JP2001011559A - High strength aluminum alloy extruded material excellent in corrosion resistance and its production - Google Patents

High strength aluminum alloy extruded material excellent in corrosion resistance and its production

Info

Publication number
JP2001011559A
JP2001011559A JP18305199A JP18305199A JP2001011559A JP 2001011559 A JP2001011559 A JP 2001011559A JP 18305199 A JP18305199 A JP 18305199A JP 18305199 A JP18305199 A JP 18305199A JP 2001011559 A JP2001011559 A JP 2001011559A
Authority
JP
Japan
Prior art keywords
extruded material
aluminum alloy
corrosion resistance
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18305199A
Other languages
Japanese (ja)
Other versions
JP4201434B2 (en
Inventor
Tsutomu Furuyama
努 古山
Shinichi Matsuda
眞一 松田
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP18305199A priority Critical patent/JP4201434B2/en
Publication of JP2001011559A publication Critical patent/JP2001011559A/en
Application granted granted Critical
Publication of JP4201434B2 publication Critical patent/JP4201434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy extruded material excellent in corrosion resistance, having high strength, and moreover, good in extrudability and to provide a method for producing the same. SOLUTION: This is an extruded material of an aluminum alloy contg. 0.5 to 1.5% Si, 0.9 to 1.6% Mg and 0.8 to 2.5% Cu, furthermore satisfying the following conditions of (1), (2), (3) and (4) of (1): 3<=Si%+Mg%+Cu%<=4, (2): Mg%<=1.7×Si%, (3): Mg%+Si%<=2.7 and (4): Cu%/2<=Mg%<=(Cu%/2)+0.6, moreover contg. 0.5 to 1.2% Mn, and the balance aluminum with inevitable impurities, in which, in the case the minimum thickness of the extruded material is defined as (t) (mm), the extrusion ratio as R, and the thickness G (μm) of the recrystallized layer in the surface layer part of the extruded material satisfies G<=0.326t×R.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性に優れた高
強度アルミニウム合金押出材、とくに、自動車、鉄道車
両、航空機等の輸送機器の構造材として好適に使用され
る耐食性に優れた高強度アルミニウム合金押出材および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy extruded material having excellent corrosion resistance, and particularly to a high-strength aluminum alloy having excellent corrosion resistance which is suitably used as a structural material for transportation equipment such as automobiles, railway vehicles and aircraft. The present invention relates to an alloy extruded material and a method for producing the same.

【0002】[0002]

【従来の技術】6000系(Al−Mg−Si系)のア
ルミニウム合金は、加工性が良く製造が容易であり、耐
食性にも優れているため、輸送機器部材として広く実用
化されているが、7000系(Al−Zn−Mg系)や
2000系(Al−Cu系)の高強度アルミニウム合金
と比べ強度面で劣るという難点がある。一方、7000
系合金、2000系合金は、強度的には優れているもの
の、耐食性や製造性に問題があるため用途面での制約が
ある。
2. Description of the Related Art Aluminum alloys of the 6000 series (Al-Mg-Si series) are widely used as transportation equipment members because of their good workability, easy production, and excellent corrosion resistance. There is a disadvantage that the strength is inferior to that of a 7000 series (Al-Zn-Mg) or 2000 series (Al-Cu) high-strength aluminum alloy. On the other hand, 7000
Although the system-based alloy and the 2000-type alloy are excellent in strength, there are problems in corrosion resistance and manufacturability, so there are restrictions in terms of application.

【0003】このような状況の下で、6000系アルミ
ニウム合金の強度を向上させるための試みが行われ、従
来の6061系より高強度を有する6013合金、60
56合金、6082合金等が開発された。また、Mg、
Si、Cuの硬化元素に加えてMn、Cr、Zrを特定
範囲で含有させ、靱性の改善を図ったアルミニウム合金
(特開昭59−50147号公報)も提案され、発明者
の一人らにより、輸送機器の構造体用として、Mg、S
i、Cuの含有量の相互の関係を規定し、不純物のMn
の含有量を制限した強度、耐食性に優れたAl−Cu−
Mg−Si系合金押出材(特開平10−306338号
公報)も提案されている。
[0003] Under such circumstances, attempts have been made to improve the strength of 6000 series aluminum alloys.
56 alloy, 6082 alloy and the like have been developed. Also, Mg,
An aluminum alloy (JP-A-59-50147) in which Mn, Cr and Zr are contained in a specific range in addition to the hardening elements of Si and Cu to improve toughness has also been proposed. Mg, S for transport equipment structures
The relationship between the i and Cu contents is defined, and the impurity Mn is defined.
Al-Cu- with excellent strength and corrosion resistance with limited content of
An extruded Mg-Si alloy (Japanese Patent Application Laid-Open No. 10-306338) has also been proposed.

【0004】自動車部材等、輸送機器部材については、
近年、地球環境保持の面から、排気ガスの規制が厳しく
なり、燃料消費量を減らし有害ガスや炭酸ガスの排出量
を低減させるために、車両重量の軽量化が強く推し進め
られている。その一つとして、従来使用されていた鉄系
の部材をアルミニウム系の部材に変更することにより効
果を上げているが、軽量化の進行に伴って材料の薄肉化
の要求も厳しくなっており、上記の6013等の開発合
金や提案されているアルミニウム合金材では、強度、耐
食性の面で必ずしも満足すべきものではない。
For transportation equipment members such as automobile members,
In recent years, regulations on exhaust gas have become stricter from the viewpoint of maintaining the global environment, and a reduction in vehicle weight has been strongly promoted in order to reduce fuel consumption and emission of harmful gas and carbon dioxide gas. As one of them, the effect has been improved by changing the conventionally used iron-based members to aluminum-based members, but with the progress of weight reduction, the demand for thinner materials has become stricter, The developed alloys such as 6013 and the proposed aluminum alloy materials are not always satisfactory in terms of strength and corrosion resistance.

