JP5756091B2 - Method for producing aluminum alloy forged member - Google Patents

Method for producing aluminum alloy forged member Download PDF

Info

Publication number
JP5756091B2
JP5756091B2 JP2012510709A JP2012510709A JP5756091B2 JP 5756091 B2 JP5756091 B2 JP 5756091B2 JP 2012510709 A JP2012510709 A JP 2012510709A JP 2012510709 A JP2012510709 A JP 2012510709A JP 5756091 B2 JP5756091 B2 JP 5756091B2
Authority
JP
Japan
Prior art keywords
forging
mass
forged
aluminum alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012510709A
Other languages
Japanese (ja)
Other versions
JPWO2011129431A1 (en
Inventor
英貴 竹村
英貴 竹村
寛秋 村上
寛秋 村上
隆文 中原
隆文 中原
美乃里 小林
美乃里 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012510709A priority Critical patent/JP5756091B2/en
Publication of JPWO2011129431A1 publication Critical patent/JPWO2011129431A1/en
Application granted granted Critical
Publication of JP5756091B2 publication Critical patent/JP5756091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7102Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8102Shaping by stamping
    • B60G2206/81022Shaping by stamping by forging

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Description

この発明は、アルミニウム合金製の鍛造素材を鍛造加工して鍛造部材を製造するようにしたアルミニウム合金鍛造部材の製造方法およびその関連技術に関する。   The present invention relates to a method for producing an aluminum alloy forged member produced by forging a forged material made of an aluminum alloy to produce a forged member, and a related technique.

軽量化等の観点から、自動車用足回り部材として、アルミニウム合金製の鍛造部材(鍛造品)が用いられる傾向が高くなっている。このような構造用アルミニウム合金鍛造部材の合金材料としては、Al−Mg−Si合金が多く使用されている。  From the viewpoint of weight reduction and the like, a tendency to use a forged member (forged product) made of an aluminum alloy as an undercarriage member for automobiles is increasing. Al-Mg-Si alloys are often used as alloy materials for such structural aluminum alloy forged members.

下記の非特許文献1に示すように、Al−Mg−Si合金として一般に用いられているJIS6061合金においては、鍛造時の加工性を優先して、素材温度を435〜480℃の比較的高温にして鍛造加工するのが通例である。   As shown in Non-Patent Document 1 below, in JIS6061 alloy, which is generally used as an Al—Mg—Si alloy, the material temperature is set to a relatively high temperature of 435 to 480 ° C., giving priority to workability during forging. It is customary to forge.

また下記の非特許文献2に示すように、近年においては、Al−Mg−Si合金の改良品として、鍛造加工時の再結晶を抑制することで強度を向上させた合金(以下「6000系高強度材」と称す)が開発されている。この合金では再結晶を避けるために一般の6061合金よりもさらに高温で鍛造加工を行うようにしている。   In addition, as shown in Non-Patent Document 2 below, as an improved Al-Mg-Si alloy in recent years, an alloy whose strength is improved by suppressing recrystallization during forging (hereinafter referred to as "6000 series high-strength"). "Strength material" has been developed. In order to avoid recrystallization, this alloy is forged at a higher temperature than a general 6061 alloy.

軽金属 Vol11、No.12、P741〜758「アルミニウムの鍛造」Light metal Vol11, No. 12, P741-758 “Forging of aluminum” 神戸製鋼技報Vol55、No.3「自動車サスペンション用高強度アルミニウム合金」Kobe Steel Engineering Reports Vol55, No. 3 "High-strength aluminum alloy for automobile suspension"

しかしながら、上記非特許文献1に示すように、JIS6061合金を435〜480℃で鍛造加工した場合、鍛造部材はその形状によって各部位毎に加工率が異なるため、各部位によって、組織状態が異なってしまう。例えば一つの鍛造部材の中に、未再結晶組織の部位、微細再結晶組織の部位および粗大再結晶組織の部位が混在するようになってしまう。このように各部位毎に組織状態が異なると、各部位毎に引張特性(引張強度)等の機械的特性(機械的強度)が異なり、機械的特性に大きなバラツキがある鍛造製品となってしまう。このため、鍛造製品として保証できる機械的特性値は、標準的な試験値よりも大幅に低い値に設定せざるを得ず、構造材として要求される機械的特性の保証値を満足させるには、部材の肉厚を厚くする必要がある。その結果、鍛造部材の高重量化を招き、所期の目的としての軽量化を阻害してしまう。   However, as shown in Non-Patent Document 1, when a JIS6061 alloy is forged at 435 to 480 ° C., the forging member has a different processing rate for each part depending on its shape, so that the structure state differs depending on each part. End up. For example, an unrecrystallized structure part, a fine recrystallized structure part, and a coarse recrystallized structure part are mixed in one forged member. Thus, if the structure state is different for each part, mechanical characteristics (mechanical strength) such as tensile characteristics (tensile strength) are different for each part, resulting in a forged product having a large variation in mechanical characteristics. . For this reason, the mechanical property value that can be guaranteed as a forged product must be set to a value that is significantly lower than the standard test value, and in order to satisfy the guaranteed value of the mechanical property required for structural materials. It is necessary to increase the thickness of the member. As a result, the weight of the forged member is increased, and the weight reduction as the intended purpose is hindered.

ここで本明細書において、未再結晶組織とは、鋳造加工時の結晶粒が維持された状態で、結晶粒界上に最終凝固部に生じる晶出物が存在する状態の組織である。   Here, in this specification, the non-recrystallized structure is a structure in a state where crystallized matter generated in the final solidified portion is present on the crystal grain boundary in a state where crystal grains at the time of casting are maintained.

さらに粗大再結晶組織とは、塑性加工によって加えられた歪を駆動力として再結晶が生じた状態で、再結晶後の結晶粒径が鋳造加工時の結晶粒径よりも大きくなった状態の組織である。   Furthermore, the coarse recrystallized structure is a state in which recrystallization occurs with the strain applied by plastic working as a driving force, and the crystal grain size after recrystallization is larger than the crystal grain size during casting. It is.

さらに微細再結晶組織とは、塑性加工によって加えられた歪を駆動力として再結晶が生じた状態で、再結晶後の結晶粒径が鋳造時の結晶粒径に対して同程度の大きさになるか、もしくは小さくなった状態の組織である。   Furthermore, the fine recrystallized structure is a state in which recrystallization occurs with the strain applied by plastic working as the driving force, and the crystal grain size after recrystallization is approximately the same as the crystal grain size during casting. It is an organization that has become or has become smaller.

一方、上記非特許文献2に示す6000系高強度材は、通常の鍛造加工では鍛造部材のほぼ全域で再結晶化を抑制することができ、各部位毎の機械的強度のバラツキも抑制することができる。しかしながら、軽量化を図るために薄肉形状の鍛造部材を形成しようとすると、鍛造加工率がより高くなる上さらに、薄肉部では鍛造加工時の鍛造素材からの放熱量も大きくなるため、鍛造素材の温度が低下し、再結晶しやすくなってしまう。このため、6000系高強度材においても、薄肉形状で加工率が高い鍛造部材を製造しようとすると、鍛造部材に、未再結晶組織、粗大再結晶組織および微細再結晶組織が混在し、部位毎に機械的特性が異なることとなり、この機械的特性のバラツキにより、優れた鍛造製品を得ることが困難となってしまう。その結果、6000系高強度材を用いても、上記JIS6061合金を用いる場合と同様に、軽量化を図ることが困難である。   On the other hand, the 6000 series high-strength material shown in Non-Patent Document 2 can suppress recrystallization in almost the entire area of the forged member in a normal forging process, and also suppress variation in mechanical strength at each part. Can do. However, if a thin-walled forged member is formed in order to reduce the weight, the forging rate will be higher, and the heat dissipation from the forging material during forging will also increase at the thin-walled portion. The temperature decreases and recrystallization easily occurs. For this reason, even in the 6000 series high-strength material, when trying to manufacture a forged member having a thin shape and a high processing rate, the forged member contains an unrecrystallized structure, a coarse recrystallized structure, and a fine recrystallized structure. Therefore, it becomes difficult to obtain an excellent forged product due to the variation in mechanical characteristics. As a result, even if a 6000 series high-strength material is used, it is difficult to reduce the weight as in the case of using the JIS6061 alloy.

本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。   The preferred embodiment of the present invention has been made in view of the above and / or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and / or apparatus.

この発明は、上記の課題に鑑みてなされたものであり、軽量化を図りつつ、部位毎の機械的特性のバラツキを小さくできる鍛造部材を製造することができるアルミニウム合金鍛造部材の製造方法およびその関連技術を提供することを目的とする。   The present invention has been made in view of the above problems, and a method for producing an aluminum alloy forged member capable of producing a forged member capable of reducing the variation in mechanical properties of each part while reducing the weight, and the method thereof The purpose is to provide related technology.

本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。   Other objects and advantages of the present invention will be apparent from the following preferred embodiments.

鍛造加工の技術分野においては、既述した通り、再結晶化を可及的に抑制して、鍛造部材の機械的特性を向上させるとこが技術常識となっている。このような技術背景の下、本発明者は、再結晶化の抑制とは異なる観点から、上記の課題を解決しようと試みた。   In the technical field of forging, as described above, it has become common technical knowledge to improve the mechanical characteristics of a forged member by suppressing recrystallization as much as possible. Under such a technical background, the present inventor tried to solve the above problem from a viewpoint different from the suppression of recrystallization.

そして、本発明者は実験、研究を行っていくうち、鍛造部材(鍛造製品)の各部位において、所定以上の領域を、微細再結晶組織状態とすることで、鍛造部材における各部位毎の機械的特性のバラツキを小さく抑えることができ、上記の課題を解決することができる、という知見を得た。   And while this inventor performs experiment and research, in each site | part of a forged member (forged product), the area | region more than predetermined is made into a fine recrystallized structure state, The machine for every site | part in a forged member It was found that the variation in the mechanical characteristics can be suppressed to a small value, and that the above problems can be solved.

さらに本発明者は、鍛造加工時における再結晶の発生挙動について、実験、研究を行ったところ、鍛造素材の合金組成および鍛造加工時の素材温度に基づいて、再結晶の発生挙動を制御できる、ということを見出した。   Furthermore, the present inventor conducted experiments and research on the generation behavior of recrystallization during forging, and can control the generation behavior of recrystallization based on the alloy composition of the forging material and the material temperature during forging. I found out.

そして本発明者は、鍛造加工において、再結晶の発生挙動を的確に制御して、鍛造部材における微細再結晶組織の領域を増大させることにより、上記の課題を解決可能な構成を見出し、本発明をなすに至った。   The inventor has found a configuration capable of solving the above-mentioned problems by accurately controlling the occurrence of recrystallization in the forging process and increasing the region of the fine recrystallization structure in the forged member. It came to make.

すなわち、本発明は、以下の手段を備えるものである。   That is, the present invention comprises the following means.

[1]Mgを0.35〜1.2質量%、Siを0.2〜1.3質量%、Cuを0.5質量%以下、Feを0.15質量%以上、Crを0.05質量%以上、Mnを0.05質量%以下含み、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金鍛造素材を準備しておき、
鍛造素材温度(℃)≦−260(℃)×[Fe、Cr、Mnの含有量合計(質量%)]+440(℃)の関係式を満たす温度条件で、前記アルミニウム合金素材に対し熱間鍛造を行うようにしたことを特徴とするアルミニウム合金鍛造部材の製造方法。
[1] 0.35 to 1.2% by mass of Mg, 0.2 to 1.3% by mass of Si, 0.5% by mass or less of Cu, 0.15% by mass or more of Fe and 0.05% of Cr Preparation of an aluminum alloy forging material having a composition comprising at least mass%, 0.05% by mass or less of Mn, and the balance consisting of Al and inevitable impurities,
Forging material temperature (° C.) ≦ −260 (° C.) × [total content of Fe, Cr, Mn (mass%)] + 440 (° C.) Hot forging with respect to the aluminum alloy material under the temperature condition satisfying the relational expression A method for producing an aluminum alloy forged member characterized by comprising the steps of:

[2]前記[Fe、Cr、Mnの含有量合計(質量%)]を0.5質量%以下に調整するものとした前項1に記載のアルミニウム合金鍛造部材の製造方法。   [2] The method for producing an aluminum alloy forged member as recited in the aforementioned Item 1, wherein the [total content of Fe, Cr, Mn (mass%)] is adjusted to 0.5 mass% or less.

[3]前記熱間鍛造を行う前に、製造予定の鍛造部材と、鍛造素材との形状に基づいて、各部位毎の相当歪を算出して、その各部位毎の相当歪を全て含む全体の相当歪の範囲を求めておき、
その全体の相当歪の範囲から、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報に基づき、鍛造素材温度の上限値を算出し、
その鍛造素材温度の上限値から、前記関係式に基づいて、前記Fe、Cr、Mnの含有量合計の上限を特定するようにした前項1または2に記載のアルミニウム合金鍛造部材の製造方法。
[3] Before performing the hot forging, the equivalent strain for each part is calculated based on the shape of the forged member to be manufactured and the forging material, and all the equivalent strain for each part is included. The equivalent distortion range of
From the entire equivalent strain range, based on the information for associating the forging material temperature prepared in advance and the equivalent strain range, the upper limit value of the forging material temperature is calculated,
3. The method for producing an aluminum alloy forged member according to item 1 or 2, wherein the upper limit of the total content of Fe, Cr, and Mn is specified from the upper limit value of the forging material temperature based on the relational expression.

