In particular, the toughness of the Al alloy forging material is insufficient for the Al alloy forging material which is lowered. That is, in the prior art, a high toughness value as a whole part cannot be obtained with a forged product in which a portion with a low processing rate exists.
[0009]
As a result, even if the DAS is reduced, the forged product cannot achieve high toughness and cannot be applied to structural materials that require higher strength and high toughness as a whole. This hindered the expansion of applications to structural materials for transport aircraft.
[0010]
On the other hand, the present inventors have made Mg: 0.6-1.6% (mass%, the same shall apply hereinafter), Si, and Si, according to Japanese Patent Application No. 10-238564, in order to increase the strength and toughness of Al alloy forgings. : 0.8 to 1.8%, Cu: 0.1 to 1.0%, Fe is restricted to 0.30% or less, Mn: 0.15 to 0.6%, Cr: 0.1 to 0.2%, Zr: One or two of Zr: 0.1 to 0.2% An aluminum alloy forging material comprising more than seeds and the balance being Al and inevitable impurities, Mg2The total area ratio of Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates is 1.5% or less per unit area, and the yield strength (σ0.2) Average value is 350 N / mm2And the average value of Charpy impact value is 30J / cm2 A high-strength and high-toughness Al alloy forging that can achieve the above is proposed.
[0011]
In the invention of this Japanese Patent Application No. 10-238564, among the crystal precipitates of the Al alloy cast material, a specific crystal precipitate that is the starting point of fracture of the forged Al alloy structure, Mg2Si and Al-Fe-Si-Mn, Al-Fe-Si-Cr, Al-Fe-Si-Zr and other Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates are spaced apart from each other. High toughness is ensured by opening and dispersing (defined by the total area ratio of crystal precipitates).
[0012]
In addition, in the field of Al alloy forgings, as in Japanese Patent Application No. 10-238564, when strengthening forgings, usually excessive Si is added or a strengthening element such as Cu is added. To do.
[0013]
[Problems to be solved by the invention]
However, as described above, when excess Si is increased or a strengthening element such as Cu is included, the structure of the Al alloy forging material is extremely sensitive to intergranular corrosion and stress corrosion cracking. This causes another problem that the corrosion resistance is lowered. And the problem of this corrosion-resistance fall becomes serious as a problem regarding durability and reliability which are the fundamental required characteristics as a structural material.
[0014]
For example, structural materials such as transport aircraft are basically used unpainted (bare), and the driving and usage environment of automobiles includes seawater and salt water, from low temperatures below freezing to high temperatures in midsummer. Severe salt water corrosive environment. These structural materials are used in a state where a load, stress, or impact is applied in the salt water corrosion environment. These conditions are all factors that significantly accelerate intergranular corrosion and even stress corrosion cracking.
[0015]
Furthermore, structural materials such as transport aircraft are often used in combination with or bonded to other metal materials that are more precious than Al alloys, as well as Al alloy forgings. In this way, when the Al alloy forging material is used by being joined to another metal material that is more noble than the Al alloy, intergranular corrosion and even stress corrosion cracking are very likely to occur. It has become.
[0016]
Also, depending on the usage situation, tensile stress may be applied in a direction perpendicular to the forging line (corresponding to the ST direction on the plate material) at a specific part of the product. In general, the toughness and stress corrosion cracking resistance at such sites are low, and mechanical and corrosion-induced failures first occur at such sites.
[0017]
Therefore, even in such a harsh use environment, as described above, even when a large amount of excess Si is included or when a strengthening element such as Cu is included, intergranular corrosion or Al alloy forgings have required characteristics and technical problems that can be said to be severe or contradictory, such that stress corrosion cracking does not occur, and high strength and high toughness.
[0018]
The present invention has been made by paying attention to such circumstances, and an object thereof is to provide an Al alloy forging material having high strength and high toughness, as well as excellent corrosion resistance and durability.
[0019]
[Means for Solving the Problems]
  In order to achieve this object, the subject matter of the Al alloy forging of the present invention includes Mg: 0.6 to 1.8% (mass%, the same shall apply hereinafter), Si: 0.6 to 1.8%, and Cr: 0.1 to 0.2% and Zr: 0.1 to 0.2% of one or two types, Cu: 0.25% or less, Mn: 0.05% or less, Fe: 0.30% or less, hydrogen: 0.25 cc / 100g Al or less, the balance Al and Mg that consists of inevitable impurities and exists on the grain boundaries of the aluminum alloy structure2The average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitatesForging line L Thickness direction perpendicular to the direction ST direction,400 times the optical field of 20 fields of view at each position divided from the surface of the forging material to the central part at the center part of the LT-ST surface when the plate width direction perpendicular to the L direction is the LT direction. When measured by an average of the results of visual observation or image analysis with a microscope or a 500 × scanning electron microscope, the average distance between crystal precipitates is set to be not more than 1.2 μm and not less than 3.0 μm.