【0005】発明者らは、輸送機器、特に自動車の軽量
化に関連する緒要求を満足させることができるアルミニ
ウム合金の押出材を得るために、先に提案したAl−C
u−Mg−Si系合金押出材(特開平10−30633
8号公報)をベースとし、その特性を更に改善するため
の検討過程において、Mnを含有させて強度を向上させ
た場合にも、押出材の結晶層厚を制御することにより、
耐食性を維持できることを見出した。
[0005] The inventors of the present invention have proposed an Al-C alloy which has been proposed in order to obtain an aluminum alloy extruded material capable of satisfying the requirements relating to the weight reduction of transportation equipment, particularly automobiles.
Extruded material of u-Mg-Si alloy (JP-A-10-30633)
No. 8) as a base, and in the examination process for further improving the characteristics, even when the strength is improved by containing Mn, by controlling the crystal layer thickness of the extruded material,
It has been found that corrosion resistance can be maintained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の知見
に基づいて、さらに実験を重ねた結果としてなされたも
のであり、その目的は、耐食性及び強度に優れ、押出性
の良好なアルミニウム合金押出材及びその製造方法を提
供することにある。
The present invention has been made as a result of further experiments based on the above-mentioned findings, and its object is to provide an aluminum alloy having excellent corrosion resistance and strength and good extrudability. An object of the present invention is to provide an extruded material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の請求項1による耐食性に優れた高強度アル
ミニウム合金押出材は、Si:0.5%〜1.5 %、Mg:0.9
%〜1.6 %、Cu:0.8%〜2.5 %を含有すると共に、下
記の条件式(1) 、(2) 、(3) 、(4) を満足し、 3≦Si%+Mg%+Cu%≦4---(1) Mg%≦1.7×Si%---(2) Mg%+Si%≦2.7---(3) Cu%/2≦Mg%≦(Cu%/2)+0.6---(4) 更にMn:0.5%〜1.2 %を含有し、残部アルミニウム及
び不可避的不純物からなるアルミニウム合金の押出材で
あって、該押出材の最小肉厚をt(mm)、押出比をR
としたとき、押出材の表層部の再結晶層の厚さG(μ
m)がG≦0.326t×Rを満たすことを特徴とす
る。
In order to achieve the above object, a high-strength aluminum alloy extruded material having excellent corrosion resistance according to claim 1 of the present invention comprises Si: 0.5% to 1.5% and Mg: 0.9%.
% To 1.6% and Cu: 0.8% to 2.5% and satisfy the following conditional expressions (1), (2), (3) and (4): 3 ≦ Si% + Mg% + Cu% ≦ 4 --- (1) Mg% ≦ 1.7 × Si% --- (2) Mg% + Si% ≦ 2.7 --- (3) Cu% / 2 ≦ Mg% ≦ (Cu% / 2) +0 .6 --- (4) An extruded material of an aluminum alloy further containing Mn: 0.5% to 1.2%, the balance being aluminum and unavoidable impurities, wherein the minimum thickness of the extruded material is t (mm), Extrusion ratio is R
, The thickness G (μ) of the recrystallized layer on the surface of the extruded material
m) satisfies G ≦ 0.326t × R.

【0008】請求項2による耐食性に優れた高強度アル
ミニウム合金押出材は、請求項1に記載のアルミニウム
合金に、更にCr:0.02 %〜0.4 %、Zr:0.03 %〜0.
2 %、V:0.03 %〜0.2 %、Zn:0.03 %〜2.0 %のう
ち1種類以上を含有することを特徴とする。
The high-strength aluminum alloy extruded material having excellent corrosion resistance according to claim 2 is obtained by adding Cr: 0.02% to 0.4% and Zr: 0.03% to 0.3% to the aluminum alloy according to claim 1.
2%, V: 0.03% to 0.2%, and Zn: 0.03% to 2.0%.