[4]前記熱間鍛造を行う前に、鍛造素材の組成に基づき、前記Fe、Cr、Mnの含有量合計を算出し、その含有量合計から、前記関係式に基づいて、鍛造素材温度の上限値を求めておき、
その求めた鍛造素材温度の上限値から、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報に基づき、鍛造加工において許容される全体の相当歪の範囲を求め、
その許容される全体の相当歪の範囲内で、鍛造素材および鍛造部材の形状を設計するようにした前項1または2に記載のアルミニウム合金鍛造部材の製造方法。
[4] Before performing the hot forging, the total content of the Fe, Cr, Mn is calculated based on the composition of the forging material, and the forging material temperature is calculated from the total content based on the relational expression. Find the upper limit,
From the upper limit value of the obtained forging material temperature, based on information relating the forging material temperature prepared in advance and the range of the equivalent strain, the entire equivalent strain range allowed in the forging process is obtained,
3. The method for producing an aluminum alloy forged member according to item 1 or 2, wherein the forged material and the shape of the forged member are designed within the allowable range of equivalent strain.

[5]Mgを0.35〜1.2質量%、Siを0.2〜1.3質量%、Cuを0.5質量%以下、Feを0.15質量%以上、Crを0.05質量%以上(好ましくは0.15質量%以上)、Mnを0.05質量%以下含み、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金鍛造部材であって、
50%以上の領域が、微細再結晶組織の状態に調整されるとともに、250MPaを超える引張強度の値を備えたことを特徴とするアルミニウム合金鍛造部材。
[5] 0.35 to 1.2% by mass of Mg, 0.2 to 1.3% by mass of Si, 0.5% by mass or less of Cu, 0.15% by mass or more of Fe, and 0.05% of Cr An aluminum alloy forged member having a composition comprising at least mass% (preferably at least 0.15 mass%), 0.05 mass% or less of Mn, and the balance consisting of Al and inevitable impurities,
An aluminum alloy forged member characterized in that a region of 50% or more is adjusted to a state of a fine recrystallized structure and has a tensile strength value exceeding 250 MPa.

[6]各部位毎における50%以上の領域が、微細再結晶組織の状態に調整される前項5に記載のアルミニウム合金鍛造部材。   [6] The aluminum alloy forged member according to item 5 above, wherein a region of 50% or more in each part is adjusted to a state of a fine recrystallized structure.

[7]各部位毎の引張強度のバラツキが、塑性加工無しの状態の引張強度に対して±5%以内に調整される前項5または6に記載のアルミニウム合金鍛造部材。   [7] The aluminum alloy forged member according to item 5 or 6 above, wherein the variation in tensile strength at each part is adjusted within ± 5% with respect to the tensile strength without plastic working.

[8]前項1〜4のいずれか1項に記載の製造方法によって製造されたアルミニウム合金鍛造部材によって構成されることを特徴とする自動車用構造材。   [8] An automotive structural material comprising an aluminum alloy forged member manufactured by the manufacturing method according to any one of [1] to [4].

発明[1]のアルミニウム合金鍛造部材の製造方法によれば、鍛造加工時における再結晶の発生挙動を制御でき、所定の多くの領域が微細再結晶組織状態の鍛造部材を得ることができる。これにより軽量で機械的特性に優れた鍛造部材を得ることができる。   According to the method for producing an aluminum alloy forged member of the invention [1], the occurrence of recrystallization during forging can be controlled, and a forged member having a predetermined many regions in a fine recrystallized structure can be obtained. As a result, a forged member that is lightweight and excellent in mechanical properties can be obtained.

また本発明によれば、鍛造時の素材温度をあまり高温にする必要がないため、省エネルギー化を図ることができる。   Further, according to the present invention, it is not necessary to make the material temperature at the time of forging so high, so that energy saving can be achieved.

なお本発明は、例えば図1に示すような薄肉部と厚肉部とを有する特別な形状の鍛造部材10を製造する際に好適に用いることができる。   In addition, this invention can be used suitably when manufacturing the forge member 10 of the special shape which has a thin part and a thick part as shown, for example in FIG.

この鍛造部材10は、両端の筒状部13,13と、両筒状部13,13を連結する連結部14とを備えている。連結部14は肉盗み部15を有し、その肉盗み部15が周囲の厚肉部11よりも肉厚が小さい薄肉部12として構成されている。さらに筒状部13,13は、その周胴部が肉厚が小さい薄肉部12,12として構成されている。   The forged member 10 includes cylindrical portions 13 and 13 at both ends and a connecting portion 14 that connects both the cylindrical portions 13 and 13. The connecting portion 14 has a meat stealing portion 15, and the meat stealing portion 15 is configured as a thin portion 12 having a smaller thickness than the surrounding thick portion 11. Furthermore, the cylindrical parts 13 and 13 are comprised as the thin parts 12 and 12 where the surrounding body part has small thickness.

本発明においては例えば、薄肉部12の厚みが10mm以下、好ましくは10mm〜3mmであり、厚肉部11の厚さが薄肉部位の厚さの4倍以上、好ましくは4〜10倍に設定されているのが好ましい。さらに例えば図1の鍛造部材10を上方から見た平面視(片面視)の状態で、その平面全体の面積に対し薄肉部12が形成されている領域の面積の比率(%)が、20〜70%に設定されているのが好ましい。   In the present invention, for example, the thickness of the thin portion 12 is 10 mm or less, preferably 10 mm to 3 mm, and the thickness of the thick portion 11 is set to 4 times or more, preferably 4 to 10 times the thickness of the thin portion. It is preferable. Further, for example, in the state of plan view (single side view) when the forged member 10 of FIG. 1 is viewed from above, the ratio (%) of the area of the thin portion 12 to the area of the entire plane is 20 to 20%. It is preferably set to 70%.

中でも特に本発明は、厚さが10mm以下である薄肉部を有する形状で、その薄肉部において微細結晶組織領域が95%以上の自動車用構造材としての鍛造部材を好適に製造することができる。   In particular, the present invention can suitably produce a forged member as an automotive structural material having a thin portion having a thickness of 10 mm or less and having a fine crystal structure region of 95% or more in the thin portion.

そのような形状を有する鍛造部材によって構成される自動車部品としては、ウィッシュボーン構造のフロントサスペンションにおけるアッパーアーム、マルチリンク構造のリアサスペンションにおけるトーコントロールアームを挙げることができる。   Examples of the automobile parts constituted by the forged member having such a shape include an upper arm in a front suspension having a wishbone structure and a toe control arm in a rear suspension having a multi-link structure.

なお言うまでもなく、本発明は、これらの自動車部品や図1に示す形状に限定されるものではない。さらに本発明は、数値で示した上記の好適範囲に限定されるものでもない。  Needless to say, the present invention is not limited to these automobile parts and the shapes shown in FIG. Further, the present invention is not limited to the above-described preferred range indicated by numerical values.

発明[2]〜[4]のアルミニウム合金鍛造部材の製造方法によれば、上記の効果をより確実に得ることができる。   According to the method for producing an aluminum alloy forged member of the invention [2] to [4], the above effect can be obtained more reliably.

発明[5]のアルミニウム合金鍛造部材によれば、軽量で優れた機械的特性を備えるものである。   The aluminum alloy forged member of the invention [5] is lightweight and has excellent mechanical properties.

発明[6][7]のアルミニウム合金鍛造部材によれば、各部位毎の機械的特性のバラツキが小さいため、機械的特性をより一層向上させることができる。   According to the aluminum alloy forged member of the inventions [6] and [7], the mechanical properties can be further improved because the variation in mechanical properties of each part is small.

発明[8]の自動車用構造材によれば、軽量で優れた機械的特性を備えるものである。   The automobile structural material of the invention [8] is lightweight and has excellent mechanical properties.

図1はこの発明の製造方法によって製造可能な鍛造部材の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a forged member that can be manufactured by the manufacturing method of the present invention. 図2は鍛造部材の結晶組織状態を鍛造素材温度と相当歪との関係の下で示すグラフである。FIG. 2 is a graph showing the crystal structure state of the forged member under the relationship between the forging material temperature and the equivalent strain. 図3はこの発明の実施例における鍛造素材温度とFe、Cr、Mnの含有量合計との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the forging material temperature and the total content of Fe, Cr, and Mn in the examples of the present invention. 図4は鍛造加工における加工率と相当歪との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the processing rate and equivalent strain in forging. 図5はこの発明の実施形態である鍛造部材の製造手順を示すブロック図である。FIG. 5 is a block diagram showing a procedure for manufacturing a forged member according to an embodiment of the present invention. 図6はこの発明の実施例で使用された合金組成確認用のディスクサンプルを示す斜視図である。FIG. 6 is a perspective view showing a disk sample for confirming the alloy composition used in the embodiment of the present invention. 図7は鍛造部材における中心相当歪値(相対値)と微細再結晶領域範囲との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the center equivalent strain value (relative value) and the fine recrystallization region range in the forged member.

この発明の実施形態であるアルミニウム合金鍛造部材の製造方法において、鍛造素材としては、Al−Mg−Si合金製のものが用いられる。そして、本実施形態では、この鍛造素材の合金組成および鍛造素材の素材温度を特定することによって、上記の課題を解決可能な鍛造部材(鍛造製品)が得られるものである。  In the method for producing an aluminum alloy forged member according to an embodiment of the present invention, the forging material is made of an Al—Mg—Si alloy. And in this embodiment, the forge member (forged product) which can solve said subject is obtained by specifying the alloy composition of this forge raw material, and the raw material temperature of a forge raw material.

本実施形態において、鍛造素材は、Mgを0.35〜1.2質量%、Siを0.2〜1.3質量%、Cuを0.5質量%以下、Feを0.15質量%以上、Crを0.15質量%以上、Mnを0.05質量%以下含み、残部がAlおよび不可避不純物からなる合金組成を有している。   In this embodiment, the forging material is 0.35 to 1.2% by mass of Mg, 0.2 to 1.3% by mass of Si, 0.5% by mass or less of Cu, and 0.15% by mass or more of Fe. The alloy composition contains 0.15% by mass or more of Cr, 0.05% by mass or less of Mn, and the balance of Al and inevitable impurities.

本実施形態において、Mgは、Siと共存して、MgSi系析出物を形成し、鍛造部材(最終製品)の強度向上に寄与するため、含有させる必要がある。In the present embodiment, Mg coexists with Si to form an Mg 2 Si-based precipitate and contribute to improving the strength of the forged member (final product). Therefore, Mg needs to be contained.

Mgの含有量は、0.35〜1.2質量%に調整する必要があり、好ましくは0.8〜1.2質量%に調整するのが良い。   The Mg content needs to be adjusted to 0.35 to 1.2% by mass, preferably 0.8 to 1.2% by mass.

Mgの含有量が少な過ぎる場合には、析出物形成による強化の効果が少なくなるため、好ましくない。逆にMgの含有量が多過ぎる場合には、鍛造加工時の加工性(塑性加工性)を低下させるとともに、最終製品の靭性を低下させるため、好ましくない。   When the content of Mg is too small, the effect of strengthening due to the formation of precipitates is reduced, which is not preferable. On the other hand, when the content of Mg is too large, workability (plastic workability) during forging is reduced and the toughness of the final product is lowered, which is not preferable.

Siは、上記したように、Mgと共存して、MgSi系析出物を形成し、最終製品の強度向上に寄与するため、含有させる必要がある。As described above, Si coexists with Mg to form a Mg 2 Si-based precipitate and contribute to improving the strength of the final product. Therefore, Si needs to be contained.

Siの含有量は、0.2〜1.3質量%に調整する必要があり、好ましくは0.7〜0.9質量%に調整するのが良い。   The content of Si needs to be adjusted to 0.2 to 1.3% by mass, preferably 0.7 to 0.9% by mass.

Siの含有量が少な過ぎる場合には、析出物形成による強化の効果が少なくなるため、好ましくない。逆にSiの含有量が多過ぎる場合には、Siの粒界析出が多くなるため、粒界脆化が生じやすく、鋳塊の鍛造加工性および最終製品の靭性を低下させるおそれがある。なお、Siは、MgSi系析出物を生成するのに十分な量を超えて、過剰に添加することにより、時効処理後の最終製品の強度をさらに高めることができる。If the Si content is too small, the effect of strengthening due to the formation of precipitates is reduced, which is not preferable. On the other hand, when the Si content is too large, grain boundary precipitation of Si increases, so that grain boundary embrittlement is likely to occur, and there is a risk of reducing the forging processability of the ingot and the toughness of the final product. In addition, Si can further increase the strength of the final product after the aging treatment by adding an excessive amount exceeding the amount sufficient to produce Mg 2 Si-based precipitates.

Cuは、MgSi系析出物の見かけの過飽和量を増加させ、MgSi系析出物を増加させることにより、最終製品の時効硬化を著しく促進させるため、含有させるのが好ましい。Cu increases the supersaturation of apparent Mg 2 Si based precipitate, by increasing the Mg 2 Si based precipitate, in order to significantly accelerate the age hardening of a final product, preferably contained.

Cuの含有量は、0.5質量%以下に調整する必要があり、好ましくは0.3〜0.5質量%に調整するのが良い。   It is necessary to adjust the Cu content to 0.5% by mass or less, and preferably 0.3 to 0.5% by mass.

Cuの含有量が多過ぎる場合には、鍛造加工時の加工性および最終製品の靭性を低下させ、さらに耐食性を劣化させるため、好ましくない。   When there is too much content of Cu, since the workability at the time of a forging process and the toughness of a final product are reduced, and also corrosion resistance is deteriorated, it is not preferable.

ところで、本実施形態では、鍛造部材の各部位を、単なる再結晶組織ではなく、部位毎に50%以上(好ましくは全部)の領域を、微細再結晶組織状態とすることで鍛造部材の各部位の機械的特性のバラツキを十分に抑えることができる。   By the way, in this embodiment, each part of the forged member is not a simple recrystallized structure, but a region of 50% or more (preferably all) for each part is in a fine recrystallized state. It is possible to sufficiently suppress variations in mechanical properties.

さらに鍛造加工時における再結晶の発生挙動は、鍛造素材の成分と素材温度とを一定とした場合において、後述する相当歪量が少ないと未再結晶組織となり、相当歪量が多くなるに従って粗大再結晶組織となり、さらに相当歪量が多くなると微細再結晶組織という具合に変化するものである。   Furthermore, the behavior of recrystallization during forging is a non-recrystallized structure when the amount of equivalent strain described below is small, with the composition of the forging material and the material temperature being constant, and coarse recrystallization occurs as the amount of equivalent strain increases. A crystal structure is formed, and when the amount of considerable strain is further increased, a fine recrystallized structure is changed.