[0020]
In order to improve the corrosion resistance, the Al alloy forged material of the present invention is preferably obtained by hot forging after homogenizing heat treatment of the aluminum alloy ingot at a temperature of 530 to 595 ° C. as described later. Corresponds to claim 2). In order to obtain necessary mechanical characteristics, it is preferable that the forged material is used after being tempered at T6, T7, and T8 (corresponding to claim 3).
[0021]
Further, in order to increase the toughness of the Al alloy forged material of the present invention, it is preferable to use an ingot cast so that the dendrite secondary arm interval (DAS) is 30 μm or less as described later (corresponding to claim 4). ) In order to increase the toughness of the Al alloy forged material, it is also preferable that the ingot is forged after being processed by extrusion or rolling (corresponding to claim 5).
[0022]
Furthermore, the Al alloy forged material of the present invention is particularly suitable for an Al alloy forged material having a portion where the processing rate from the ingot is less than 75% and the toughness tends to be lowered (corresponding to claim 6). More preferably, it is suitable for an Al alloy forging material or a structural material of a transport machine that is used with a tensile stress applied in a direction perpendicular to the forging line, the corrosion resistance of which tends to decrease. , 8).
[0023]
In the present invention, even when the toughened Al alloy forging material is used in the severe corrosive environment, when excessive Si is increased or a strengthening element such as Cu is included. However, in order to improve the intergranular corrosion resistance and stress corrosion cracking resistance, the composition is specified and at the same time, the Mg present on the grain boundary2The average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates (crystals and precipitates) should be 1.2 μm or less, and the average spacing between these crystal precipitates should be 3.0. Set to μm or more.
[0024]
For example, control of crystal precipitate morphology as described in Japanese Patent Application Laid-Open No. 06-256880, that is, simply reducing the average particle size of crystal ingots in the ingot does not contribute much to improving toughness. Contrary to the idea described in Japanese Patent Laid-Open No. 06-256880, the present inventors disperse even if the average particle size of the crystal precipitates is large (present sparsely). Then, it contributes to the improvement of toughness. That is, even if the average particle size of the crystal precipitates is small, mechanical properties such as toughness are deteriorated in a state where the distance between each other is small and dense.
[0025]
That is, Mg2If Si or Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates are densely present on the grain boundaries, the crystal precipitates themselves and the surroundings will elute, causing significant intergranular corrosion and stress corrosion cracking. It tends to occur.
[0026]
Therefore, in the present invention, Mg present on the grain boundary2Controls the morphology of Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates. However, simply reducing the average grain size of the crystal precipitates present on the grain boundaries does not contribute much to improving the stress corrosion cracking resistance and intergranular corrosion resistance. What is important for improving these corrosion resistances is the Mg present on the grain boundaries.2It is essential that Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates are dispersed at a distance from each other (sparsely present). On the other hand, even if the average grain size of the crystal precipitates is small, the stress corrosion cracking and the propagation along the grain boundary of the intergranular corrosion should be prevented in a state where the distance between each other is small and densely connected. Cannot be achieved, and the toughness is also reduced.
[0027]
The size control of the crystal precipitates corresponds well to the situation where the crystal precipitates are dispersed with a space between each other (the crystal precipitates are not closely packed or connected). As an index, in the present invention, the average particle size of crystal precipitates and the average interval between the crystal precipitates are selected.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Average grain size and average spacing of crystal precipitates on grain boundaries.
Next, the regulation of the average diameter and average interval of crystal precipitates present on the grain boundaries in the present invention will be described more specifically. Mg at grain boundaries as defined in the present invention2Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates are the same as the crystal precipitates defining the area ratio. In the present invention, as described above, in order to improve the toughness and stress corrosion cracking resistance and intergranular corrosion resistance of the Al alloy forging, the average grain size of crystal precipitates existing on these grain boundaries is set. In addition to 1.2 μm or less, the average interval between these crystal precipitates is set to 3.0 μm or more.
[0029]
Mg on these grain boundaries2When the average distance between Si and Al-Fe-Si- (Mn, Cr, Zr) system crystal precipitates is less than 3.0 μm, even if the average grain size of crystal precipitates is as small as 1.2 μm or less, the distance between each other Becomes a small and dense state or a connected state, and the toughness, stress corrosion cracking resistance and intergranular corrosion resistance cannot be improved. In addition, even when the distance between crystal precipitates is 3.0 μm or more, when the average particle size of crystal precipitates exceeds 1.2 μm, the result is that the crystal precipitates are in a dense or connected state, and the toughness and stress resistance Corrosion cracking resistance and intergranular corrosion resistance cannot be improved.
[0030]
  The average grain size of these crystal precipitates and the average distance between crystal precipitates are measured by the structure of the Al alloy forging material.DoubleOptical microscope or 500DoubleForged Al alloy material to account for material variations by scanning electron microscope (SEM)MeasurementThis is done by visual observation of 20 fixed points of view or by averaging image analysis results. The measurement part is performed at each position obtained by dividing the forging material from the surface to the central part into 20 equal parts.