【0009】また、本発明による耐食性に優れた高強度
アルミニウム合金押出材の製造方法は、請求項1又は2
に記載のアルミニウム合金を造塊して得た鋳塊を、45
0℃以上該鋳塊の融点未満の温度で均質化処理した後、
均質化処理温度から少なくとも250℃までは平均冷却
速度25℃/h以上で冷却する均質化処理工程と、均質
化処理後のアルミニウム合金鋳塊を450℃以上該鋳塊
の融点未満の温度に加熱して押出加工を行う押出工程
と、押出直後の押出材の表面温度が450℃以上に保持
された状態で10℃/秒以上の冷却速度で100℃以下
の温度まで冷却するプレス焼入れ工程及び前記押出材を
450℃以上押出材の融点未満の温度で溶体化処理した
後10℃/秒以上の冷却速度で100℃以下の温度まで
冷却する焼入れ処理工程のいずれか一方の工程と、15
0〜200℃で2〜24時間の熱処理を施す焼戻し処理
工程とからなることを特徴とする。
A method for producing a high-strength aluminum alloy extruded material having excellent corrosion resistance according to the present invention is described in claim 1 or 2.
The ingot obtained by ingoting the aluminum alloy according to
After homogenizing at a temperature of 0 ° C. or higher and lower than the melting point of the ingot,
A homogenization treatment step of cooling at an average cooling rate of 25 ° C./h or more from the homogenization treatment temperature to at least 250 ° C., and heating the homogenized aluminum alloy ingot to a temperature of 450 ° C. or more and lower than the melting point of the ingot. An extrusion step of extruding, and a press quenching step of cooling to a temperature of 100 ° C. or lower at a cooling rate of 10 ° C./second or higher while the surface temperature of the extruded material immediately after extrusion is maintained at 450 ° C. or higher. One of a quenching step of subjecting the extruded material to a solution treatment at a temperature of 450 ° C. or more and less than the melting point of the extruded material, and then cooling it to a temperature of 100 ° C. or less at a cooling rate of 10 ° C./sec or more;
A tempering step of performing a heat treatment at 0 to 200 ° C. for 2 to 24 hours.

【0010】[0010]

【発明の実施の形態】本発明の耐食性に優れた高強度ア
ルミニウム合金における合金成分の意義およびその限定
理由について説明する。Siは、Mgと共存してMg2
Siを析出してアルミニウム合金の強度を向上させる機
能を有する。Siの好ましい含有範囲は0.5 %〜1.5 %
であり、0.5 %未満ではその効果が十分でなく、1.5 %
を越えると耐食性が低下する。Siのより好ましい含有
範囲は0.7 %〜1.2 %である。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of the alloy components in the high-strength aluminum alloy excellent in corrosion resistance of the present invention and the reasons for limiting the same will be described. Si coexists with Mg and forms Mg 2
It has the function of precipitating Si and improving the strength of the aluminum alloy. The preferable content range of Si is 0.5% to 1.5%.
If less than 0.5%, the effect is not enough, and 1.5%
If it exceeds, the corrosion resistance decreases. The more preferable content range of Si is 0.7% to 1.2%.

【0011】Mgは、Siと共存してMg2 Siを析出
し、更にCuと共存することによりCuMgAl2 を微
細析出させ、アルミニウム合金の強度を向上させる。M
gの好ましい含有範囲は0.9 %〜1.6 %であり、0.9 %
未満ではその効果が十分でなく、1.6 %を越えて含有す
ると耐食性が低下する。Mgのより好ましい含有範囲は
0.9 %〜1.2 %である。
Mg coexists with Si to precipitate Mg 2 Si, and coexists with Cu to finely precipitate CuMgAl 2 , thereby improving the strength of the aluminum alloy. M
The preferred content range of g is 0.9% to 1.6%, and 0.9% to 0.9%.
If the content is less than 1.6%, the effect is not sufficient. If the content exceeds 1.6%, the corrosion resistance is reduced. The more preferable content range of Mg is
0.9% to 1.2%.

【0012】Cuは、Si、Mgと同様に強度向上に寄
与する元素成分であり、その好ましい含有範囲は0.8 %
〜2.5 %である。0.8 %未満ではその効果が小さく、2.
5 %を越えて含有すると製造が困難となり耐食性も低下
する。Cuのより好ましい含有範囲は0.9 %〜2.0 %で
ある。
Cu, like Si and Mg, is an elemental component that contributes to strength improvement, and its preferred content is 0.8%
~ 2.5%. If it is less than 0.8%, the effect is small, and 2.
If the content exceeds 5%, the production becomes difficult and the corrosion resistance decreases. The more preferable content range of Cu is 0.9% to 2.0%.

【0013】Mnは、熱間加工中の再結晶を抑制して繊
維状組織とし、高強度を得るために重要な役割を演じ
る。Mnの好ましい含有範囲は0.5 %〜1.2 %であり、
0.5 %未満では再結晶の抑制効果は不十分となり、1.2
%を越えると粗大な金属間化合物の生成及び熱間加工性
の劣化を生じる。Mnのより好ましい含有範囲は0.6 %
〜1.0 %である。
Mn plays an important role in suppressing recrystallization during hot working to form a fibrous structure and obtaining high strength. A preferred content range of Mn is 0.5% to 1.2%,
If it is less than 0.5%, the effect of suppressing recrystallization becomes insufficient, and
%, Coarse intermetallic compounds are formed and hot workability is deteriorated. The more preferable content range of Mn is 0.6%.
~ 1.0%.

【0014】本発明の高強度アルミニウム合金は、S
i、Mg、Cu、Mnを必須成分とし、Si、Mg、C
u相互間の条件式(1) 〜(4) を満足する必要がある。こ
れによって、金属間化合物の生成量、分布状態が制御さ
れ、アルミニウム合金にバランスの良い高強度及び耐食
性が付与される。必須成分Si、Mg、Cuの合計含有
量が3 %未満では所望の強度を得ることが出来ず、4 %
を越えると耐食性が低下し、MgとSiの合計含有量が
2.7 %を越えると耐食性が低下し、延性が劣化する。
[0014] The high-strength aluminum alloy of the present invention comprises S
i, Mg, Cu, Mn as essential components, Si, Mg, C
It is necessary to satisfy conditional expressions (1) to (4) between u. As a result, the amount and distribution of the intermetallic compound are controlled, and a well-balanced high strength and corrosion resistance are imparted to the aluminum alloy. If the total content of the essential components Si, Mg and Cu is less than 3%, the desired strength cannot be obtained, and 4%
Is exceeded, the corrosion resistance decreases, and the total content of Mg and Si
If it exceeds 2.7%, the corrosion resistance decreases and the ductility deteriorates.