ここで未再結晶組織、粗大再結晶組織および微細再結晶組織については、上記[発明の概要]の欄で説明した通りであるが、さらに付け加えると以下の通りである。   Here, the non-recrystallized structure, the coarse recrystallized structure, and the fine recrystallized structure are as described in the above-mentioned [Summary of the Invention] section.

すなわち未再結晶組織とは、鋳造時の結晶組織から変化していない状態のことで、例えば、結晶平均粒径は50〜300μmである。   That is, the non-recrystallized structure is a state that is not changed from the crystal structure at the time of casting. For example, the average crystal grain size is 50 to 300 μm.

さらに粗大再結晶組織とは、再結晶後の結晶粒径が鋳造加工時の結晶粒径よりも大きくなった状態の組織である。例えば「再結晶後の結晶平均粒径」=M×「鋳造時の結晶平均粒径」(M=10〜100)と表すことができる
さらに微細再結晶組織とは、再結晶後の結晶粒径が鋳造加工時の結晶粒径よりも小さくなった状態の組織である。例えば「再結晶後の結晶平均粒径」=N×「鋳造時の結晶平均粒径」(N=0.05〜10)と表すことができる。
Furthermore, the coarse recrystallized structure is a structure in a state where the crystal grain size after recrystallization is larger than the crystal grain size at the time of casting. For example, it can be expressed as “average crystal grain size after recrystallization” = M × “average crystal grain size at casting” (M = 10 to 100). Further, the fine recrystallized structure is the crystal grain size after recrystallization. Is a structure in which the grain size is smaller than the crystal grain size during casting. For example, it can be expressed as “average crystal grain size after recrystallization” = N × “average crystal grain size during casting” (N = 0.05 to 10).

なお平均粒径は、従来の手法、例えば以下の手順によって、結晶組織を顕微鏡で観察した画像から切片法によって求めることができる。   The average particle diameter can be obtained by a section method from an image obtained by observing the crystal structure with a microscope by a conventional method, for example, the following procedure.

まず、鍛造加工品の断面組織のミクロ写真を倍率100倍で撮影し、この写真上で任意に縦および横の長さがそれぞれ「L1」および「L2」の直線を引く。   First, a microphotograph of the cross-sectional structure of the forged product is taken at a magnification of 100 times, and straight lines of “L1” and “L2” are drawn arbitrarily on the vertical and horizontal lengths on this photo, respectively.

次いで、「L1」および「L2」の長さの直線上を交差する形で存在する粒界の数を数えてそれぞれ「n1」および「n2」とし、下記数式(1)にて平均粒径を求め、これをミクロ写真から求めた結晶粒の平均粒径とする。平均粒径の大きさは、「L1」および「L2」の長さには依存しないで求めることができる。   Next, the number of grain boundaries existing in the form of intersecting the straight lines of the lengths “L1” and “L2” is counted as “n1” and “n2”, respectively, and the average particle diameter is calculated by the following mathematical formula (1). The average grain size of the crystal grains obtained from the microphotograph is obtained. The average particle size can be obtained without depending on the lengths of “L1” and “L2”.

平均粒径=(L1+L2)/(n1+n2)・・・数式(1)   Average particle size = (L1 + L2) / (n1 + n2) (1)

一方、鍛造部材において、相当歪量と鍛造加熱温度との関係における、鍛造部材の再結晶組織の状態は、図2のグラフに示す状態となっている。なお同図において、横軸は、相当歪を示し、縦軸は、鍛造加熱温度(鍛造素材温度)を示している。さらに図中の黒塗りの菱形印が未結晶組織状態を示し、黒塗りの丸印が粗大再結晶組織状態を示し、黒塗りの正方形印が微細再結晶組織状態を示している。   On the other hand, in the forged member, the state of the recrystallized structure of the forged member in the relationship between the equivalent strain amount and the forging heating temperature is the state shown in the graph of FIG. In the figure, the horizontal axis indicates the equivalent strain, and the vertical axis indicates the forging heating temperature (forging material temperature). Furthermore, black diamonds in the figure indicate an uncrystallized structure state, black circles indicate a coarse recrystallized structure state, and black square marks indicate a fine recrystallized structure state.

同図に示すように、相当歪値の範囲を仮定した時に、鍛造加熱温度が高い場合には、未再結晶状態の割合が多く、鍛造加熱温度が低くなるに従って、粗大再結晶状態の割合が増加し、さらに鍛造加熱温度が低くなると、微細再結晶状態の割合が増加している。つまり図の左上方から右下方に向けて未再結晶状態、粗大再結晶状態、微細再結晶状態と組織状態が変化している。さらに図2においては、粗大再結晶組織領域と微細再結晶組織領域の境界は、ほぼ直線(境界線E1)で表すことができ、境界線E1よりも左上の領域が未結晶組織領域および/または粗大再結晶組織領域となり、右下の領域が微細再結晶組織領域となっている。   As shown in the figure, when the range of the equivalent strain value is assumed, when the forging heating temperature is high, the proportion of the unrecrystallized state is large, and as the forging heating temperature is lowered, the proportion of the coarse recrystallized state is As the forging heating temperature increases and the forging heating temperature decreases, the proportion of the fine recrystallized state increases. That is, the non-recrystallized state, the coarse recrystallized state, the fine recrystallized state, and the texture state change from the upper left to the lower right in the figure. Further, in FIG. 2, the boundary between the coarse recrystallized structure region and the fine recrystallized structure region can be represented by a substantially straight line (boundary line E1), and the upper left region from the boundary line E1 is an amorphous structure region and / or It is a coarse recrystallized texture region, and the lower right region is a fine recrystallized texture region.

本発明においては、図2のグラフに基づいて、例えば、以下のように鍛造加工時の再結晶の発生挙動を制御して、鍛造部材における微細再結晶組織領域を50%以上、好ましくは90%以上に調整することができる。   In the present invention, based on the graph of FIG. 2, for example, the recrystallization occurrence behavior during forging is controlled as follows, and the fine recrystallized structure region in the forged member is 50% or more, preferably 90%. It can adjust to the above.

(1)鍛造素材から鍛造品形状に鍛造加工する際に各部位の加工率を求め、もしくは直接、各部位の相当歪を求め、そこから、鍛造素材に対する鍛造部材の全体としての加工率の範囲または相当歪の範囲K(図2参照)を求める。各部位の相当歪は後述するようにシミュレーションで求めることができる。なお、図4に示すように、加工率と相当歪とは単調増加の相関関係がある。参考までに、同図におけるグラフプロットの近似直線の直線式は、[y:加工率]=41.786×[x:相当歪]−1.3857で表される。   (1) When the forging material is forged into a forged product shape, the processing rate of each part is obtained, or the equivalent strain of each part is obtained directly, and from there, the range of the processing rate of the forged member as a whole with respect to the forging material Alternatively, the equivalent distortion range K (see FIG. 2) is obtained. The equivalent distortion of each part can be obtained by simulation as will be described later. As shown in FIG. 4, the processing rate and the equivalent strain have a monotonically increasing correlation. For reference, the linear equation of the approximate straight line of the graph plot in the figure is represented by [y: processing rate] = 41.786 × [x: equivalent strain] −1.3857.

(2)図2に示すように、鍛造素材温度を「Ta」としたときには、相当歪の全範囲Kで、境界線E1よりも左上の領域、つまり粗大再結晶組織領域となってしまう。   (2) As shown in FIG. 2, when the forging material temperature is set to “Ta”, the entire strain range K is an upper left region from the boundary line E1, that is, a coarse recrystallized structure region.

(3)鍛造素材温度を「Tb」まで下げると、相当歪の全範囲Kで、境界線E1よりも右下の領域、つまり微細再結晶組織領域とすることができる。   (3) When the forging material temperature is lowered to “Tb”, the region at the lower right of the boundary line E1, that is, the fine recrystallized structure region can be obtained in the entire range K of the equivalent strain.

(4)鍛造素材温度が例えば「Ta」から「Tb」の範囲内に設定したときには、その範囲内のいずれの温度であっても、相当歪の範囲Kでは境界線E1を跨ぐことになり、相当歪値の範囲が「K」である鍛造部材全体として見れば、粗大再結晶組織領域と微細再結晶組織領域とが混在する状態となる。   (4) When the forging material temperature is set, for example, within the range of “Ta” to “Tb”, the boundary line E1 is straddled in the equivalent strain range K at any temperature within the range. When viewed as the entire forged member having the equivalent strain value range of “K”, the coarse recrystallized structure region and the fine recrystallized structure region are mixed.

(5)例えば図2において、鍛造素材温度が「Ta」から「Tb」の範囲内の「Tc」に設定したとすると、その設定温度Tcでの鍛造部材における粗大再結晶組織領域と、微細再結晶組織領域との平均的な割合(比率)は、設定温度Tcでの相当歪の範囲Kにおいて、粗大再結晶組織領域の範囲Kaと、微細再結晶組織領域の範囲Kbとの比率(Kb/Ka)とほぼ等しくなる。従って所望の比率(Kb/Ka)から逆算して、鍛造素材温度を設定することができる。つまり所望の混在状態、例えば微細再結晶組織領域を50%にした状態の鍛造部材を得るには、相当歪の全範囲Kまたは加工率の全範囲において、所望の混在状態に対応する所望の比率(Kb/Ka)となるように、鍛造素材温度を設定すれば良い。   (5) For example, in FIG. 2, if the forging material temperature is set to “Tc” within the range of “Ta” to “Tb”, the coarse recrystallized structure region in the forged member at the set temperature Tc, The average ratio (ratio) to the crystal structure region is the ratio (Kb /%) between the coarse recrystallized structure region range Ka and the fine recrystallized structure region range Kb in the equivalent strain range K at the set temperature Tc. Approximately equal to Ka). Therefore, the forging material temperature can be set by calculating backward from the desired ratio (Kb / Ka). That is, in order to obtain a forged member in a desired mixed state, for example, a state in which the fine recrystallized structure region is 50%, a desired ratio corresponding to the desired mixed state in the entire range K of the equivalent strain or the entire range of the processing rate. What is necessary is just to set a forge raw material temperature so that it may become (Kb / Ka).

(6)具体的に説明すると、図2に示すように粗大再結晶組織領域と微細再結晶組織領域との境界線E1の直線式は、鍛造素材加熱温度[℃]=85.7×目標相当歪[%]+263.6で表すことができる。従って、相当歪の全範囲Kのうち、粗大再結晶組織領域の範囲Kaと、微細再結晶組織領域の範囲Kbとが所望の比率となる際の「Ka」と「Kb」の境界位置の相当歪値Kcを求め、その境界位置の相当歪値Kcを目標相当歪として、上記境界線E1の直線式に当てはめて鍛造素材加熱温度を算出し、その温度を鍛造加工時の鍛造素材温度として設定すれば良い。   (6) More specifically, as shown in FIG. 2, the linear equation of the boundary line E1 between the coarse recrystallized structure region and the fine recrystallized structure region is forging material heating temperature [° C.] = 85.7 × target equivalent It can be expressed as strain [%] + 263.6. Therefore, of the entire range K of the equivalent strain, the boundary position between “Ka” and “Kb” when the range Ka of the coarse recrystallized structure region and the range Kb of the fine recrystallized structure region have a desired ratio. The strain value Kc is obtained, the equivalent strain value Kc at the boundary position is set as the target equivalent strain, and the forging material heating temperature is calculated by applying it to the linear equation of the boundary line E1, and the temperature is set as the forging material temperature during forging. Just do it.

ここで、鍛造部材全体において相当歪値の分布が一様でなく偏りが大きい場合(例えば、一部分だけが加工率が高く、多くの他の部分の加工率が低い場合)には、例えば以下の手法(a)〜(c)に示すように、相当歪値の分布関数を使ってKa、Kbを補正してKcが所定の値となるように決めるのがより好ましい。   Here, when the distribution of the equivalent strain value is not uniform and the bias is large in the entire forged member (for example, when only one part has a high processing rate and many other parts have a low processing rate), for example, As shown in the methods (a) to (c), it is more preferable that Ka and Kb are corrected using a distribution function of equivalent strain values so that Kc becomes a predetermined value.

(a)鍛造部材全体の相当歪値の分布関数f(相当歪値)を求めておき、f(相当歪値)を最小値からKc値まで積分したものを「Ka」とし、f(相当歪値)をKc値から最大値まで積分したものを「Kb」としたときに、Kb/Kaが所望の値以上となるように、Kc値を決める。そのKc値から例えば上記境界線E1の直線式を用いて鍛造素材加熱温度を求めることができる。   (A) A distribution function f (equivalent strain value) of the equivalent strain value of the entire forged member is obtained, and f (equivalent strain value) is integrated from the minimum value to the Kc value as “Ka”, and f (equivalent strain) Kc value is determined so that Kb / Ka is equal to or greater than a desired value when “Kb” is obtained by integrating the value) from the Kc value to the maximum value. Forging raw material heating temperature can be calculated | required from the Kc value using the linear type | formula of the said boundary line E1, for example.

(b)分布が一様とみなせるか否か、精度が必要か否かなどにより補正の要不要を判断すればよい。ちなみに補正をしない場合は、分布関数f(相当歪値)=1であり、分布は一様となり前述の簡易型となる。   (B) The necessity of correction may be determined based on whether the distribution can be regarded as uniform or whether accuracy is required. Incidentally, when no correction is made, the distribution function f (equivalent distortion value) = 1, and the distribution becomes uniform and the above-described simplified type.

(c)また鍛造部材全体の相当歪の分布関数は、適当な箇所をサンプリングして相当歪値を求め、それから分布関数を求めてよい。   (C) The equivalent strain distribution function of the entire forged member may be obtained by sampling an appropriate portion to obtain an equivalent strain value, and then obtaining the distribution function.