[0031]
  Here, the average grain size of the crystal precipitates on the grain boundary referred to in the present invention is the above-mentioned field of view.Grain ofMg present in the world2This is the average length of Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitate particles, and the average length measured in each field is averaged in the 20 fields And
[0032]
Further, the interval between crystal precipitates referred to in the present invention is the value obtained by dividing the length of the grain boundary measured in each field by the number of crystal precipitate particles observed on the grain boundary in each field. It is assumed that the values are averaged over the 20 fields of view.
[0033]
  Ingot for Al alloy forgings.
The ingot for forging material in the present invention preferably has a dendrite secondary arm interval (DAS) of 30 μm or less in order to ensure high toughness of the Al alloy forging material. As a result, the crystal grains of the Al alloy ingot and the Al alloy forged material are refined, and Mg2Lower the total area ratio of Si and Al-Fe-Si- (Mn, Cr, Zr) system crystal precipitates and improve the toughness of Al alloy forgings. When the dendrite secondary arm interval (DAS) of the ingot is increased beyond 30 μm, the dendrite secondary arm interval (DAS) of the Al alloy forging material of the Japanese Patent Application Laid-Open No. 06-256880 is about 30 μm. Thus, when there is a part with a low processing rate from the ingot (when the ingot is only forged or when the ingot is extruded or rolled and forged after rolling), there is a part with a low Al alloy forging Toughness may not be improved.
[0034]
The forged material includes a case where the ingot is directly hot forged, and a case where the ingot is further subjected to hot forging by once extruding or rolling. Therefore, the shape of the ingot includes an ingot such as a round bar, a slab shape, or a near net shape close to a product shape, and is not particularly limited.
[0035]
  Chemical composition of Al alloy.
Next, the chemical component composition in the Al alloy of the present invention will be described. The Al alloy of the present invention needs to guarantee high durability such as high strength, high toughness, and high corrosion resistance for transportation equipment, structural materials, and parts for automobiles and ships.
[0036]
Therefore, the chemical composition of the Al alloy of the present invention corresponds to the component standard of the Al-Mg-Si JIS 6000 series Al alloy (JIS 6101, 6111, 6003, 6151, 6061, 6N01, 6063, etc.) Basically, Mg: 0.6 to 1.6%, Si: 0.6 to 1.8%, Cr: 0.1 to 0.2% and Zr: 0.1 to 0.2% of one or two, and Cu: 0.20% or less Mn: 0.05% or less, Fe: 0.30% or less, more preferably hydrogen: 0.25 cc / 100 g Al or less, respectively, and an Al alloy composed of the balance Al and unavoidable impurities.
[0037]
However, even if it does not comply with each component standard of JIS 6000 series Al alloy, as long as the above-mentioned characteristics are satisfied, other elements are added as appropriate in order to further improve characteristics and add other characteristics. Changes in the component composition such as are appropriately allowed. Impurities that are inevitably mixed from the melted raw material scrap and the like are allowed within a range that does not impair the quality of the forged material of the present invention.
[0038]
  Element amount of Al alloy.
Next, the critical significance and preferred range of the content of each element of the Al alloy material of the present invention will be described.
[0039]
  Mg: 0.6-1.8%.
  Mg is Mg with Si due to artificial aging2It is an element essential for precipitating as Si (β 'phase) and imparting high strength (yield strength) when the final product is used. If the Mg content is less than 0.6%, the age hardening amount decreases. On the other hand, if the content exceeds 1.8%, the strength (yield strength) becomes too high and the forgeability is impaired. In addition, a large amount of Mg during the quenching after solution treatment2Mg that is easy to precipitate and exists on grain boundaries2The average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates cannot be made 1.2 μm or less, and the average interval between these crystal precipitates cannot be made 3.0 μm or more. Therefore, the Mg content is in the range of 0.6 to 1.8%.
[0040]
  Si: 0.6-1.8%.
  Si, together with Mg, can be treated with artificial aging2It is an essential element for precipitating as Si (β 'phase) and giving high strength (proof strength) when the final product is used. If the Si content is less than 0.6%, sufficient strength cannot be obtained by artificial aging. On the other hand, if the content exceeds 1.8%, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment, and as described above, corrosion resistance and toughness are reduced. Also, excess Si is increased and Mg present on the grain boundary2The average particle size of Si and Al-Fe-Si- (Mn, Cr, Zr) system crystal precipitates is 1.2 μm or less, and the average interval between these crystal precipitates cannot be 3.0 μm or more, High corrosion resistance and high toughness cannot be obtained. Furthermore, workability is also hindered, for example, elongation becomes low. Therefore, the Si content is in the range of 0.6 to 1.8%, and within this range, it is preferable to reduce the excess Si as much as possible in relation to the Mg content.
[0041]
  One or two of Cr: 0.1-0.2% and Zr: 0.1-0.2%.