【0015】上記の本発明のアルミニウム合金に、選択
成分として添加されるCr、Zr、V、Znは、結晶粒
径を微細にする機能を有する。Cr、Zr、V、Zn
が、それぞれ下限値に満たないとその効果が小さく、上
限値を越えると粗大な金属間化合物が生成し、伸び、靱
性の低下等、押出材の機械的性質に悪影響を及ぼす。な
お、本発明のアルミニウム合金には、通常、鋳塊組織微
細化のために添加される少量のTi、Bが含まれていて
も本発明の特性が害されることはない。
Cr, Zr, V, and Zn added as selective components to the aluminum alloy of the present invention have a function of reducing the crystal grain size. Cr, Zr, V, Zn
However, if the respective values are less than the lower limits, the effect is small, and if the values exceed the upper limits, coarse intermetallic compounds are formed, which adversely affects the mechanical properties of the extruded material, such as elongation and decrease in toughness. The characteristics of the present invention will not be impaired even if the aluminum alloy of the present invention contains a small amount of Ti or B which is usually added for refining the ingot structure.

【0016】本発明のアルミニウム合金押出材において
は、その表層部の再結晶層の厚みG(μm)が、G≦
0.326t×R(条件式(5) )満たすことが重要であ
る。本合金においては、焼入、焼戻によってAl−Mg
−Si−Cuの4元化合物が微細に析出して高強度が達
成されるが、この4元化合物は、プレス焼入工程もしく
は焼入工程中に、再結晶層の粒界に優先的に析出して強
度および耐食性を低下させる。従って、耐食性を維持し
ながら高強度を達成させるために再結晶層の制御が必要
である。Gが0.326t×Rより大きくなると、粒界
腐食を生じ易くなり、強度の低下も生じる。
In the extruded aluminum alloy material of the present invention, the thickness G (μm) of the recrystallized layer in the surface layer portion is G ≦ G.
It is important to satisfy 0.326 t × R (conditional expression (5)). In this alloy, quenching and tempering
-Si-Cu quaternary compound precipitates finely to achieve high strength, but this quaternary compound preferentially precipitates at the grain boundaries of the recrystallized layer during the press quenching step or the quenching step. To reduce strength and corrosion resistance. Therefore, it is necessary to control the recrystallized layer in order to achieve high strength while maintaining corrosion resistance. If G is greater than 0.326 t × R, intergranular corrosion is likely to occur, and strength is also reduced.

【0017】次いで、本発明のアルミニウム合金押出材
の好ましい製造方法について説明すると、まず、上記し
た配合のアルミニウム合金素材の溶湯を、例えば、半連
続鋳造により造塊し、その鋳塊を均質化処理工程で、4
50℃以上鋳塊の融点未満の温度で均質化処理し、均質
化処理温度から少なくとも250℃までを、25℃/h
以上の平均冷却速度で冷却して押出用ビレットとする。
Next, a preferred method of manufacturing the extruded aluminum alloy material of the present invention will be described. First, a molten metal of the aluminum alloy material having the above-described composition is formed by, for example, semi-continuous casting, and the ingot is homogenized. In the process, 4
Homogenizing at a temperature of 50 ° C. or higher and lower than the melting point of the ingot, and 25 ° C./h from the homogenizing temperature to at least 250 ° C.
The extruded billet is cooled at the above average cooling rate.

【0018】均質化処理温度が450℃未満では、均質
化が十分に行われず、溶質元素の溶入化も不十分となっ
て、押出直後に水冷する所謂プレス焼入れによって強度
を得ようとしても十分な強度を得られない。均質化処理
温度が鋳塊の融点以上の場合には、熱処理炉の汚染、ア
ルミニウム合金素材の変形等があり工業的に実施が難し
くなる。
If the homogenization treatment temperature is lower than 450 ° C., homogenization is not sufficiently performed, solute penetration of the solute element is also insufficient, and sufficient strength can be obtained by so-called press quenching in which water is cooled immediately after extrusion. Strength cannot be obtained. If the homogenization temperature is equal to or higher than the melting point of the ingot, the heat treatment furnace becomes contaminated, the aluminum alloy material is deformed, and the like, which makes industrial implementation difficult.

【0019】250℃までを平均冷却速度25℃/h以
上の冷却速度で冷却することにより、均質化処理で溶入
した溶質元素の固溶状態が維持され、高強度が達成され
る。冷却速度が25℃/hに満たないと、均質化処理で
固溶した溶質成分が析出、且つ凝集して粗大となり、凝
集化した成分は再固溶し難いから十分な強度が得難くな
る。安定して高強度を得るために、より好ましい冷却速
度は100℃/h以上である。
By cooling to 250 ° C. at an average cooling rate of 25 ° C./h or more, the solid solution state of the solute element introduced by the homogenization treatment is maintained, and high strength is achieved. If the cooling rate is less than 25 ° C./h, the solute component dissolved in the homogenization treatment precipitates and agglomerates to become coarse, and the agglomerated component is hard to re-solid-solve, so that it is difficult to obtain sufficient strength. In order to stably obtain a high strength, a more preferable cooling rate is 100 ° C./h or more.