以上のように補正して設計することで、領域の値の精度が向上するので好ましい。   It is preferable to design with correction as described above because the accuracy of the value of the region is improved.

また、図2のグラフの縦軸、横軸の値は、Fe、Cr、Mnの量が各々0.01質量%程度の僅かな差の範囲ではそのまま適応できるが、例えばMn量が0.1質量%増加した場合は、当該合金を用いて据込品を作成し、その断面をマクロ組織観察して、再結晶状態を観察することによって図2と同様なグラフを作成することができ、そのグラフを使って上述した設定の考え方を適用できる。   Further, the values of the vertical axis and the horizontal axis of the graph of FIG. 2 can be applied as they are within a slight difference range where the amounts of Fe, Cr, and Mn are about 0.01% by mass, respectively. When the mass% is increased, an upset product is created using the alloy, a cross-sectional macroscopic structure is observed, and a recrystallized state is observed to create a graph similar to FIG. The above-mentioned setting concept can be applied using a graph.

ところで、鍛造部材の各部位において、未再結晶組織、微細再結晶組織および粗大再結晶組織の混在状態が異なると、部位毎に機械的特性が異なることとなり、この機械的特性のバラツキにより、優れた鍛造製品を得ることが困難となる。   By the way, in each part of the forged member, if the mixed state of the non-recrystallized structure, the fine recrystallized structure and the coarse recrystallized structure is different, the mechanical characteristics will be different for each part. It becomes difficult to obtain a forged product.

従って、鍛造加工における鍛造素材全体において、再結晶の発生挙動を制御して、微細再結晶組織の領域を増大させることによって、各部位毎に機械的特性のバラツキが小さい鍛造部材を製造することが可能となる。   Therefore, it is possible to manufacture a forged member having a small variation in mechanical properties for each part by controlling the occurrence of recrystallization in the entire forging material in the forging process and increasing the region of the fine recrystallization structure. It becomes possible.

そこで本実施形態では、以下に説明するように、鍛造加工時における再結晶の発生挙動を制御して、所望の鍛造部材を製造するものである。   Therefore, in the present embodiment, as described below, a desired forged member is manufactured by controlling the generation behavior of recrystallization during forging.

まず、鍛造加工時における再結晶の発生挙動に大きく関与する成分(元素)として、Fe、Cr、Mnがある。Fe、Cr、Mnは、Al−Mg−Si合金製の鍛造素材において、その不可避不純物等として含有されている。   First, there are Fe, Cr, and Mn as components (elements) that are largely involved in the recrystallization occurrence behavior during forging. Fe, Cr, and Mn are contained as inevitable impurities in a forged material made of an Al—Mg—Si alloy.

本実施形態において、このFe、Cr、Mnの含有量が少ないと再結晶が生じ易くなる。よって、再結晶を促進させるために、Fe、Cr、Mnの含有量の合計(質量%)を0.5質量%以下に調整するのが良く、好ましくは0.3〜0.5質量%に調整するのが良い。   In this embodiment, when the content of Fe, Cr, and Mn is small, recrystallization easily occurs. Therefore, in order to promote recrystallization, the total content (% by mass) of Fe, Cr, and Mn should be adjusted to 0.5% by mass or less, preferably 0.3 to 0.5% by mass. It is good to adjust.

なお、不可避不純物として混入量が多い場合は、例えば、鋳造用溶湯にアルミニウムを追添加することで目的の範囲に調製できる。   In addition, when there is much mixing amount as an unavoidable impurity, it can adjust to the target range by adding aluminum to the molten metal for casting, for example.

また本実施形態においては、Feを0.15質量%以上に調整する必要があり、好ましくは0.2〜0.3質量%に調整するのが良い。   Moreover, in this embodiment, it is necessary to adjust Fe to 0.15 mass% or more, Preferably it is good to adjust to 0.2-0.3 mass%.

またCrを0.05質量%以上に調整する必要があり、好ましくは0.05〜0.2質量%に調整するのが良い。   Moreover, it is necessary to adjust Cr to 0.05 mass% or more, Preferably it is good to adjust to 0.05-0.2 mass%.

さらにMnを0.05質量%以下に調整する必要がある。なおMnは含有量が0%、つまりMnは含まれていなくとも良い。   Furthermore, it is necessary to adjust Mn to 0.05 mass% or less. Note that the content of Mn is 0%, that is, Mn may not be contained.

これらの各元素(Fe、Cr、Mn)の総和含有量が多過ぎる場合には、鍛造加工時の再結晶化が十分に進行せず、微細再結晶組織の領域を十分に確保できないことがあるため、好ましくない。   If the total content of these elements (Fe, Cr, Mn) is too large, recrystallization at the forging process does not proceed sufficiently, and the region of the fine recrystallized structure may not be sufficiently secured. Therefore, it is not preferable.

総和含有量が多過ぎて、0.5質量%を超えた添加量になると、Fe、Cr、Mnの量バランスによっては晶出物が生成してしまうために再結晶の生成への働きかけが不十分になり、単に靭性を損なうおそれが生じるので好ましくない。   If the total content is too large and the added amount exceeds 0.5% by mass, a crystallized product may be generated depending on the balance of Fe, Cr, and Mn, and this does not affect the action of recrystallization. This is not preferable because it may be sufficient and the toughness may be simply impaired.

従って、微細再結晶組織の領域を十分に確保するためには、含有量が0.5質量%以下であるのが好ましい。   Accordingly, in order to sufficiently secure the region of the fine recrystallized structure, the content is preferably 0.5% by mass or less.

また本実施形態では、後述の実施例から理解されるように、鍛造加工時における鍛造素材の素材温度(鍛造素材温度)に関して、以下の関係式を満足させる必要がある。   In the present embodiment, as will be understood from the examples described later, the following relational expression needs to be satisfied with respect to the material temperature of the forging material (forging material temperature) during forging.

鍛造素材温度(℃)≦−260(℃)×[Fe、Cr、Mnの含有量合計(質量%)]+440(℃)
すなわち鍛造素材温度を上記特定の範囲内に調整することによって、鍛造加工時に、再結晶の駆動力としての充分な歪が塑性加工時に導入され、再結晶化が十分に進行し、厚肉部においても好ましい微細再結晶組織状態の鍛造部材を確実に得ることが可能となる。
Forging material temperature (° C.) ≦ −260 (° C.) × [total content of Fe, Cr, Mn (mass%)] + 440 (° C.)
In other words, by adjusting the forging material temperature within the above specific range, sufficient strain as a driving force for recrystallization is introduced during plastic processing during forging, and recrystallization proceeds sufficiently, and in the thick part In addition, a forged member having a preferable fine recrystallized structure can be obtained with certainty.

従って、本実施形態においては、鍛造素材の素材温度をFe、Cr、Mnの含有量に応じた温度に設定して、鍛造素材を鍛造加工することにより、鍛造部材の全域において、微細な再結晶を生じさせることができ、各部位間で機械的特性のバラツキの少ない鍛造部材(鍛造製品)を製造することができる。   Therefore, in this embodiment, by setting the material temperature of the forging material to a temperature corresponding to the content of Fe, Cr, Mn and forging the forging material, fine recrystallization is performed throughout the forged member. Thus, a forged member (forged product) with less variation in mechanical properties between the respective parts can be produced.

次に、本発明の製造方法を実施するに際して、具体的な設計手順のいくつかの例を説明する。なお、以下に詳述するように本発明は、これらの設計手順に従って、予め決定された形状、組成、鍛造素材温度条件を用いる鍛造部材の製造方法である。   Next, some examples of specific design procedures will be described in carrying out the manufacturing method of the present invention. In addition, as described in detail below, the present invention is a method for manufacturing a forged member using a predetermined shape, composition, and forging material temperature condition in accordance with these design procedures.

<設計手順1>
設計手順1は、以下のステップS11〜S15を含むものであり、製品(鍛造部材)の形状からそれに最適な組成等を決定する場合の手順である。
<Design procedure 1>
The design procedure 1 includes the following steps S11 to S15, and is a procedure for determining an optimal composition and the like from the shape of the product (forged member).

ステップS11:使用する予定の鍛造素材と製造する予定の鍛造済品(鍛造部材)との各形状が与えられた時、各部位での相当歪を、鍛造素材形状から鍛造済品形状への成形過程をシミュレーションすることで求める。このシミュレーションで使用するソフトウエアとしては、例えば鍛造解析ソフト「DEFORM」を挙げることができる。   Step S11: When each shape of the forged material to be used and the forged product (forged member) to be manufactured is given, the equivalent strain at each part is formed from the forged material shape to the forged product shape. Obtained by simulating the process. An example of software used in this simulation is forging analysis software “DEFFORM”.

ステップS12:各部位の相当歪が全て含まれる相当歪の範囲、つまり鍛造部材全体での相当歪の範囲を求め、その範囲を図2上に相当歪の範囲として設定する。なお本発明においては、図2のグラフが、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報として用いられる。   Step S12: The equivalent strain range including all the equivalent strains of the respective parts, that is, the equivalent strain range of the entire forged member is obtained, and the range is set as the equivalent strain range on FIG. In the present invention, the graph of FIG. 2 is used as information associating the forging material temperature prepared in advance with the range of the equivalent strain.

ステップS13:設定した相当歪の範囲で成形品(鍛造部材)全体として所望の微細再結晶領域範囲の比率、例えば50%を設定し、その比率に相当する相当歪(目標相当歪)を図2のグラフに基づき決定し、その目標相当歪から図2のグラフに基づき鍛造加熱温度の上限値を求める。   Step S13: A ratio of a desired fine recrystallization region range, for example, 50%, is set for the entire molded product (forged member) within the set equivalent strain range, and the equivalent strain (target equivalent strain) corresponding to the ratio is set in FIG. The upper limit value of the forging heating temperature is obtained from the target equivalent strain based on the graph of FIG.

ステップS14:鍛造加熱温度の上限値が決まると、その温度から図3のグラフを用いて、(Fe、Cr、Mn)の総量の上限を求める。なお図3のグラフは、鍛造素材温度(鍛造加熱温度)とFe、Cr、Mnの含有量合計との関係を示すグラフであり、その詳細については後に説明する。  Step S14: When the upper limit value of the forging heating temperature is determined, the upper limit of the total amount of (Fe, Cr, Mn) is obtained from the temperature using the graph of FIG. The graph of FIG. 3 is a graph showing the relationship between the forging material temperature (forging heating temperature) and the total content of Fe, Cr, and Mn, and details thereof will be described later.

ステップS15:以上の手順によって、合金組成、鍛造素材温度条件が求められる。   Step S15: The alloy composition and the forging material temperature condition are obtained by the above procedure.

<設計手順2>
設計手順2は、以下のステップS21〜S25を含むものであり、組成からそれに最適な形状を決定する場合の手順である。
<Design procedure 2>
The design procedure 2 includes the following steps S21 to S25, and is a procedure for determining an optimum shape from the composition.

ステップS21:使用する材料が与えられた時、その材料の組成から(Fe、Cr、Mn)の総量を求める。   Step S21: When the material to be used is given, the total amount of (Fe, Cr, Mn) is obtained from the composition of the material.

ステップS22:図3のグラフを用いて、(Fe、Cr、Mn)の総量から鍛造素材温度の上限を求める。   Step S22: The upper limit of the forging material temperature is obtained from the total amount of (Fe, Cr, Mn) using the graph of FIG.

ステップS23:求めた鍛造素材温度の上限を、図2のグラフの縦軸の鍛造素材温度として設定する。なお本発明においては、図2のグラフが、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報として用いられる。   Step S23: The obtained upper limit of the forging material temperature is set as the forging material temperature on the vertical axis of the graph of FIG. In the present invention, the graph of FIG. 2 is used as information associating the forging material temperature prepared in advance with the range of the equivalent strain.

ステップS24:図2のグラフに基づき、設定した鍛造素材温度において、成形品(鍛造部材)全体としての所定の微細再結晶領域範囲、例えば50%を満足する相当歪の範囲を求め、その範囲を許容される相当歪範囲とする。具体的には、図2のグラフに基づき、設定した鍛造素材温度に対応した目標相当歪が求まり、その目標相当歪値から歪値小側、大側(図上では歪軸左右方向)に、Kb/Kaが例えば50%以上となるように相当歪の範囲(Ka、Kb)を求める。   Step S24: Based on the graph of FIG. 2, at the set forging material temperature, a predetermined fine recrystallization region range as a whole molded product (forged member), for example, an equivalent strain range satisfying 50% is obtained, and the range is determined. Allowable equivalent strain range. Specifically, based on the graph of FIG. 2, the target equivalent strain corresponding to the set forging material temperature is obtained, and from the target equivalent strain value to the strain value small side, the large side (the strain axis lateral direction in the figure), The equivalent strain range (Ka, Kb) is determined so that Kb / Ka is, for example, 50% or more.

ステップS25:鍛造素材および鍛造済(鍛造部材)の形状を、上記許容される相当歪範囲内で設計する。   Step S25: The forging material and the shape of the forged (forged member) are designed within the allowable equivalent strain range.

<設計手順3>
設計手順3は、設計手順1(ステップS11〜S15)に、さらに以下のステップS16〜S19)を含むものであり、設定手順1に微調整ループを付け加えたものである。
<Design procedure 3>
The design procedure 3 includes the following steps S16 to S19 in addition to the design procedure 1 (steps S11 to S15), and is obtained by adding a fine adjustment loop to the setting procedure 1.

ステップS11〜S15:上記設計手順1で説明した通りである。   Steps S11 to S15: As described in the design procedure 1 above.

ステップS16:ステップS11〜S15で求めた合金組成、鍛造素材温度条件を用いて製造した製品(鍛造部材)の再結晶状態をマクロ組織観察によって評価する。   Step S16: The recrystallized state of the product (forged member) manufactured using the alloy composition and the forging material temperature condition obtained in steps S11 to S15 is evaluated by macro structure observation.