These elements are produced during homogenization heat treatment and subsequent hot forging.12Mg2Generates dispersed particles (dispersed phase) such as Cr, Al-Cr, and Al-Zr. Since these dispersed particles have an effect of hindering grain boundary movement after recrystallization, fine crystal grains and sub-crystal grains can be obtained. Among these elements, Zr deposits finer Al-Zr-based dispersed particles having a size of several tens to several hundreds angstroms than Al-Mn-based and Al-Cr-based dispersed particles. For this reason, in particular, Zr has a great effect of preventing the movement of crystal grain boundaries and sub-crystal grain boundaries, making crystal grains finer and sub-crystal grains, and improving effects such as fracture toughness and fatigue characteristics. If the content is too small, these effects cannot be expected.On the other hand, the excessive content of these elements is dissolved and coarse Al-Fe-Si- (Mn, Cr, Zr) based intermetallic compounds and Crystalline precipitates are easily generated, become a starting point of fracture, and cause deterioration in toughness and fatigue characteristics. Therefore, the total area ratio of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates cannot be 1.5% or less per unit area, preferably 1.0% or less. Fatigue properties cannot be obtained. Therefore, the contents of these elements are set to Cr: 0.1 to 0.2% and Zr: 0.1 to 0.2%, respectively.
[0042]
  Cu: 0.25% or less.
  Cu remarkably increases the susceptibility to stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging, and decreases the corrosion resistance and durability of the Al alloy forging. Accordingly, in the present invention, the Cu content is restricted as much as possible from this viewpoint. However, on the other hand, Cu contributes to improvement in strength by solid solution strengthening, and also has an effect of remarkably accelerating age hardening of the final product during aging treatment. In addition, when Cu content is reduced, it is necessary to use a high-purity ingot, and there also exists a problem which requires a casting cost. Therefore, Cu is allowed to contain up to 0.25%.
[0043]
  Mn: 0.05% or less.
  Mn produces Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates. For this reason, when the content of Mn is large, the average particle diameter of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates existing on the grain boundary, the average interval between the crystal precipitates, It becomes impossible to be in the range specified in. Therefore, in the present invention, the Mn content is regulated as low as possible from the viewpoint of ensuring the high strength, high toughness and high corrosion resistance of the Al alloy forged material. However, on the other hand, Mn, like Cr and Zr, is Al during homogenization heat treatment and subsequent hot forging.20Cu2MnThreeAl-Mn-based dispersed particles such as the above are produced, and this dispersed particle has an effect of preventing grain boundary movement after recrystallization and obtaining fine crystal grains. In addition, an increase in strength and Young's modulus due to solid solution can be expected. In addition, there is a problem that the casting cost is increased in order to reduce the Mn content. Therefore, Mn is allowed up to 0.05% or less.
[0044]
  Fe: 0.30% or less.
  Fe contained as an impurity in Al alloy is Al7Cu2Fe, Al12(Fe, Mn)ThreeCu2 , (Fe, Mn) Al6Alternatively, coarse Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates which are a problem in the present invention are formed. As described above, these crystal precipitates deteriorate the fracture toughness and fatigue characteristics. In particular, when the Fe content exceeds 0.30%, more strictly 0.25%, the total area ratio of Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates is 1.5% or less per unit area. Preferably, it cannot be made 1.0% or less, and higher strength and high toughness required for a structural material of a transport aircraft or the like cannot be obtained. Therefore, the Fe content is preferably 0.30% or less, more preferably 0.25% or less.
[0045]
Hydrogen: 0.25 cc / 100g Al or less.
Hydrogen (H2In particular, when the degree of work of the forged material becomes small, bubbles due to hydrogen are not pressure-bonded by forging or the like and become the starting point of fracture, so that the toughness and fatigue characteristics are remarkably lowered. And in the structural material etc. of the transport aircraft which strengthened, the influence by hydrogen is especially large. Therefore, the hydrogen content should be as low as possible below 0.25 cc / 100g Al.
[0046]
  Zn, Ti, B, Be, V etc.
  Zn, Ti, B, Be, V and the like are elements that are selectively contained depending on the purpose.
  Zn: 0.005 to 1.0%.
  Zn is MgZn during artificial aging.2Is deposited finely and densely to achieve high strength. In addition, Zn in solid solution lowers the potential in the grain, and the corrosion form is not from the grain boundary, but as an overall corrosion, and the effect of reducing the grain boundary corrosion and stress corrosion cracking can be expected. However, if the Zn content is less than 0.005%, sufficient strength cannot be obtained by artificial aging, and there is no effect of improving the corrosion resistance. On the other hand, if the content exceeds 1.0%, the corrosion resistance is remarkably lowered. Therefore, the Zn content is preferably in the range of 0.005 to 1.0%.
[0047]
  Ti: 0.001 to 0.1%.
  Ti is an element added to refine crystal grains of an ingot and improve workability during extrusion, rolling, and forging. However, if the Ti content is less than 0.001%, the effect of improving the workability cannot be obtained. On the other hand, if the Ti content exceeds 0.1%, coarse crystal precipitates are formed, and the workability is lowered. Therefore, the Ti content is preferably in the range of 0.001 to 0.1%.
[0048]
  B: 1 to 300 ppm.
  B, like Ti, is an element added to refine the ingot crystal grains and improve the workability during extrusion, rolling and forging. However, if the content of B is less than 1 ppm, this effect cannot be obtained. On the other hand, if it exceeds 300 ppm, coarse crystal precipitates are formed and the workability is lowered. Therefore, the B content is preferably in the range of 1 to 300 ppm.