【0020】均質化処理工程終了後、押出用ビレット
を、押出加工工程において、450℃以上押出用ビレッ
トの融点未満の温度に加熱して熱間押出を行い押出材を
得る。この際、押出前の押出用ビレットの温度が450
℃未満では、溶質元素の溶入化が不十分となり、プレス
焼入れで十分な強度を得られず、その温度が融点以上に
なると押出操作中に割れを引き起こす。
After completion of the homogenization treatment step, the extruded billet is heated to a temperature of 450 ° C. or more and lower than the melting point of the extruded billet in the extrusion processing step to perform hot extrusion to obtain an extruded material. At this time, the temperature of the extrusion billet before extrusion was 450
If the temperature is lower than 0 ° C., the penetration of the solute element becomes insufficient, and sufficient strength cannot be obtained by press quenching. If the temperature exceeds the melting point, cracks occur during the extrusion operation.

【0021】更に、押出直後の表面温度が450℃以上
の温度に保持された状態の押出材を、プレス焼き入れ工
程において10℃/秒以上の冷却速度で100℃以下の
温度まで冷却する。又は、上記の押出材を焼入れ処理工
程に従い、雰囲気炉や塩浴炉等の熱処理炉で450℃以
上押出材の融点未満の温度で溶体化処理した後、10℃
/秒以上の冷却速度で100℃以下まで冷却する。
Further, the extruded material whose surface temperature is maintained at a temperature of 450 ° C. or more immediately after extrusion is cooled to a temperature of 100 ° C. or less at a cooling rate of 10 ° C./sec or more in a press quenching step. Alternatively, the extruded material is subjected to a solution treatment at a temperature of 450 ° C. or more and less than the melting point of the extruded material in a heat treatment furnace such as an atmosphere furnace or a salt bath furnace according to a quenching process, and then 10 ° C.
Cooling to 100 ° C. or less at a cooling rate of / sec or more.

【0022】プレス焼入れ工程の際、押出材の表面温度
が450℃未満では、溶質成分が析出する所謂焼入れ遅
れが生じ、所望の強度が得られない。より好ましい押出
材の表面温度は500℃以上である。更に、その冷却速
度が10℃/秒に満たないと、冷却中に溶質成分の析出
が生じ所望の強度が得らず、耐食性も低下する。より好
ましい冷却速度は16℃/秒以上である。
If the surface temperature of the extruded material is less than 450 ° C. in the press quenching step, so-called quenching delay occurs in which solute components are precipitated, and a desired strength cannot be obtained. The more preferable surface temperature of the extruded material is 500 ° C. or more. Further, if the cooling rate is less than 10 ° C./sec, the solute component precipitates during cooling, so that a desired strength cannot be obtained and the corrosion resistance is lowered. A more preferred cooling rate is 16 ° C./sec or more.

【0023】また、焼入れ処理工程の際、溶体化処理時
の熱処理温度が450℃未満では、溶質元素の溶入化が
不十分となり所望する強度を得られず、その温度が押出
材の融点以上の場合には、熱処理炉の汚染、押出材の変
形等があり工業的に実施が困難となる。更に、その冷却
速度が10℃/秒に満たないと、プレス焼入れ工程の場
合と同様に、冷却中に溶質成分の析出が生じて所望の強
度が得らず、耐食性も低下する。より好ましい冷却速度
は16℃/秒以上である。
If the heat treatment temperature during the solution treatment during the quenching treatment step is lower than 450 ° C., the penetration of the solute element is insufficient, and the desired strength cannot be obtained, and the temperature is higher than the melting point of the extruded material. In the case of (1), there is contamination of the heat treatment furnace, deformation of the extruded material, and the like, which makes industrial implementation difficult. Further, if the cooling rate is less than 10 ° C./sec, as in the case of the press quenching step, precipitation of a solute component occurs during cooling, a desired strength is not obtained, and corrosion resistance is reduced. A more preferred cooling rate is 16 ° C./sec or more.

【0024】焼入れの終了した押出材は、焼戻し処理工
程において150〜200℃で2〜24時間焼戻し処理
を行い、最終製品とする。この際、焼戻し処理温度が1
50℃未満では、十分な強度を得るために24時間を越
える焼戻し処理を行わなければならず、工業生産上不都
合となり、200℃を越えると、最高到達強度が低くな
る。更に、熱処理時間が2時間に満たないと十分な強度
を得られず、24時間を越えると強度が低下する。
The quenched extruded material is subjected to a tempering process at 150 to 200 ° C. for 2 to 24 hours in a tempering process step to obtain a final product. At this time, the tempering temperature is 1
If the temperature is lower than 50 ° C., tempering must be performed for more than 24 hours to obtain sufficient strength, which is inconvenient for industrial production. If the temperature exceeds 200 ° C., the ultimate strength is low. Further, if the heat treatment time is less than 2 hours, sufficient strength cannot be obtained, and if it exceeds 24 hours, the strength decreases.