ステップS17:得られた再結晶状態と鍛造荷重との関係を評価し、その評価結果に基づいて、所定の微細再結晶領域範囲(例えば50%)を確保できる鍛造荷重が、鍛造加工に使用する鍛造機の最大荷重能力値(好ましくは、最大荷重能力値の80%)よりも大きくする必要が生じる場合(微調整が必要な場合)は、ステップS14に戻って、Fe,Cr,Mnの総量が少なくなるように成分を再検討する。   Step S17: The relationship between the obtained recrystallization state and the forging load is evaluated, and a forging load that can secure a predetermined fine recrystallization region range (for example, 50%) is used for the forging process based on the evaluation result. If it is necessary to make the value larger than the maximum load capacity value of the forging machine (preferably 80% of the maximum load capacity value) (if fine adjustment is necessary), the process returns to step S14 and the total amount of Fe, Cr, Mn Review the ingredients so that there is less.

ステップS18:得られた再結晶状態と鍛造荷重との関係を評価し、その評価結果に基づいて、所定の微細再結晶領域範囲(例えば50%)を確保できる鍛造荷重が、鍛造加工に使用する鍛造機の最大荷重能力値(好ましくは、最大荷重能力値の80%)に対して余裕がある場合(微調整が必要な場合)は、ステップS13に戻って、鍛造温度が低くなるように鍛造素材温度を再検討する。   Step S18: The relationship between the obtained recrystallization state and the forging load is evaluated, and a forging load that can secure a predetermined fine recrystallization region range (for example, 50%) is used for the forging process based on the evaluation result. If there is a margin for the maximum load capacity value of the forging machine (preferably 80% of the maximum load capacity value) (if fine adjustment is required), the process returns to step S13 and the forging temperature is lowered. Review material temperature.

ステップS19:ステップS17,S18で微調整の必要がなければ、設定手順を終了する。   Step S19: If there is no need for fine adjustment in steps S17 and S18, the setting procedure is terminated.

なお、本実施形態において、鍛造素材温度の下限は、鍛造加工の成形時の荷重によって決定することが好ましい。例えば、鍛造時の素材温度を下げると成形時の荷重が上がるが、その荷重が鍛造機の最大荷重能力値(好ましくは最大荷重能力値の80%)に一致したときの素材温度を下限温度とすることができる。さらに好ましくは「(−260(℃)×[Fe、Cr、Mnの含有量合計(質量%)]+440(℃))−60℃」を素材温度の下限温度とすることが好ましい。   In the present embodiment, it is preferable that the lower limit of the forging material temperature is determined by a load at the time of forging forming. For example, lowering the material temperature during forging increases the load during molding, but the material temperature when the load matches the maximum load capacity value of the forging machine (preferably 80% of the maximum load capacity value) is the lower limit temperature. can do. More preferably, “(−260 (° C.) × [total content of Fe, Cr, Mn (mass%)] + 440 (° C.)) − 60 ° C.” is set as the lower limit temperature of the material temperature.

言うまでもなく、本実施形態においては、本発明の目的を達成可能な範囲内で、例えば再結晶の発生挙動に影響しない範囲内で、析出強化を目的等として、他の元素を添加するようにしても良い。   Needless to say, in the present embodiment, other elements are added for the purpose of precipitation strengthening within a range in which the object of the present invention can be achieved, for example, within a range not affecting the generation behavior of recrystallization. Also good.

ここで本実施形態において、相当歪量とは、鍛造加工率と同等の物理量εで定義される。既述したように相当歪量と鍛造加工率とは相関関係にあり、上記図4に示す通りである。具体的には、相当歪量=α×鍛造加工率+β(α:0.41〜0.42、β:1.2〜1.5)で表すことができる。   Here, in this embodiment, the equivalent strain amount is defined by a physical quantity ε equivalent to the forging rate. As described above, the equivalent strain amount and the forging rate are correlated, as shown in FIG. Specifically, it can be expressed by the equivalent strain amount = α × forging rate + β (α: 0.41-0.42, β: 1.2-1.5).

そしてこの相当歪量「ε」は、以下の関係式に基づいて求めることができる。   The equivalent strain amount “ε” can be obtained based on the following relational expression.

dε=[(2/9){(dε−dε+(dε−dε+(dε−dε+(3/2)(dγxy +dγyz +dγzx )}]1/2
ε=∫dε(履歴に沿う積分)
ただし、
ε:X方向の伸縮歪
ε:Y方向の伸縮歪
ε:Z方向の伸縮歪
γxy:XY面内でのせん断歪
γyz:YZ面内でのせん断歪
γzx:ZX面内でのせん断歪
dε = [(2/9) {(dε x −dε y ) 2 + (dε y −dε z ) 2 + (dε z −dε x ) 2 + (3/2) (dγ xy 2 + dγ yz 2 + dγ zx 2 )}] 1/2
ε = ∫dε (integral along history)
However,
ε x : stretch strain in X direction ε y : stretch strain in Y direction ε z : stretch strain in Z direction γ xy : shear strain in XY plane γ yz : shear strain in YZ plane γ zx : in ZX plane Shear strain at

なお、相当歪に関する参考文献としては「株式会社コロナ社発行社団法人日本塑性加工学会編『塑性加工便覧』P1077」を例示することができる。   As a reference for the equivalent strain, “Corporation Processing Handbook” P1077 edited by the Japan Society for Technology of Plasticity “P1077” can be exemplified.

本実施形態において、実際の鍛造素材温度を、上記特有の素材温度条件(目標とする鍛造素材温度)に設定するには、以下の(1)〜(4)の処理を順次行う方法を好適に採用することができる。   In this embodiment, in order to set the actual forging material temperature to the above-mentioned specific material temperature condition (target forging material temperature), a method of sequentially performing the following processes (1) to (4) is preferable. Can be adopted.

(1)鍛造素材を加熱炉から取り出した時の温度低下速度を求める(温度低下速度算出処理)。   (1) The temperature decrease rate when the forging material is taken out from the heating furnace is determined (temperature decrease rate calculation process).

(2)目標の鍛造素材温度まで加熱された鍛造素材を加熱炉から取り出して鍛造加工するまでの時間と、上記温度低下速度算出処理で算出した温度低下速度とに基づいて、鍛造素材を加熱炉から取り出して鍛造加工するまでの温度低下幅を求める(温度低下幅算出処理)。   (2) The forging material is heated in the heating furnace based on the time until the forging material heated to the target forging material temperature is taken out of the heating furnace and forged, and the temperature reduction rate calculated in the temperature reduction rate calculation process. The temperature drop width from when it is taken out to forging is obtained (temperature drop width calculation process).

(3)鍛造素材を鍛造金型に投入する際に、鍛造素材に対し、実際の鍛造素材温度に上記温度低下幅算出処理で算出した温度低下幅を加えた温度にて予備加熱処理を施す(予備加熱処理)。   (3) When the forging material is put into the forging die, the forging material is preheated at a temperature obtained by adding the temperature reduction width calculated in the temperature reduction width calculation process to the actual forging material temperature ( Preheating treatment).

(4)鍛造加工時の温度低下を防ぐため、鍛造金型に加熱装置を設けて加熱する(金型による加熱処理)。この金型温度はなるべく、目標とする鍛造素材温度に近い温度にするのが望ましいが、あまりに高い温度になると、鍛造加工時の潤滑剤の効果が損なわれるため、使用する潤滑剤の仕様温度範囲の上限にあわせて設定するようにすれば良い。   (4) In order to prevent a temperature drop during forging, a forging die is heated by being provided with a heating device (heat treatment by the die). It is desirable to set the mold temperature as close to the target forging material temperature as possible. However, if the temperature is too high, the effect of the lubricant during forging will be impaired, so the specified temperature range of the lubricant used. It should be set according to the upper limit of.

なお本実施形態においては、上記(1)〜(4)の全ての処理を必ずしも行う必要はなく、鍛造素材の温度が前述した関係式を満たすように適宜組み合わせることができる。例えば上記(4)の処理を省略して上記(1)〜(3)の処理を順次行うようにしたり、上記(3)の処理を省略して上記(1)(2)(4)の処理を順次行うようにしても良い。   In the present embodiment, it is not always necessary to perform all the processes (1) to (4), and the forging materials can be appropriately combined so as to satisfy the above-described relational expression. For example, the process (1) to (3) may be sequentially performed by omitting the process (4), or the process (1), (2), and (4) may be performed by omitting the process (3). May be performed sequentially.

図5に例示するように、本実施形態の鍛造部材の製造方法においては、鋳造工程、均熱処理工程、鍛造加工工程(熱間鍛造工程)および鍛造後処理工程がこの順で行われて、鍛造部材(鍛造製品)が製造されるものである。   As illustrated in FIG. 5, in the method for manufacturing a forged member of the present embodiment, a casting process, a soaking process, a forging process (hot forging process), and a post-forging process are performed in this order, and forging is performed. A member (forged product) is manufactured.

鋳造工程は、鍛造素材を得るための工程である。すなわち本実施形態において、上記の組成からなる鍛造素材は、連続鋳造法によって得られる。連続鋳造法としては、ホットトップ垂直連続鋳造法、気体加圧式ホットトップ垂直連続鋳造法、水平連続鋳造法等の鋳造法を好適に用いることができる。鋳造速度は鋳塊われを生じない範囲でなるべく早い速度(例えば200〜1000mm/分)とするのが鋳塊組織の微細化の点から好ましい。   The casting process is a process for obtaining a forged material. That is, in this embodiment, the forging material which consists of said composition is obtained by the continuous casting method. As the continuous casting method, a casting method such as a hot top vertical continuous casting method, a gas pressure type hot top vertical continuous casting method, a horizontal continuous casting method, or the like can be suitably used. The casting speed is preferably as high as possible (for example, 200 to 1000 mm / min) within a range in which ingot breakage does not occur from the viewpoint of refinement of the ingot structure.

均熱処理工程では、鍛造素材としての鋳造棒に対し均熱処理を施す。すなわち鋳造工程で得られた鋳造棒は、ミクロ偏析の除去、および再結晶時に結晶粒界の移動を防止して微細再結晶組織状態を維持するため、Fe−Cr−Mn系の析出物を粗大化させることを目的として、均熱処理が施されるものである。この均熱処理条件は、鋳造棒を例えば570〜550℃で4〜10時間保持するものである。   In the soaking process, soaking is performed on the casting rod as the forging material. In other words, the cast rod obtained in the casting process has a coarse Fe-Cr-Mn precipitate in order to remove microsegregation and prevent the movement of grain boundaries during recrystallization and maintain a fine recrystallized structure. A soaking process is performed for the purpose of achieving the above. The soaking condition is to hold the cast bar at, for example, 570 to 550 ° C. for 4 to 10 hours.

鍛造加工工程では、上述した素材成分や温度条件等の本願特有の条件以外は、従来からの公知の鍛造条件で、公知の鍛造装置(鍛造機)を用いて鍛造成形(加工)することができる。   In the forging process, forging (processing) can be performed using a known forging apparatus (forging machine) under known forging conditions from the past, except for the conditions specific to the present application such as the material components and temperature conditions described above. .

なお鍛造素材は、鍛造装置の金型に投入する前に、必要に応じて、外周切削、所定長への切断処理が施される。さらに鍛造素材や、鍛造金型には必要に応じて、潤滑剤塗布処理が施される。   The forging material is subjected to peripheral cutting and cutting processing to a predetermined length, if necessary, before being put into a die of a forging device. Further, the forging material and the forging die are subjected to a lubricant coating treatment as necessary.

鍛造後処理工程では、必要に応じ、例えば強度向上等を目的として、溶体化処理、焼入れ処理、時効処理を施すことも可能である。溶体化処理条件は、鍛造部材(鍛造済品)を525〜570℃、例えば560℃で、鍛造部材が目標温度に到達した後、0.5〜3時間、例えば4時間保持するものである。焼入れ処理条件は、鍛造部材を、例えば60℃の温水焼入れとするものである。この焼入れ条件においては、特性向上のためにはなるべく低温(5〜25℃)にし、歪防止のためにはなるべく高温(40〜70℃)にするのが良い。時効処理条件は、鍛造部材を175〜185℃の温度で、5.5〜6.5時間保持する。例えば鍛造部材を、180℃で、6時間保持するものである。   In the post-forging treatment step, solution treatment, quenching treatment, and aging treatment can be performed as necessary, for example, for the purpose of improving strength. The solution treatment conditions are to hold the forged member (forged product) at 525 to 570 ° C., for example, 560 ° C., and for 0.5 to 3 hours, for example, 4 hours after the forged member reaches the target temperature. The quenching treatment conditions are such that the forged member is hot-quenched at 60 ° C., for example. Under these quenching conditions, the temperature should be as low as possible (5 to 25 ° C.) for improving the characteristics, and as high as possible (40 to 70 ° C.) for preventing distortion. Aging treatment conditions hold | maintain a forged member at the temperature of 175-185 degreeC for 5.5 to 6.5 hours. For example, the forged member is held at 180 ° C. for 6 hours.

本実施形態において、これらの工程を経て得られる鍛造部材(鍛造製品)は、各部位の相当歪量に依存した再結晶組織状態になっているが、各部位における相当歪において少なくとも50%以上の領域が微細再結晶組織状態となっている。50%以上の領域が微細再結晶組織状態となっているため、各部位毎において、塑性加工率の差に対する機械特性、特に引張り特性のバラツキが少なく、耐食性に優れた構造用アルミニウム合金鍛造部材となる。なお本実施形態によって得られる鍛造部材は、引張強度の値が、好ましいとされる250MPaを超えるものである。その理由は、各部位での微細再結晶領域が50%以上であると、粗大再結晶領域の結晶粒もある程度は微細化されているので粗大再結晶粒領域の強度の低下も少なく、部材断面全体としての機械的強度の向上が図られているからである。   In this embodiment, the forged member (forged product) obtained through these steps is in a recrystallized structure state depending on the amount of equivalent strain at each part, but at least 50% or more in the equivalent strain at each part. The region is in a fine recrystallized state. Since the region of 50% or more is in the state of fine recrystallized structure, for each part, there is little variation in the mechanical properties, especially the tensile properties with respect to the difference in the plastic working rate, and the structural aluminum alloy forged member with excellent corrosion resistance Become. The forged member obtained by the present embodiment has a tensile strength value exceeding 250 MPa, which is considered preferable. The reason is that if the fine recrystallization region in each part is 50% or more, the crystal grains in the coarse recrystallized region are also refined to some extent, so that the strength of the coarse recrystallized grain region is hardly reduced, and the member cross section This is because the mechanical strength as a whole is improved.