[0049]
  Be: 0.1-100 ppm.
  Be is an element to be contained in order to prevent reoxidation of molten Al in the air. However, when the content is less than 0.1 ppm, this effect cannot be obtained. On the other hand, when the content exceeds 100 ppm, the material hardness increases and the workability is lowered. Therefore, the content of Be is preferably in the range of 0.1 to 100 ppm.
[0050]
  V: 0.15% or less.
  V, like Mn, Cr, Zr, etc., produces dispersed particles (dispersed phase) during the homogenization heat treatment and the subsequent hot forging. Since these dispersed particles have an effect of hindering the grain boundary movement after recrystallization, fine crystal grains can be obtained. However, an excessive content tends to generate coarse Al—Fe—Si—V intermetallic compounds and crystal precipitates during melting and casting, which becomes a starting point of fracture and reduces toughness. Therefore, when V is contained, the content is made 0.15% or less.
[0051]
  Manufacturing method of Al alloy forgings.
Next, the preferable manufacturing method of the Al alloy forging material in this invention is described. In the present invention, the Al alloy forging material itself can be manufactured by a conventional method. For example, when casting an Al alloy melt that has been adjusted to be dissolved within the Al alloy component range, for example, a normal melt casting such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), a hot top casting method, etc. The method is appropriately selected and cast.
[0052]
However, the average grain size of Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates existing on the grain boundaries and the average interval between crystal precipitates are refined and the crystal grains of the Al alloy ingot are refined. In order to make the range specified by the present invention, it is preferable to cast the Al alloy molten metal at a cooling rate of 10 ° C./sec or more to form an ingot. In addition, by setting the cooling rate of the ingot to 10 ° C./sec or more, the dendrite secondary arm interval (DAS) of the ingot can be set to 30 μm or less. On the other hand, if the cooling rate is slower than this, the average particle size of the Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates existing on the grain boundaries and the average interval between the crystal precipitates are determined in the present invention. The specified range may not be achieved, and the crystal grains may become coarse, and the dendrite secondary arm interval (DAS) of the ingot may not be 30 μm or less.
[0053]
Next, the homogenization heat treatment temperature of the Al alloy ingot (cast material) is preferably in the temperature range of 530 to 595 ° C. The normal homogenization heat treatment temperature of this kind of Al alloy cast material is about 500 to 520 ° C. In the present invention, as described above, in order to improve the corrosion resistance and toughness, the Al—Fe— Mg that exists on the grain boundaries of the microstructure of the forged material after sufficiently dissolving Si- (Mn, Cr, Zr) system crystal precipitates and tempering2The average grain size of Si and Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates should be 1.2 μm or less, and the average distance between these crystal precipitates should be 3.0 μm or more.
[0054]
For this purpose, the above-mentioned homogenization heat treatment at a high temperature of 530 to 595 ° C. is necessary. When the homogenization heat treatment temperature is less than 530 ° C., Al—Fe—Si— (Mn, Cr, Zr) crystal precipitates Mg does not dissolve sufficiently and exists on the grain boundaries of the forged structure after tempering treatment2It becomes difficult to make the average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates 1.2 μm or less and the average interval between these crystal precipitates 3.0 μm or more. On the other hand, when the homogenization heat treatment temperature exceeds 595 ° C., on the other hand, burning (melting damage) or the like occurs in the Al alloy ingot (cast material), and cracking is likely to occur during hot working. In addition, mechanical properties such as toughness and fatigue properties of the final forged material may be significantly reduced.
[0055]
After homogenization heat treatment, it is hot forged by mechanical forging or hydraulic forging, etc., and formed into an Al alloy forging material of the final product shape (near net shape). And after forging, T6 (artificial age hardening treatment to obtain maximum strength after solution treatment) to obtain the required strength, toughness and corrosion resistance, T7 (artificial age hardening treatment to obtain maximum strength after solution treatment) Excessive aging treatment exceeding conditions), T8 (artificial aging hardening treatment for obtaining maximum strength by performing cold working after solution treatment, and further appropriate treatment) and the like are appropriately performed. Moreover, an air furnace, an induction heating furnace, a nitrite furnace, etc. are suitably used for the homogenization heat treatment and the solution treatment. Furthermore, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used for the artificial age hardening treatment.
[0056]
In addition, in order to eliminate the cast structure remaining in the Al alloy forged material and to further improve the strength and toughness, the forging may be performed after the Al alloy ingot is subjected to homogenization heat treatment, followed by extrusion or rolling.
[0057]
【Example】
Next, examples of the present invention will be described. Al alloy ingots having the chemical composition shown in Table 1 (Al alloy cast materials, both of which are φ68 mm round bars) were cast at a cooling rate of 20 ° C./sec by the hot top casting method. This ingot was subjected to a homogenization heat treatment at a temperature of 550 ° C. for 8 hours, reheated to 400 ° C. and then hot forged by mechanical forging to produce a 20 mm thick plate-like Al alloy forging. Next, this aluminum alloy forging was heated at a heating rate of 300 ° C / hr using an air furnace, solution treated at 540 ° C for 1 hour, then water-cooled (water quenching), and then room temperature (20 to 20 ° C). After standing at 30 ° C. for 1 hour, aging treatment (T6 treatment) was performed at 175 ° C. for 8 hours. For the ingot of Comparative Example No. 11 in Table 2, the homogenization heat treatment temperature was set to a low value of 470 ° C.