【0025】[0025]

【実施例】実施例1 表1に示す組成を有するアルミニウム合金を半連続鋳造
により造塊して、直径200mmの鋳塊を製造した。こ
れらの鋳塊を530℃で8時間均質化処理をした後、5
30℃から250℃までを平均冷却速度250℃/hで
冷却し、各押出用ビレットを得る。これらの各押出用ビ
レットを520℃で外径30mm、内径20mmの管形
状に押出加工(押出比:80)した。
EXAMPLE 1 An aluminum alloy having a composition shown in Table 1 was ingot-formed by semi-continuous casting to produce an ingot having a diameter of 200 mm. After homogenizing these ingots at 530 ° C. for 8 hours,
Cooling from 30 ° C. to 250 ° C. is performed at an average cooling rate of 250 ° C./h to obtain each extrusion billet. Each of these extrusion billets was extruded at 520 ° C. into a tube shape having an outer diameter of 30 mm and an inner diameter of 20 mm (extrusion ratio: 80).

【0026】次いで、得られた管状押出材を、540℃
で溶体化処理した後、10秒以内に水冷による焼入れ処
理を行い、焼入れ処理の3日後に、175℃で8時間の
人工時効処理(焼戻し処理)を行い各管状押出材をT6
材に調質した。これらのT6材を試験材として、以下の
方法に従って、(1)引張試験、(2)粒界腐食試験を
行い特性を評価した。
Next, the obtained tubular extruded material was heated at 540 ° C.
Quenching treatment by water cooling within 10 seconds, and three days after the quenching treatment, an artificial aging treatment (tempering treatment) at 175 ° C. for 8 hours is performed, and each tubular extruded material is subjected to T6.
Tempered wood. Using these T6 materials as test materials, (1) tensile tests and (2) intergranular corrosion tests were performed to evaluate the properties according to the following methods.

【0027】(1)引張試験 JIS Z2241に基づいて、各試験片について引張
強さ(UTS)、耐力(YS)、破断伸び(δ)を測定
する。 (2)粒界腐食試験 塩化ナトリウム(NaCl)57g、30%H2 2
0mlを蒸留水で1リットルに調整して試験液とし、こ
の試験液を30℃にして各試験片を6時間浸漬し腐食減
量を測定する。腐食減量が1.0%未満のものを耐食性
良好と判断した。
(1) Tensile test The tensile strength (UTS), proof stress (YS) and elongation at break (δ) of each test piece are measured based on JIS Z2241. (2) Intergranular corrosion test 57 g of sodium chloride (NaCl), 30% H 2 O 2 1
0 ml is adjusted to 1 liter with distilled water to prepare a test solution. The test solution is kept at 30 ° C., each test piece is immersed for 6 hours, and the corrosion loss is measured. Those having a corrosion weight loss of less than 1.0% were judged to have good corrosion resistance.

【0028】各試験材について、表層部の再結晶層厚
(G)、0.326t×Rの値、引張特性および粒界腐
食試験結果を表2に示す。表2にみられるように、本発
明に従う試験材はいずれも、優れた強度と良好な耐食性
をそなえている。なお、表層部の再結晶層厚(G)の測
定は、表層部の粗大再結晶粒層の直角断面のミクロ組織
を倍率100倍で写真撮影し、外形の輪郭線に垂直な直
線を1測定当たり50本以上引き、これらの直線が粗大
再結晶粒層を横切る長さを実測し、その実測値を平均す
ることにより行った。
Table 2 shows the recrystallized layer thickness (G) of the surface layer, the value of 0.326 t × R, the tensile properties, and the results of the intergranular corrosion test for each test material. As can be seen from Table 2, all the test materials according to the present invention have excellent strength and good corrosion resistance. The thickness of the recrystallized layer (G) in the surface layer was measured by taking a photograph of the microstructure of a right-angle cross section of the coarse recrystallized grain layer in the surface layer at a magnification of 100 and measuring one straight line perpendicular to the contour line of the outer shape. 50 or more lines were drawn, and the length of these straight lines crossing the coarse recrystallized grain layer was measured, and the measured values were averaged.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】比較例1 表3に示す組成のアルミニウム合金を半連続鋳造により
造塊して、直径200mmの鋳塊を製造した。これらの
鋳塊を、実施例1と同様に処理して管状押出材とし、更
にT6材に調質した。これらのT6材を試験片として、
実施例1と同じく、(1)引張試験、(2)粒界腐食試
験を行い、特性を評価した。結果を表4に示す。なお、
表3において、本発明の条件を外れたものには下線を付
した。
Comparative Example 1 An ingot having a diameter of 200 mm was manufactured by semi-continuous casting an aluminum alloy having the composition shown in Table 3. These ingots were treated in the same manner as in Example 1 to obtain a tubular extruded material, which was further tempered into a T6 material. Using these T6 materials as test pieces,
As in Example 1, (1) tensile test and (2) intergranular corrosion test were performed to evaluate the characteristics. Table 4 shows the results. In addition,
In Table 3, those out of the conditions of the present invention are underlined.

【0032】[0032]

【表3】 《表注》合金MはSi+Mg+Cuが範囲外 合金OはMg≦1.7 ×Siを満たさない 合金PはMg+Si が範囲外[Table 3] << Table Note >> For alloy M, Si + Mg + Cu is out of range. For alloy O, Mg ≦ 1.7 × Si is not satisfied. For alloy P, Mg + Si is out of range.