本実施形態によって製造されるアルミニウム合金鍛造部材は、小型軽量である上、機械的特性および耐食性に優れているため、耐食性に優れた高強度軽量化構造材とすることができる。従って本発明により得られるアルミニウム合金鍛造部材は、特に自動車用の構造材、例えば自動車用足回り部材、自動車用フレーム部材、自動車用バンパー部材、自動車用操舵部材、オートバイ用フレーム部材、オートバイ用操舵部材、自転車用フレーム部材、自転車用操舵部材、自転車用クランク部材等に好適に採用することができる。   The aluminum alloy forged member produced according to the present embodiment is small and light, and is excellent in mechanical properties and corrosion resistance. Therefore, it can be a high-strength and lightweight structural material excellent in corrosion resistance. Therefore, the aluminum alloy forged member obtained by the present invention is a structural material for automobiles, for example, an automobile underbody member, an automobile frame member, an automobile bumper member, an automobile steering member, a motorcycle frame member, and a motorcycle steering member. It can be suitably employed for bicycle frame members, bicycle steering members, bicycle crank members, and the like.

そして本発明による鍛造部材を自動車用構造材に適用した場合には、それが搭載される車両の運動性能および環境性能を向上させることが可能となる。   And when the forge member by this invention is applied to the structural material for motor vehicles, it becomes possible to improve the exercise | movement performance and environmental performance of the vehicle in which it is mounted.

Figure 0005756091
Figure 0005756091

Figure 0005756091
Figure 0005756091

表1に示すように所定の金属を添加したアルミニウム合金溶湯を、ホットトップ鋳造機を用いて、直径55mmの丸棒を連続鋳造して、実施例1〜8および比較例1〜10のAl合金組成に対応した連続鋳造丸棒をそれぞれ作製した。鋳造速度は400mm/分とした。   As shown in Table 1, a molten aluminum alloy to which a predetermined metal was added was used to continuously cast a round bar having a diameter of 55 mm using a hot top casting machine, and Al alloys of Examples 1 to 8 and Comparative Examples 1 to 10 Continuous cast round bars corresponding to the composition were prepared. The casting speed was 400 mm / min.

なお連続鋳造を開始する前には、各アルミニウム合金溶湯を金型に鋳込んで、図6に示すような形状のディスクサンプルを採取し、JIS H 1305に準拠して発光分光分析により各成分をそれぞれ分析し、各連続鋳造丸棒に対応するディスクサンプルの合金組成をそれぞれ確認した。   Before starting continuous casting, each aluminum alloy molten metal is cast into a mold, a disk sample having a shape as shown in FIG. 6 is taken, and each component is analyzed by emission spectroscopic analysis in accordance with JIS H 1305. Each was analyzed, and the alloy composition of the disk sample corresponding to each continuously cast round bar was confirmed.

その後、連続鋳造によって得られた丸棒を定尺に切断し、560℃で7時間の均質化処理を施した。そして、均質化処理後の連続鋳造丸棒を直径50mmになるように外周切削して、60mmの長さに切断して丸棒状の鍛造素材を作製した。   Thereafter, the round bar obtained by continuous casting was cut into a standard length and subjected to a homogenization treatment at 560 ° C. for 7 hours. The outer periphery of the continuous cast round bar after the homogenization treatment was cut to a diameter of 50 mm and cut to a length of 60 mm to produce a round bar-like forging material.

こうして得られた丸棒状の鍛造素材を、表1に記載された鍛造素材温度で予備加熱した後、従来の鍛造機、例えばナックルジョイントプレス装置を用いて、鍛造加工を行った。このとき表2に示すように、丸棒側面方向から、中心部の相当歪が、0(据込無し)、0.67、1.33、1.67、2.00、4.00となるように、据え込み後の厚さを変えて据え込んだ。これらの据込品に、540℃で4時間の溶体化処理後、60℃の温水に焼入れ処理を行い、180℃で5時間の時効処理を行った。その後、その据込品を空冷して、各実施例1〜8および各比較例1〜10の鍛造部材(試料)を得た。   The round bar-shaped forging material thus obtained was preheated at the forging material temperature described in Table 1, and then forged using a conventional forging machine, for example, a knuckle joint press device. At this time, as shown in Table 2, from the side of the round bar, the equivalent strain at the center is 0 (no upset), 0.67, 1.33, 1.67, 2.00, 4.00. In this way, the thickness after installation was changed. These upset products were subjected to a solution treatment at 540 ° C. for 4 hours, followed by quenching in warm water at 60 ° C., and an aging treatment at 180 ° C. for 5 hours. Thereafter, the upsetting product was air-cooled to obtain forged members (samples) of Examples 1 to 8 and Comparative Examples 1 to 10.

なお、相当歪量については、上記据え込み工程と同じ工程をシミュレーションすることで算出した。このとき加工率は、それぞれ0、25、50、75、80、95%となる。なお加工率は、以下で定義される。   The equivalent strain amount was calculated by simulating the same process as the upsetting process. At this time, the processing rates are 0, 25, 50, 75, 80, and 95%, respectively. The processing rate is defined below.

[加工率]=(据込前素材高さ−据込後素材高さ)/据込前素材高さ×100
上記のようにして得られた各試料について、元々の素材長手方向に平行な方向からJIS14A比例試験片を採取し、引張強度を測定した。
[Processing rate] = (Material height before installation−Material height after installation) / Material height before installation × 100
About each sample obtained as mentioned above, the JIS14A proportional test piece was extract | collected from the direction parallel to the original raw material longitudinal direction, and the tensile strength was measured.

そして、相当歪が0の試験片の引張強度に対して、引張強度の値が±5%以内のものを本発明の効果として引張強度のバラツキが少ないと判定した。その判定の根拠は、引張強度の値が±5%以内のバラツキは、本発明の要因(微細再結晶領域)以外の要因で発生していると考えたからである。   And it was determined that there was little variation in tensile strength as an effect of the present invention when the tensile strength value was within ± 5% with respect to the tensile strength of the test piece with equivalent strain of 0. The reason for the determination is that it was considered that the variation in the tensile strength value within ± 5% was caused by factors other than the factor of the present invention (fine recrystallization region).

これらの引張試験の結果を表2に示す。   The results of these tensile tests are shown in Table 2.

実施例1〜8の試料については、本発明の要件を全て満たしているため、引張強度について、優れた特性が得られ、引張強度のバラツキも少なかった。   About the sample of Examples 1-8, since all the requirements of this invention were satisfy | filled, the outstanding characteristic was acquired about tensile strength, and there were also few variations in tensile strength.

これに対し、比較例1〜10の試料については、本発明の鍛造素材温度条件、つまり[鍛造温度(℃)]≦−260×[Fe,Cr,Mnの含有量合計(質量%)]+440の条件を満たしていないため、相当歪が0.67〜4.00までの全部または一部において、粗大再結晶を生じ、引張強度にバラツキが発生していた。   On the other hand, for the samples of Comparative Examples 1 to 10, the forging material temperature condition of the present invention, that is, [forging temperature (° C.)] ≦ −260 × [total content of Fe, Cr, Mn (mass%)] + 440 Since this condition was not satisfied, coarse recrystallization occurred in all or part of the equivalent strain from 0.67 to 4.00, and variations in tensile strength occurred.

また実施例1〜8および比較例1〜10の各試料について、組織状態を次のように観察した。   Moreover, about each sample of Examples 1-8 and Comparative Examples 1-10, the structure | tissue state was observed as follows.

はじめに、試料の断面をフライスにて鏡面面削加工を行い、加工面を水酸化ナトリウム水溶液でエッチングした後、硝酸にて腐食生成物を除去した後、乾燥させてマクロ組織を顕出した。顕出したマクロ組織を目視にて観察し、組織状態を判別した。   First, the cross section of the sample was mirror-finished with a milling cutter, the processed surface was etched with an aqueous sodium hydroxide solution, the corrosion products were removed with nitric acid, and then dried to reveal a macrostructure. The revealed macrostructure was visually observed to determine the tissue state.

なお、組織が微細で判別が難しい試料については、ミクロ観察用の試料を切り出し、観察面を鏡面研磨し、電解エッチングを施した後、光路に偏光ガラスを挿入した金属顕微鏡にて観察し組織状態を判別した。   For samples that have a fine structure and are difficult to discriminate, cut out the sample for micro observation, mirror-polished the observation surface, and electrolytically etched, then observed with a metal microscope with polarizing glass inserted in the optical path. Was determined.

その観察の結果、実施例1〜8の組織状態は、0.67以上の全ての中心相当歪において微細再結晶組織状態が50%以上となっていた。   As a result of the observation, in the structure states of Examples 1 to 8, the fine recrystallized structure state was 50% or more in all the center equivalent strains of 0.67 or more.

なお、実施例1の中心相当歪0.67においては、据込品はその断面において中心部位と周辺部位を比較すると中心相当歪0.67を中心に相当歪が広がっており、結果的に全体における微細再結晶組織状態領域は65%であった。   In addition, in the center equivalent strain 0.67 of Example 1, when compared with the central part and the peripheral part in the cross section of the installed product, the equivalent distortion spreads around the center equivalent strain 0.67. The fine recrystallized structure state region in was 65%.

すなわち据込品の断面についてマクロ組織を観察した結果、その観察範囲内で、微細再結晶領域は65%であった。ちなみに、粗大再結晶領域は、25%で、その他の部分は、未再結晶組織であった。   That is, as a result of observing the macro structure on the cross section of the upsetting product, the fine recrystallization region was 65% within the observation range. Incidentally, the coarse recrystallized region was 25%, and the other part was an unrecrystallized structure.

なお本実施例において、微細再結晶領域とは、平均粒径が(0.05〜10)×「鋳造時の結晶平均粒径」である組織領域であり、粗大再結晶領域とは、(10×100)×「鋳造時の結晶平均粒径」の組織領域である。   In this example, the fine recrystallization region is a structure region having an average particle size of (0.05 to 10) × “crystal average particle size at the time of casting”, and the coarse recrystallization region is (10 × 100) × A structure region of “crystal average grain size at casting”.

同様に、実施例1の中心相当歪1.33においては、微細再結晶組織領域は90%、中心相当歪1.67以上においては、微細再結晶組織領域は100%であった。   Similarly, in the center equivalent strain 1.33 of Example 1, the fine recrystallized texture region was 90%, and in the center equivalent strain 1.67 or more, the fine recrystallized texture region was 100%.

ここで、相当歪0は鍛造加工していないことを意味しており、現実の鍛造済品では少なくとも加工率は25%以上(相当歪0.67以上)である。   Here, the equivalent strain of 0 means that forging is not performed, and at least a processing rate is 25% or more (equivalent strain of 0.67 or more) in an actual forged product.

図7は鍛造部材における微細再結晶組織領域の範囲と相当歪値との関係を示すグラフである。   FIG. 7 is a graph showing the relationship between the range of the fine recrystallized structure region and the equivalent strain value in the forged member.

同グラフに示すように、実施例1において、同一組成、同一鍛造素材温度で 相当歪のみを変化させた場合、微細再結晶領域範囲の変化は単調増加となる。例えば、鍛造済品の各部位の中心相当歪を所定値以上とすることで、微細再結晶領域範囲を50%以上とすることができることを意味している。その結果、鍛造済品全体として引張強度のバラツキを少なくすることができる。   As shown in the graph, in Example 1, when only the equivalent strain is changed at the same composition and the same forging material temperature, the change of the fine recrystallization region range is monotonously increased. For example, it means that the fine recrystallization region range can be 50% or more by setting the center equivalent strain of each part of the forged product to a predetermined value or more. As a result, variation in tensile strength can be reduced as a whole forged product.

一方、比較例1〜10の組織状態は、全部または一部において、粗大再結晶を生じていた。   On the other hand, in all or part of the structural states of Comparative Examples 1 to 10, coarse recrystallization occurred.

比較例1、2は、組成がJIS6061合金であり鍛造素材温度が高温であるので、再結晶粒が粗大化し、評価結果で引張強度が低下し、さらには引張強度バラツキも±5%よりも大きくなっている。ちなみに、比較例1,2は、実施例1に対し、素材温度のみが異なるもので、素材温度を低くして鍛造した場合は実施例1に相当する。   In Comparative Examples 1 and 2, since the composition is a JIS6061 alloy and the forging material temperature is high, the recrystallized grains become coarse, the tensile strength decreases as a result of the evaluation, and the tensile strength variation is larger than ± 5%. It has become. Incidentally, Comparative Examples 1 and 2 differ from Example 1 only in the material temperature, and correspond to Example 1 when forging at a lower material temperature.

比較例5、6は、組成が6000系高強度材であるが、鍛造素材温度が低温であるので、粗大再結晶を生じ、評価結果で引張強度が低下し、さらには引張強度バラツキも±5%よりも大きくなっている。   Comparative Examples 5 and 6 are high-strength materials having a composition of 6000 series, but because the forging material temperature is low, coarse recrystallization occurs, the tensile strength decreases as a result of the evaluation, and further, the tensile strength variation is ± 5. It is larger than%.