[0058]
And each test piece was extract | collected from the said Al alloy forging material, and various investigations were performed. In order to clarify the direction of the test piece in each test, for the plate-like Al alloy forging material (test piece), the most elongated longitudinal direction of the plate is the L direction, the most compressed plate thickness direction is the ST direction, The plate width direction perpendicular to the L direction is referred to as the LT direction.
[0059]
   (Crystal precipitate on grain boundary)
The average diameter of the crystal precipitates present on the grain boundaries of the Al alloy forging structure and the average distance between the crystal precipitates were measured with a 400 × optical microscope. As described above, tensile stress is applied to the measurement surface in the plate thickness direction (corresponding to the ST direction) perpendicular to the forging line (L direction), and mechanical damage and fracture due to corrosion are likely to occur. The center part of the LT-ST surface of the forged material (surface that cuts the plate vertically) was used. And at this center part, it carried out by the average of the visual observation result of 20 measurement places visual field. These results are shown in Table 2.
[0060]
   (Intergranular corrosion test)
Next, each test piece was extracted from the Al alloy forged material, and a grain boundary corrosion test was conducted. The corrosion test surface of the test piece was the LT-ST surface for the same reason as the crystal precipitate measurement surface on the grain boundary (corrosion propagation direction was L direction). The intergranular corrosion test was conducted by the method described in Section 4.4.3 of the JIS W 1103 method, and the intergranular corrosion cracking property was evaluated. The intergranular corrosion test conditions were as follows: first immersed in an etching solution at 93 ° C (composition of 70% concentrated nitric acid 50ml, 48% hydrofluoric acid 5ml, distilled water 945ml), washed with distilled water and dried. Deform the specimen into a C-shaped ring (C-ring) with the LT-ST face as the back, and with stress applied, distill 30 ° C corrosion-promoting solution (NaCl 57g, 30% hydrogen peroxide solution 10ml) It was immersed in water diluted to 1 l) for 6 hours. And after immersing the cross-section test piece (cross section of the test piece) in an etching solution (a composition of 2.5 ml of 70% concentrated nitric acid, 1.5 ml of concentrated hydrochloric acid, 1.0 ml of 48% hydrofluoric acid, and 95.0 ml of distilled water) for 10 seconds, After washing with distilled water and drying, the corrosion state of the LT-ST surface was observed with a 200x metal microscope.
[0061]
In the observation of grain boundary corrosion, the corrosion progresses along the grain boundary in the microscope field, distinguishing it from other pitting corrosion and general corrosion, and corrosion that is typically judged as grain boundary corrosion occurs. Evaluated whether or not. These results are shown in Table 2 with × when the intergranular corrosion has occurred and ○ when the intergranular corrosion has not occurred.
[0062]
   (Stress corrosion cracking test)
Similarly, specimens of C-rings with the LT-ST face as the back were taken from each of the Al alloy forgings and subjected to stress corrosion cracking tests. Stress corrosion cracking test conditions were performed in accordance with the provisions of the alternate dipping method using ASTM G47 C-rings. The test conditions were as follows: The test piece was subjected to a 90-day alternate immersion cycle in which it was left in the atmosphere for 40 minutes after being immersed in an aqueous solution of NaCl at 3.5% and 30 ° C for 10 days with a stress of 75% of the proof stress in the LT direction. The presence or absence of occurrence of stress corrosion cracking on the piece was confirmed. These results are shown in Table 2 with x when stress corrosion cracking has occurred and ◯ when stress corrosion cracking has not occurred.
[0063]
   (Tensile test)
Furthermore, the tensile strength (σB, MPa), yield strength (σ0.2, MPa), elongation (δ,%), toughness = Charpy impact value (J / cm2) And other mechanical properties were measured. The longitudinal direction of the tensile test piece was the LT direction, and the tensile test piece was pulled in the LT direction. The longitudinal direction of the Charpy impact test was the LT direction, and the LT-ST surface was a fracture surface. These results are also shown in Table 2.
[0064]
As apparent from Table 2, Invention Examples Nos. 1 to 5 having a chemical composition within the scope of the present invention from No. 1 to No. 5 in Table 1 and subjected to homogenization heat treatment at a temperature of 550 ° C. for 8 hours are Present on grain boundaries in2The average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates was 1.2 μm or less, and the average distance between these crystal precipitates was 3.0 μm or more. Even when observing the morphology of Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates on the grain boundaries of these invention examples, the crystal precipitates are small and the crystal precipitates are spaced from each other. It was confirmed that it was open and finely dispersed.