【0033】[0033]

【表4】 [Table 4]

【0034】表4に示すように、試験材No.11はM
n量が少ないため、押出中に再結晶が生じ強度が低下し
た。試験材No.12はMn量が多いため、粗大な金属
間化合物が生成し伸びが低下した。試験材No.13
は、Si、Mg、Cuの合計量が本発明の範囲から外れ
ているため耐食性が劣る。試験材No.14、15は、
それぞれMg量、Mg≦1.7×Siが本発明の範囲か
ら外れているため耐食性が劣っている。試験材No.1
6、17は、それぞれMg、Siの合計量、Siが本発
明の範囲から外れているため耐食性が劣り、延性の低下
とが生じた。試験材No.18はMg量が多いため耐食
性が劣っている。
As shown in Table 4, the test material No. 11 is M
Due to the small amount of n, recrystallization occurred during extrusion and the strength was reduced. Test material No. In No. 12, since the amount of Mn was large, a coarse intermetallic compound was formed and elongation was reduced. Test material No. 13
Has poor corrosion resistance because the total amount of Si, Mg and Cu is out of the range of the present invention. Test material No. 14, 15 are
Since the respective amounts of Mg and Mg ≦ 1.7 × Si are out of the range of the present invention, the corrosion resistance is inferior. Test material No. 1
In Nos. 6 and 17, the total amount of Mg and Si, respectively, and Si were out of the range of the present invention, the corrosion resistance was poor, and the ductility was lowered. Test material No. No. 18 is inferior in corrosion resistance because of a large amount of Mg.

【0035】実施例2 表1に示す組成を有するアルミニウム合金Aを半連続鋳
造により造塊して、直径200mmの鋳塊を製造した。
この鋳塊を表5に示す各製造条件により処理して管状押
出材を作製し、管状押出材を、表5に示す条件でプレス
焼入れ又は焼入れ処理し、更に実施例1と同一の条件で
焼戻し処理してT6材とした。
Example 2 An aluminum alloy A having a composition shown in Table 1 was ingot by semi-continuous casting to produce an ingot having a diameter of 200 mm.
The ingot was processed under the respective manufacturing conditions shown in Table 5 to produce a tubular extruded material, and the tubular extruded material was press-hardened or quenched under the conditions shown in Table 5, and further tempered under the same conditions as in Example 1. This was processed into T6 material.

【0036】得られたT6材を試験片として、表層部の
再結晶層厚(G)を測定し、0.326t×Rを算出し
た。更に、実施例1と同様、(1)引張試験、(2)粒
界腐食試験を行い、特性を評価した。評価結果を表6に
示す。
Using the obtained T6 material as a test piece, the recrystallized layer thickness (G) of the surface layer was measured, and 0.326 t × R was calculated. Further, in the same manner as in Example 1, (1) a tensile test and (2) an intergranular corrosion test were performed to evaluate the characteristics. Table 6 shows the evaluation results.

【0037】比較例30〜34 表1に示す組成を有するアルミニウム合金Aを半連続鋳
造により造塊して、直径200mmの鋳塊を製造した。
この鋳塊を表5に示す各製造条件により処理して管状押
出材を作製し、管状押出材を、表5に示す条件でプレス
焼入れ又は焼入れ処理し、更に実施例1と同一の条件で
焼戻し処理してT6材とした。
Comparative Examples 30 to 34 Aluminum alloy A having the composition shown in Table 1 was semi-continuously cast to produce an ingot having a diameter of 200 mm.
The ingot was processed under the respective manufacturing conditions shown in Table 5 to produce a tubular extruded material, and the tubular extruded material was press-hardened or quenched under the conditions shown in Table 5, and further tempered under the same conditions as in Example 1. This was processed into T6 material.

【0038】得られたT6材を試験片として、表層部の
再結晶層厚(G)を測定し、0.326t×Rを算出し
た。更に、実施例1と同様、(1)引張試験、(2)粒
界腐食試験を行い、特性を評価した。評価結果を表6に
示す。なお、表5において、本発明の条件を外れたもの
には下線を付した。
Using the obtained T6 material as a test piece, the recrystallized layer thickness (G) of the surface layer was measured, and 0.326 t × R was calculated. Further, in the same manner as in Example 1, (1) a tensile test and (2) an intergranular corrosion test were performed to evaluate the characteristics. Table 6 shows the evaluation results. In Table 5, those outside the conditions of the present invention are underlined.

【0039】[0039]

【表5】 《表注》均質化後冷却速度は均質化処理温度から250℃までの平均冷却速度 プレス焼入れの冷却速度は水冷前の材料温度から100℃までの平均冷却速度 焼入れ処理の冷却速度は溶体化処理温度から100℃までの平均冷却速度 溶体化処理加熱は雰囲気炉を使用[Table 5] << Table Note >> The cooling rate after homogenization is the average cooling rate from the homogenization processing temperature to 250 ° C. The cooling rate for press quenching is the average cooling rate from the material temperature before water cooling to 100 ° C. The cooling rate for quenching is the solution treatment. Average cooling rate from temperature to 100 ° C Use solution furnace for heating

【0040】[0040]

【表6】 [Table 6]