ところで、図3は縦軸(Py)に示す鍛造素材温度(℃)と横軸(Px)に示すFe、Cr、Mnの含有量合計(質量%)との関係を示すグラフである。なお同グラフにおいて、実施例を黒塗りの菱形印で示し、比較例を黒塗りの正方形印で示している。ここで、これらの印に添えられた数字は実施例または比較例のナンバーであり、例えば数字の「1」が添えられた黒塗りの菱形印は実施例1のデータであり、数字の「3」が添えられた黒塗りの正方形印は比較例3のデータである。   FIG. 3 is a graph showing the relationship between the forging material temperature (° C.) shown on the vertical axis (Py) and the total content (mass%) of Fe, Cr, and Mn shown on the horizontal axis (Px). In the graph, examples are indicated by black rhombus marks, and comparative examples are indicated by black square marks. Here, the numbers attached to these marks are the numbers of the examples or comparative examples. For example, the black diamonds attached with the numbers “1” are the data of Example 1, and the numbers “3”. The black square mark with “” is data of Comparative Example 3.

また同グラフにおいては、鍛造素材温度(℃)を「Py」、Fe,Cr,Mnの含有量合計(質量%)を「Px」としたとき、直線式がPy=−260・Px+440で表される直線(温度条件上限値)を示している。   In this graph, when the forging material temperature (° C.) is “Py” and the total content (mass%) of Fe, Cr, and Mn is “Px”, the linear equation is expressed as Py = −260 · Px + 440. A straight line (temperature condition upper limit value).

同グラフから明らかなように、Py=−260×Px+440の下側には、実施例1〜8の試料の温度条件が配置され、上側には、比較例1〜10の試料の温度条件が配置されている。従って、鍛造素材温度が「−260℃×Px+440℃」以下の実施例1〜8のものは、所望の良好な機械的特性が得られているのに対し、鍛造素材温度が「−260℃×Px+440℃」を超える比較例1〜10のものは、機械的特性に劣っているものである。   As is clear from the graph, the temperature conditions of the samples of Examples 1 to 8 are arranged below Py = −260 × Px + 440, and the temperature conditions of the samples of Comparative Examples 1 to 10 are arranged above. Has been. Accordingly, in Examples 1 to 8 in which the forging material temperature is “−260 ° C. × Px + 440 ° C.” or less, desired good mechanical properties are obtained, whereas the forging material temperature is “−260 ° C. × The thing of Comparative Examples 1-10 exceeding "Px + 440 degreeC" is inferior to a mechanical characteristic.

Figure 0005756091
Figure 0005756091

上記と同様にして、ホットトップ鋳造機を用い、直径55mmの丸棒を連続鋳造して、表3に示すように比較例11〜15のAl合金組成に対応した連続鋳造丸棒をそれぞれ作製した。なお、合金組成の確認は、上記と同様のサンプル(図2参照)を採取し、同様に発光分光分析により行った。   In the same manner as described above, using a hot top casting machine, a round bar having a diameter of 55 mm was continuously cast to produce continuous cast round bars corresponding to the Al alloy compositions of Comparative Examples 11 to 15 as shown in Table 3. . The alloy composition was confirmed by taking a sample similar to the above (see FIG. 2) and similarly performing emission spectroscopic analysis.

その後、連続鋳造丸棒を上記と同様に定尺に切断し、560℃で7時間の均質化処理を施した。そして、均質化処理後の連続鋳造丸棒を直径50mmになるように外周切削して、60mmの長さに切断し、丸棒状の鍛造素材を作製した。   Thereafter, the continuous cast round bar was cut into a fixed length in the same manner as described above and subjected to a homogenization treatment at 560 ° C. for 7 hours. The outer periphery of the continuous cast round bar after the homogenization was cut to a diameter of 50 mm and cut to a length of 60 mm to produce a round bar-shaped forging material.

その後、上記と同様に、表3に記載された鍛造素材温度で予備加熱した後、鍛造加工を行って、丸棒側面方向から、中心部の相当歪が1.33となるように、据え込んだ。これらの据込品に、540℃で4時間の溶体化処理後、60℃の温水に焼入れ処理を行い、180℃で5時間の時効処理を行った後、空冷して、比較例11〜15の鍛造部材(試料)を得た。   Thereafter, in the same manner as described above, after preheating at the forging material temperature described in Table 3, forging is performed so that the equivalent strain at the center is 1.33 from the side surface direction of the round bar. It is. These upset products were subjected to a solution treatment at 540 ° C. for 4 hours, followed by quenching in warm water at 60 ° C., aging treatment at 180 ° C. for 5 hours, air cooling, and Comparative Examples 11-15. A forged member (sample) was obtained.

Figure 0005756091
Figure 0005756091

こうして得られた比較例11〜15の試料および上記実施例1〜8の試料(鍛造部材)について、元々の素材長手方向に平行な方向からJIS14Aに準拠して比例試験片を採取し、引張強度を測定した。   For the samples of Comparative Examples 11 to 15 and the samples of Examples 1 to 8 (forged members) thus obtained, proportional test pieces were taken from the direction parallel to the original material longitudinal direction in accordance with JIS 14A, and the tensile strength was obtained. Was measured.

そして引張強度の値が、250MPa以下のものについては、構造用部材としての要件を満たしていないと判定した。   And about the value of the tensile strength of 250 Mpa or less, it determined with not satisfy | filling the requirements as a structural member.

さらに上記の手順で作成した試料から、2mm×4.3mm×42.4mmの試験片をそれぞれ切り出し、4.3×42.4の面の中央部に、3点曲げ治具を用いて耐力の90%に相当する応力を負荷した。負荷の際には、試験片と治具との間は電気的に絶縁した。腐食液として、純水1リットル当り、酸化クロム(IV)36g、二クロム酸カリウム30g、塩化ナトリウム3gを溶解させ、95〜100℃に保持した溶液を用意した。応力を負荷した試験片をこの腐食液中に16時間浸漬したあとに、試験片を外観観察し、割れが発生しているかどうかについて確認し、割れが発生したものについては、耐食性に劣ると判定した。これらの試験結果を表4に示す。   Further, a 2 mm × 4.3 mm × 42.4 mm test piece was cut out from the sample prepared in the above procedure, and a proof stress was obtained using a three-point bending jig at the center of the 4.3 × 42.4 surface. A stress corresponding to 90% was applied. During the load, the test piece and the jig were electrically insulated. As a corrosive solution, a solution in which 36 g of chromium (IV) oxide, 30 g of potassium dichromate and 3 g of sodium chloride were dissolved per liter of pure water and maintained at 95 to 100 ° C. was prepared. After immersing the stressed test piece in this corrosive solution for 16 hours, the appearance of the test piece is observed, it is checked whether cracks have occurred, and those with cracks are judged to have poor corrosion resistance. did. These test results are shown in Table 4.

これらの試験結果から判るように、実施例1〜8は、本発明の要件をすべて満たしているため、引張強度の優れ、また、応力腐食割れ性にも優れていた。   As can be seen from these test results, Examples 1 to 8 satisfied all the requirements of the present invention, and thus were excellent in tensile strength and stress corrosion cracking property.

これに対し比較例11は、Siが少な過ぎたため、析出強化成分が少なくなり、強度が不十分であった。   On the other hand, since comparative example 11 had too little Si, the precipitation strengthening component decreased and the strength was insufficient.

さらに比較例12は、Siが多過ぎたため、応力腐食割れの感受性が高くなり、応力腐食割れを生じていた。   Furthermore, in Comparative Example 12, since there was too much Si, the sensitivity to stress corrosion cracking was high, and stress corrosion cracking occurred.

さらに比較例13は、Cuが多過ぎたため、耐食性が低下し、結果として、応力腐食割れを生じていた。   Furthermore, in Comparative Example 13, since there was too much Cu, the corrosion resistance was lowered, and as a result, stress corrosion cracking occurred.

さらに比較例14は、Mgが少な過ぎたため、析出強化成分が少なくなり、強度が低下していた。   Furthermore, in Comparative Example 14, since there was too little Mg, the precipitation strengthening component decreased and the strength was reduced.

さらに比較例15、Mgが多過ぎたため、粗大再結晶が生じ、強度が低下していた。   Furthermore, since Comparative Example 15 had too much Mg, coarse recrystallization occurred and the strength was reduced.

以上の実験結果(実施例)から明らかなように、本発明の要旨としての特有の合金組成および特有の温度条件(Py≦−260×Px+440℃)を満足する実施例1〜8では、相当歪が0.67〜4の範囲すなわち加工率25〜95の範囲において、各部位の少なくとも50%程度以上の領域が微細再結晶組織となり、その結果、鍛造部材における各部位毎に機械的特性(引張強度)のバラツキを小さくできて、軽量で、機械的特性および耐食性に優れた鍛造製品を製造することができる。   As is clear from the above experimental results (Examples), in Examples 1 to 8 that satisfy the specific alloy composition and the specific temperature condition (Py ≦ −260 × Px + 440 ° C.) as the gist of the present invention, the equivalent strain In the range of 0.67 to 4, that is, the processing rate of 25 to 95, at least 50% or more of each part has a fine recrystallized structure, and as a result, mechanical characteristics (tensile for each part in the forged member. It is possible to produce a forged product that is light in weight and excellent in mechanical properties and corrosion resistance.

<設計手順1に基づく実施例>
上記図1に示した形状について、既述した設計手順1に基づき、以下のステップS11〜S15に示すように、組成、鍛造素材温度条件を決定し、鍛造部材を製造したところ、微細再結晶領域が60%であり、充分な機械的特性と、優れた耐食性とを有する鍛造部材が得られた。
<Example based on design procedure 1>
With respect to the shape shown in FIG. 1, the composition and forging material temperature conditions are determined and the forged member is manufactured based on the design procedure 1 described above, as shown in the following steps S11 to S15. Was 60%, and a forged member having sufficient mechanical properties and excellent corrosion resistance was obtained.

なお微細再結晶領域の評価は、肉厚部、薄肉部からそれぞれ3個の試験片を採取し、各試験片の断面をそれぞれ5視野ずつ観察して、都合15点の観察結果を集計して、全体に対する微細再結晶領域の比率(パーセント)とした。   For evaluation of the fine recrystallization region, three test pieces were collected from the thick part and thin part respectively, and the cross section of each test piece was observed for each of five fields of view, and the observation results of 15 points were summed up. The ratio (percentage) of the fine recrystallized region to the whole.

ステップS11:使用する予定の鍛造素材と図1の各形状から、各部位での相当歪を、鍛造素材形状から鍛造済品形状への成形過程をシミュレーションすることで求めた(シミュレーションで使用したソフトウエアは、鍛造解析ソフト「DEFORM」)。相対歪値の分布は、0.7〜2.0であった。相当歪値の分布は、実際の製品での分布を厳密に求めることは困難なので、一様分布として処理した。   Step S11: From the forging material to be used and each shape in FIG. 1, the equivalent strain at each part was obtained by simulating the forming process from the forging material shape to the forged product shape (software used in the simulation) Wear is forging analysis software "DEFFORM"). The distribution of relative strain values was 0.7 to 2.0. The distribution of the equivalent strain value was processed as a uniform distribution because it is difficult to obtain the distribution in the actual product exactly.

ステップS12:0.7〜2.0を図2上に相当歪の範囲として設定した。   Step S12: 0.7 to 2.0 was set as the equivalent strain range in FIG.

ステップS13:微細再結晶領域範囲の比率を60%と設定し、その比率に相当する相当歪(目標相当歪)を図2のグラフから1.15とし、同グラフに基づき鍛造素材加熱温度の上限値を360℃とした。   Step S13: The ratio of the fine recrystallization region range is set to 60%, the equivalent strain corresponding to the ratio (target equivalent strain) is set to 1.15 from the graph of FIG. 2, and the upper limit of the forging material heating temperature based on the graph The value was 360 ° C.

ステップS14:鍛造加熱温度の上限値が360℃となったので、その温度から図3のグラフを用いて、(Fe、Cr、Mn)の総量の上限を0.37%とした。   Step S14: Since the upper limit value of the forging heating temperature is 360 ° C., the upper limit of the total amount of (Fe, Cr, Mn) is set to 0.37% from the temperature using the graph of FIG.

ステップS15:以上の手順によって、合金組成(Fe、Cr、Mn)の総量の上限を0.37%、鍛造素材温度条件上限360℃とした。   Step S15: By the above procedure, the upper limit of the total amount of the alloy composition (Fe, Cr, Mn) was set to 0.37%, and the forging material temperature condition upper limit was set to 360 ° C.

<設計手順2に基づく実施例>
上記図1に示した形状について、既述した設計手順2に基づき、以下のステップS21〜S25に示すように、形状、鍛造素材温度条件を決定して、鍛造部材を製造したところ、微細再結晶領域が60%であり、充分な機械的特性と、優れた耐食性とを有する鍛造部材が得られた。
<Example based on design procedure 2>
With respect to the shape shown in FIG. 1, based on the design procedure 2 described above, as shown in the following steps S21 to S25, the shape and forging material temperature conditions are determined and the forged member is manufactured. A forged member having an area of 60% and having sufficient mechanical properties and excellent corrosion resistance was obtained.

ステップS21:組成で(Fe、Cr、Mn)の総量が0.37%以下の材料を使用することにした。   Step S21: It was decided to use a material having a total amount of (Fe, Cr, Mn) of 0.37% or less.

ステップS22:図3のグラフを用いて、(Fe、Cr、Mn)の総量から鍛造素材温度の上限を360℃とした。   Step S22: Using the graph of FIG. 3, the upper limit of the forging material temperature was set to 360 ° C. from the total amount of (Fe, Cr, Mn).

ステップS23:求めた鍛造素材温度の上限360℃を、図2のグラフの縦軸の鍛造素材温度として設定した。   Step S23: The upper limit 360 ° C. of the obtained forging material temperature was set as the forging material temperature on the vertical axis of the graph of FIG.

ステップS24:微細再結晶領域範囲の比率を60%と設定し、図2のグラフに基づき、設定した鍛造素材温度360℃において、式E1との交点においてKb/Kaが60%となるように相当歪の範囲(Ka、Kb)をきめたところ、下限値0.7=Kc−Ka、上限値2.0=Kb−Kcとなった。   Step S24: The ratio of the fine recrystallization region range is set to 60%, and based on the graph of FIG. 2, at the set forging temperature of 360 ° C., Kb / Ka is equivalent to 60% at the intersection with the formula E1. When the strain range (Ka, Kb) was determined, the lower limit value was 0.7 = Kc−Ka, and the upper limit value was 2.0 = Kb−Kc.