[0065]
As a result, each inventive example has a yield strength (σ0.2) Average value of 300 MPa or more and Charpy impact value average value of 10 J / cm2As described above, high strength and high toughness are ensured. By the way, the other examples of No. 1 to No. 5 in Table 1 are the same under the other conditions, and the ones hot forged at a forging rate of 75%0.2) Average value of 350 MPa or more and Charpy impact value average value of 20 J / cm2The above was obtained.
[0066]
Furthermore, it can be seen that Invention Examples Nos. 1 to 5 are excellent in intergranular corrosion resistance and stress corrosion cracking resistance.
[0067]
On the other hand, as apparent from Tables 1 and 2, Comparative Example No. 6 (Cu alloy No. 6 in Table 1) whose Cu content deviated from the range of the present invention, Fe content deviated from the present invention range. Comparative example No. 7 (Al alloy of No. 7 in Table 1), Comparative example No. 8 (No. 8 Al alloy of Table 1) in which the Mn content deviated from the range of the present invention, and the hydrogen content of the present invention Comparative Example No. 9 out of the range (No. 9 Al alloy in Table 1), Comparative Example No. 10 in which the homogenization heat treatment temperature was out of the preferred range of the present invention (No. 10 in Table 1) (Al alloys) are all Mg present on the grain boundaries.2Si and Al-Fe-Si- (Mn, Cr, Zr) based crystal precipitates also have a large average particle size exceeding 1.2 μm or a small average interval of less than 3.0 μm. Then, when the morphology of the Al-Fe-Si- (Mn, Cr, Zr) system crystal precipitates of these comparative examples was observed in the same manner as the invention example, the crystal precipitates were relatively large and long connected. I was doing.
[0068]
As a result, first, the average tensile properties of the Al alloy forged material as a whole are the same as those of the invention examples except for Comparative Example No. 10, but the average value of the Charpy impact value is that of Invention Example No. 6. Except 10J / cm2Is less than. And these comparative examples are remarkably inferior to an invention example also in intergranular corrosion resistance and stress corrosion cracking resistance except comparative example No.9. Therefore, it can be seen that these comparative examples do not have any of tensile properties, Charpy impact value, and corrosion resistance. Therefore, it can be seen that these comparative examples cannot be used due to the problem of reliability as a structural material such as durability. It also shows the critical significance of the requirements of the organization of the present invention.
[0069]
[Table 1]
Figure 0003721020
[0070]
[Table 2]
Figure 0003721020
[0071]
【The invention's effect】
According to the present invention, an Al alloy forged material having high strength, high toughness, and excellent corrosion resistance can be provided. Therefore, it has a great industrial value in that the use of the Al—Mg—Si based Al alloy forging material for transportation equipment can be expanded.

Claims (8)

Mg:0.6〜1.8% (質量% 、以下同じ) 、Si:0.6〜1.8%を含み、更に、Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種または二種を含むとともに、Cu:0.25%以下、Mn:0.05%以下、Fe:0.30%以下、水素:0.25 cc/100g Al以下、に各々規制し、残部Alおよび不可避的不純物からなり、アルミニウム合金組織の粒界上に存在するMg2Si やAl-Fe-Si-(Mn、Cr、Zr) 系晶析出物の平均粒径を、鍛造材の鍛流線 L 方向に対して直角の板厚方向を ST 方向、前記L 方向と直角の板幅方向をLT方向とした際のLT-ST 面の中心部位における鍛造材の表面から中央部位までを20等分した各位置での測定箇所20視野の400 倍の光学顕微鏡または500 倍の走査型電子顕微鏡による目視観察または画像解析の結果の平均によって測定した際に、1.2 μm 以下とするとともに、これら晶析出物同士の平均間隔を3.0 μm 以上とすることを特徴とする耐食性に優れた高強度高靱性アルミニウム合金鍛造材。Mg: 0.6 to 1.8% (mass%, the same shall apply hereinafter), Si: 0.6 to 1.8%, Cr: 0.1 to 0.2% and Zr: 0.1 to 0.2%, including one or two kinds, Cu: 0.25 Mg 2 present on the grain boundaries of the aluminum alloy structure consisting of the balance Al and unavoidable impurities, each of which is controlled to not more than%, Mn: 0.05% or less, Fe: 0.30% or less, hydrogen: 0.25 cc / 100g Al or less. The average grain size of Si and Al-Fe-Si- (Mn, Cr, Zr) -based crystal precipitates is defined as the ST direction in the plate thickness direction perpendicular to the forging line L direction, and perpendicular to the L direction. When the plate width direction of the LT is the LT direction, the measurement location at each position of the center part of the forged material from the center part of the LT-ST surface divided into 20 parts is 400 times optical microscope or 500 times the 20 field of view. When measured by the average of the results of visual observation or image analysis with a scanning electron microscope, it is 1.2 μm or less, and the average interval between these crystal precipitates is 3.0 μm or more. High strength and high toughness aluminum alloy forging excellent in corrosion resistance to. 前記鍛造材が、アルミニウム合金鋳塊を530 〜 595℃の温度で均質化熱処理した後に、熱間鍛造して得られる請求項1に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to claim 1, wherein the forging material is obtained by subjecting an aluminum alloy ingot to homogenization heat treatment at a temperature of 530 to 595 ° C and then hot forging. 前記鍛造材が、T6、T7、T8で調質処理されて使用される請求項1または2に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to claim 1 or 2, wherein the forging material is used after being tempered at T6, T7, T8. 