ステップS25:図1に示した形状(ただし肉盗み部位無し)について、使用する予定の鍛造素材と図1の各形状から、各部位での相当歪を、鍛造素材形状から鍛造済品形状への成形過程をシミュレーションすることで求めたところ、その相当歪範囲は、0.5〜2.0となった。ステップ24で求めた上下限と比較すると下限値が低いので、相当歪値の下限を上げるために形状変更して肉盗み部を設けた。その結果、相当歪下限値が0.7となったので、最終形状として決定した。   Step S25: For the shape shown in FIG. 1 (but without the meat stealing part), from the forging material to be used and each shape in FIG. 1, the equivalent strain at each part is changed from the forging material shape to the forged product shape. When the molding process was determined by simulation, the equivalent strain range was 0.5 to 2.0. Since the lower limit is lower than the upper and lower limits obtained in step 24, the shape was changed to increase the lower limit of the equivalent strain value, and a meat stealing portion was provided. As a result, the equivalent strain lower limit value was 0.7, so the final shape was determined.

なお。鍛造素材形状を変えることで相当歪の下限値を上げることは可能であったが、今回は採用しなかった。   Note that. Although it was possible to raise the lower limit of the equivalent strain by changing the shape of the forging material, it was not adopted this time.

本願は、2010年4月16日付で出願された日本国特許出願の特願2010−95145号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。   This application is accompanied by the priority claim of Japanese Patent Application No. 2010-95145 filed on Apr. 16, 2010, the disclosure of which constitutes a part of the present application as it is. .

ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。   The terms and expressions used herein are for illustrative purposes and are not to be construed as limiting, but represent any equivalent of the features shown and described herein. It should be recognized that various modifications within the claimed scope of the present invention are permissible.

本発明は、多くの異なった形態で具現化され得るものであるが、この開示は本発明の原理の実施例を提供するものと見なされるべきであって、それら実施例は、本発明をここに記載しかつ/または図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。   While this invention may be embodied in many different forms, this disclosure is to be considered as providing examples of the principles of the invention, which examples are hereby incorporated by reference. Many illustrated embodiments are described herein with the understanding that they are not intended to be limited to the preferred embodiments described and / or illustrated.

本発明の図示実施形態を幾つかここに記載したが、本発明は、ここに記載した各種の好ましい実施形態に限定されるものではなく、この開示に基づいていわゆる当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を有するありとあらゆる実施形態をも包含するものである。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施例に限定されるべきではなく、そのような実施例は非排他的であると解釈されるべきである。   Although several illustrated embodiments of the present invention have been described herein, the present invention is not limited to the various preferred embodiments described herein, and is equivalent to what may be recognized by those skilled in the art based on this disclosure. Any and all embodiments having various elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements and / or changes are encompassed. Claim limitations should be construed broadly based on the terms used in the claims, and should not be limited to the embodiments described herein or in the process of this application, as such The examples should be construed as non-exclusive.

この発明の鍛造部材の製造方法は、アルミニウム合金製の鍛造素材を用いた鍛造加工技術に適用可能である。   The forged member manufacturing method of the present invention is applicable to a forging technique using a forging material made of an aluminum alloy.

10:鍛造部材
10: Forged member

Claims (8)

Mgを0.35〜1.2質量%、Siを0.2〜1.3質量%、Cuを0.5質量%以下、Feを0.15質量%以上、Crを0.05質量%以上、Mnを0.05質量%以下含み、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金鍛造素材を準備しておき、
鍛造素材温度(℃)≦−260(℃)×[Fe、Cr、Mnの含有量合計(質量%)]+440(℃)の関係式を満たす温度条件で、前記アルミニウム合金素材に対し熱間鍛造を行うようにしたことを特徴とするアルミニウム合金鍛造部材の製造方法。
Mg 0.35 to 1.2% by mass, Si 0.2 to 1.3% by mass, Cu 0.5% by mass or less, Fe 0.15% by mass or more, Cr 0.05% by mass or more In addition, an aluminum alloy forging material having a composition containing 0.05% by mass or less of Mn and the balance of Al and inevitable impurities is prepared,
Forging material temperature (° C.) ≦ −260 (° C.) × [total content of Fe, Cr, Mn (mass%)] + 440 (° C.) Hot forging with respect to the aluminum alloy material under the temperature condition satisfying the relational expression A method for producing an aluminum alloy forged member characterized by comprising the steps of:
前記[Fe、Cr、Mnの含有量合計(質量%)]を0.5質量%以下に調整するものとした請求項1に記載のアルミニウム合金鍛造部材の製造方法。   2. The method for producing an aluminum alloy forged member according to claim 1, wherein the total content of Fe, Cr, and Mn (mass%) is adjusted to 0.5 mass% or less. 前記熱間鍛造を行う前に、製造予定の鍛造部材と、鍛造素材との形状に基づいて、各部位毎の相当歪を算出して、その各部位毎の相当歪を全て含む全体の相当歪の範囲を求めておき、
その全体の相当歪の範囲と、所望の微細再結晶領域範囲の比率とから、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報に基づき、鍛造素材温度の上限値を算出し、
その鍛造素材温度の上限値から、前記関係式に基づいて、前記Fe、Cr、Mnの含有量合計の上限を特定するようにした請求項1または2に記載のアルミニウム合金鍛造部材の製造方法。
Before performing the hot forging, the equivalent strain for each part is calculated based on the shape of the forged member to be manufactured and the forging material, and the entire equivalent strain including all the equivalent strains for each part. Find the range of
The upper limit value of the forging material temperature is determined based on the information relating the forging material temperature prepared in advance and the range of the equivalent strain, based on the total equivalent strain range and the ratio of the desired fine recrystallization region range. Calculate
The manufacturing method of the aluminum alloy forged member of Claim 1 or 2 which specified the upper limit of the content total of the said Fe, Cr, and Mn based on the said relational expression from the upper limit of the forge raw material temperature.
前記熱間鍛造を行う前に、鍛造素材の組成に基づき、前記Fe、Cr、Mnの含有量合計を算出し、その含有量合計から、前記関係式に基づいて、鍛造素材温度の上限値を求めておき、
その求めた鍛造素材温度の上限値と、成形品全体としての所定の微細再結晶領域範囲とから、予め準備しておいた鍛造素材温度と相当歪の範囲とを関連付けた情報に基づき、鍛造加工において許容される全体の相当歪の範囲を求め、
その許容される全体の相当歪の範囲内で、鍛造素材および鍛造部材の形状を設計するようにした請求項1または2に記載のアルミニウム合金鍛造部材の製造方法。
Before performing the hot forging, the total content of the Fe, Cr, Mn is calculated based on the composition of the forging material, and the upper limit value of the forging material temperature is calculated from the total content based on the relational expression. Asking
Forging process based on information relating the forged material temperature prepared in advance and the equivalent strain range from the upper limit of the forged material temperature obtained and the predetermined fine recrystallization region range of the entire molded product To obtain the range of the equivalent distortion allowed in
The method for producing an aluminum alloy forged member according to claim 1 or 2, wherein the shape of the forged material and the forged member is designed within the allowable range of equivalent distortion.
Mgを0.35〜1.2質量%、Siを0.2〜1.3質量%、Cuを0.5質量%以下、Feを0.15質量%以上、Crを0.15質量%以上、Mnを0.05質量%以下含み、残部がAlおよび不可避不純物からなる組成を有するアルミニウム合金鍛造部材であって、
50%以上の領域が、微細再結晶組織の状態に調整されるとともに、250MPaを超える引張強度の値を備えたことを特徴とするアルミニウム合金鍛造部材。
Mg 0.35 to 1.2% by mass, Si 0.2 to 1.3% by mass, Cu 0.5% by mass or less, Fe 0.15% by mass or more, Cr 0.15% by mass or more A forged aluminum alloy member having a composition comprising 0.05% by mass or less of Mn and the balance consisting of Al and inevitable impurities,
An aluminum alloy forged member characterized in that a region of 50% or more is adjusted to a state of a fine recrystallized structure and has a tensile strength value exceeding 250 MPa.
各部位毎における50%以上の領域が、微細再結晶組織の状態に調整される請求項5に記載のアルミニウム合金鍛造部材。   The aluminum alloy forged member according to claim 5, wherein an area of 50% or more in each part is adjusted to a state of a fine recrystallized structure. 各部位毎の引張強度のバラツキが、塑性加工無しの状態の引張強度に対して±5%以内に調整される請求項5または6に記載のアルミニウム合金鍛造部材。   The aluminum alloy forged member according to claim 5 or 6, wherein the variation in tensile strength for each part is adjusted within ± 5% of the tensile strength without plastic working. 請求項1〜3のいずれか1項に記載の製造方法によって製造されたアルミニウム合金鍛造部材によって構成されることを特徴とする自動車用構造材。
It is comprised by the aluminum alloy forge member manufactured by the manufacturing method of any one of Claims 1-3, The structural material for motor vehicles characterized by the above-mentioned.
JP2012510709A 2010-04-16 2011-04-15 Method for producing aluminum alloy forged member Active JP5756091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012510709A JP5756091B2 (en) 2010-04-16 2011-04-15 Method for producing aluminum alloy forged member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010095145 2010-04-16
JP2010095145 2010-04-16
JP2012510709A JP5756091B2 (en) 2010-04-16 2011-04-15 Method for producing aluminum alloy forged member
PCT/JP2011/059373 WO2011129431A1 (en) 2010-04-16 2011-04-15 Process for production of forged aluminum alloy member

Publications (2)

Publication Number Publication Date
JPWO2011129431A1 JPWO2011129431A1 (en) 2013-07-18
JP5756091B2 true JP5756091B2 (en) 2015-07-29

Family

ID=44798799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012510709A Active JP5756091B2 (en) 2010-04-16 2011-04-15 Method for producing aluminum alloy forged member

Country Status (4)

Country Link
JP (1) JP5756091B2 (en)
KR (1) KR101423412B1 (en)
CN (1) CN102844456B (en)
WO (1) WO2011129431A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2425911A4 (en) * 2009-04-30 2014-06-18 Showa Denko Kk Process for producing cast aluminum alloy member
CN102912199A (en) * 2012-10-29 2013-02-06 虞海香 Aluminum alloy sheet for vehicle body
JP6362263B2 (en) * 2013-11-26 2018-07-25 昭和電工株式会社 Hard disk drive device forged shape material for case body, case body, method for producing forged shape material for case body, and method for producing case body
CN104404350A (en) * 2014-11-17 2015-03-11 柳州市俊杰汽配制造有限公司 Automobile control arm
CN104455068A (en) * 2014-11-17 2015-03-25 柳州市俊杰汽配制造有限公司 Release bearing for automobile
JP6090725B2 (en) 2015-02-10 2017-03-08 昭和電工株式会社 Method for manufacturing plastic processed product made of aluminum alloy
CN106011507A (en) * 2016-04-12 2016-10-12 江苏大学 Al-Mg-Si-Y rare earth aluminum alloy and preparation method thereof
US11247262B2 (en) * 2017-08-09 2022-02-15 Kobe Steel, Ltd. Vehicle knuckle
CN108913963A (en) * 2018-06-22 2018-11-30 镇江市益宝电气科技有限公司 A kind of high-strength corrosion-resisting bus duct
CN113486459A (en) * 2021-06-22 2021-10-08 南京钢铁股份有限公司 DEFORM simulation-based method for preventing bending cracking of low-alloy structural steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341534A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of aluminum alloy for forging and forged aluminum product
JP2001107168A (en) * 1999-10-06 2001-04-17 Kobe Steel Ltd High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
WO2007114078A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774630B2 (en) * 2001-05-18 2011-09-14 日産自動車株式会社 Manufacturing method of aluminum forged parts
EP1522600B1 (en) * 2003-09-26 2006-11-15 Kabushiki Kaisha Kobe Seiko Sho Forged aluminium alloy material having excellent high temperature fatigue strength
WO2006057452A1 (en) * 2004-11-25 2006-06-01 Showa Denko K.K. Aluminum hot forged article, and method for producing the same
KR20090046868A (en) * 2006-08-01 2009-05-11 쇼와 덴코 가부시키가이샤 Process for production of aluminum alloy formings, aluminum alloy formings and production system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341534A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of aluminum alloy for forging and forged aluminum product
JP2001107168A (en) * 1999-10-06 2001-04-17 Kobe Steel Ltd High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
WO2007114078A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same

Also Published As

Publication number Publication date
CN102844456B (en) 2014-10-15
CN102844456A (en) 2012-12-26
JPWO2011129431A1 (en) 2013-07-18
KR101423412B1 (en) 2014-07-24
KR20120139801A (en) 2012-12-27
WO2011129431A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5756091B2 (en) Method for producing aluminum alloy forged member
CA2637273C (en) Aluminum alloy forging member and method for producing the same
JP6368087B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member
KR101356243B1 (en) Process for producing brake piston
JP5837026B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP6090725B2 (en) Method for manufacturing plastic processed product made of aluminum alloy
CN101243196B (en) A wrought aluminum aa7000-series alloy product and method of producing said product
JP5175470B2 (en) Magnesium alloy material and method for producing the same
JP5276341B2 (en) Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance
JPH06172949A (en) Member made of magnesium alloy and its production
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
CN104284991A (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
TWI479026B (en) Resource - type titanium alloy member with excellent strength and toughness and its manufacturing method
CN107614718A (en) High-strength aluminum alloy hot forging material
JP6378937B2 (en) Method for producing aluminum alloy member
WO2015111437A1 (en) Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
WO2015111438A1 (en) Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
KR100510012B1 (en) High strength and high thermal conductive Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2011106011A (en) HIGH STRENGTH Al ALLOY FORGED MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5756091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350