前記鍛造材が、デンドライト二次アーム間隔(DAS) が30μm 以下となるように鋳造した鋳塊を用いた請求項1乃至3の何れか1項に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy excellent in corrosion resistance according to any one of claims 1 to 3, wherein the forged material is an ingot cast so that a dendrite secondary arm interval (DAS) is 30 µm or less. Forging material. 前記鋳塊を押出或いは圧延により加工後に鍛造する請求項4に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to claim 4, wherein the ingot is forged after being processed by extrusion or rolling. 前記アルミニウム合金鍛造材が、鋳塊からの加工率が75% 未満の部位を有する請求項1乃至5の何れか1項に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to any one of claims 1 to 5, wherein the aluminum alloy forging material has a portion where the processing rate from the ingot is less than 75%. 前記アルミニウム合金鍛造材が鍛流線に対して直角方向に引張応力が付加されて使用される請求項1乃至6の何れか1項に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forging material excellent in corrosion resistance according to any one of claims 1 to 6, wherein the aluminum alloy forging material is used with a tensile stress applied in a direction perpendicular to the forging line. 前記アルミニウム合金鍛造材が輸送機の構造材用である請求項1乃至7の何れか1項に記載の耐食性に優れた高強度高靱性アルミニウム合金鍛造材。  The high-strength, high-toughness aluminum alloy forged material excellent in corrosion resistance according to any one of claims 1 to 7, wherein the aluminum alloy forged material is used for a structural material of a transportation machine.
JP28537299A 1999-10-06 1999-10-06 High strength, high toughness aluminum alloy forging with excellent corrosion resistance Expired - Lifetime JP3721020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28537299A JP3721020B2 (en) 1999-10-06 1999-10-06 High strength, high toughness aluminum alloy forging with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28537299A JP3721020B2 (en) 1999-10-06 1999-10-06 High strength, high toughness aluminum alloy forging with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2001107168A JP2001107168A (en) 2001-04-17
JP3721020B2 true JP3721020B2 (en) 2005-11-30

Family

ID=17690706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28537299A Expired - Lifetime JP3721020B2 (en) 1999-10-06 1999-10-06 High strength, high toughness aluminum alloy forging with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3721020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136670A (en) * 2018-08-21 2019-01-04 中南大学 A kind of 6XXX line aluminium alloy and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302728A (en) * 2001-04-09 2002-10-18 Hoei Kogyo Kk Aluminum alloy for casting and forging, aluminum cast and forged article, and production method therefor
US20040221931A1 (en) * 2002-09-09 2004-11-11 Asahi Tec Corporation Aluminum cast -forged product and method for manufacturing aluminum cast-forged product
CA2637273C (en) 2006-03-31 2014-02-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy forging member and method for producing the same
JP5180496B2 (en) 2007-03-14 2013-04-10 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5431233B2 (en) * 2010-03-31 2014-03-05 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5756091B2 (en) * 2010-04-16 2015-07-29 昭和電工株式会社 Method for producing aluminum alloy forged member
JP5698695B2 (en) 2012-03-30 2015-04-08 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5872443B2 (en) 2012-03-30 2016-03-01 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
WO2014170946A1 (en) * 2013-04-15 2014-10-23 日本軽金属株式会社 PRODUCTION METHOD FOR Al-Mg-Si-BASED ALUMINIUM ALLOY MEMBER FOR RESIN BONDING, AND Al-Mg-Si-BASED ALUMINIUM ALLOY MEMBER FOR RESIN BONDING OBTAINED USING SAID METHOD
WO2016129127A1 (en) 2015-02-10 2016-08-18 昭和電工株式会社 Aluminum alloy plastic worked article, method for manufacturing same, and automobile component
JP2017155251A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
SI24911A (en) 2016-03-04 2016-07-29 Impol 2000, d.d. High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136670A (en) * 2018-08-21 2019-01-04 中南大学 A kind of 6XXX line aluminium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2001107168A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
KR101148421B1 (en) Aluminum alloy forgings and process for production thereof
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
EP2811042B1 (en) ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
DE112015000499B4 (en) Method for producing a plastically deformed aluminum alloy product
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
WO2007114078A1 (en) Aluminum alloy forging member and process for producing the same
JP7182425B2 (en) Al-Mg-Si-based aluminum alloy extruded material and method for producing the same
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
US20150376742A1 (en) Aluminum alloy sheet for structural material
CA3085858A1 (en) 6xxx aluminium alloy extruded forging stock and method of manufacturing thereof
JPH0372147B2 (en)
JP7182435B2 (en) Al-Mg-Si based aluminum alloy extruded material
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP3921314B2 (en) Aluminum alloy cast material excellent in impact fracture strength and method for producing the same
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050909

R150 Certificate of patent or registration of utility model

Ref document number: 3721020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term