【0041】表6に示すように、本発明の製造条件に従
い試験材No.19〜29はいずれも、優れた強度と良
好な耐食性を示した。これに対して、試験材No.30
〜34はいずれも、強度、耐食性のいずれかにおいて劣
っている。すなわち、試験材No.30は均質化処理後
の冷却速度が小さいため、人工時効処理後の強度が低く
耐食性の低下も生じた。試験材No.31は押出温度が
本発明の範囲より低いため、溶質元素の十分な固溶が達
成されず、強度が低くなり耐食性も低下した。試験材N
o.32はプレス焼入れ時の冷却速度が低いため、強度
が劣り耐食性も低下した。試験材No.33は溶体化処
理後の冷却速度が小さいため、高強度が得られず耐食性
も低い。
As shown in Table 6, the test materials No. 19 to 29 showed excellent strength and good corrosion resistance. On the other hand, the test material No. 30
-34 are inferior in either strength or corrosion resistance. That is, the test material No. In No. 30, the cooling rate after the homogenization treatment was low, so that the strength after the artificial aging treatment was low, and the corrosion resistance was lowered. Test material No. In No. 31, since the extrusion temperature was lower than the range of the present invention, a sufficient solid solution of the solute element was not achieved, the strength was lowered, and the corrosion resistance was lowered. Test material N
o. Sample No. 32 had a low cooling rate at the time of press quenching, so that the strength was poor and the corrosion resistance was low. Test material No. No. 33 has a low cooling rate after the solution treatment, so that high strength cannot be obtained and corrosion resistance is low.

【0042】[0042]

【発明の効果】本発明によれば、耐食性に優れ、高強度
で、押出性も良好なアルミニウム合金押出材及びその製
造方法が提供される。当該アルミニウム合金は、従来の
鉄系の構造材に代わって自動車、鉄道車両、航空機等の
輸送機器の構造材として好適に使用することが出来る。
According to the present invention, there is provided an aluminum alloy extruded material having excellent corrosion resistance, high strength and good extrudability, and a method for producing the same. The aluminum alloy can be suitably used as a structural material for transportation equipment such as automobiles, railway vehicles, and aircraft, instead of a conventional iron-based structural material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 612 C22F 1/00 612 630 630A 640 640A 682 682 683 683 684 684A 684C 691 691B 691C 692 692A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 612 C22F 1/00 612 630 630A 640 640A 682 682 683 683 684 684A 684C 691 691B 691C 692692A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.5%(重量%、以下同じ)〜1.5
%、Mg:0.9%〜1.6 %、Cu:0.8%〜2.5 %を含有す
ると共に、下記の条件式(1) 、(2) 、(3) 、(4) を満足
し、 3≦Si%+Mg%+Cu%≦4---(1) Mg%≦1.7×Si%---(2) Mg%+Si%≦2.7---(3) Cu%/2≦Mg%≦(Cu%/2)+0.6---(4) 更にMn:0.5%〜1.2 %を含有し、残部アルミニウム及
び不可避的不純物からなるアルミニウム合金の押出材で
あって、該押出材の最小肉厚をt(mm)、押出比をR
としたとき、押出材の表層部の再結晶層の厚さG(μ
m)がG≦0.326t×Rを満たすことを特徴とする
耐食性に優れた高強度アルミニウム合金押出材。
1. Si: 0.5% (% by weight, hereinafter the same) to 1.5%
%, Mg: 0.9% to 1.6%, Cu: 0.8% to 2.5%, and satisfies the following conditional expressions (1), (2), (3) and (4): 3 ≦ Si% + Mg % + Cu% ≦ 4 --- (1) Mg% ≦ 1.7 × Si% --- (2) Mg% + Si% ≦ 2.7 --- (3) Cu% / 2 ≦ Mg% ≦ (Cu % / 2) +0.6 --- (4) An extruded material of an aluminum alloy further containing Mn: 0.5% to 1.2%, the balance being aluminum and unavoidable impurities. t (mm), extrusion ratio is R
, The thickness G (μ) of the recrystallized layer on the surface of the extruded material
m) satisfies G ≦ 0.326 t × R, a high-strength aluminum alloy extruded material having excellent corrosion resistance.
【請求項2】 請求項1に記載のアルミニウム合金に、
更にCr:0.02 %〜0.4 %、Zr:0.03 %〜0.2 %、
V:0.03 %〜0.2 %、Zn:0.03 %〜2.0 %のうち1種
類以上を含有することを特徴とする耐食性に優れた高強
度アルミニウム合金押出材。
2. The aluminum alloy according to claim 1,
Further, Cr: 0.02% to 0.4%, Zr: 0.03% to 0.2%,
A high-strength aluminum alloy extruded material having excellent corrosion resistance, characterized by containing at least one of V: 0.03% to 0.2% and Zn: 0.03% to 2.0%.
【請求項3】 請求項1又は2に記載のアルミニウム合
金を造塊して得た鋳塊を、450℃以上該鋳塊の融点未
満の温度で均質化処理した後、均質化処理温度から少な
くとも250℃までは平均冷却速度25℃/h以上で冷
却する均質化処理工程と、均質化処理後のアルミニウム
合金鋳塊を450℃以上該鋳塊の融点未満の温度に加熱
して押出加工を行う押出工程と、押出直後の押出材の表
面温度が450℃以上に保持された状態で10℃/秒以
上の冷却速度で100℃以下の温度まで冷却するプレス
焼入れ工程及び前記押出材を450℃以上押出材の融点
未満の温度で溶体化処理した後10℃/秒以上の冷却速
度で100℃以下の温度まで冷却する焼入れ処理工程の
いずれか一方の工程と、150〜200℃で2〜24時
間の熱処理を施す焼戻し処理工程とからなることを特徴
とする耐食性に優れた高強度アルミニウム合金押出材の
製造方法。
3. An ingot obtained by ingoting the aluminum alloy according to claim 1 or 2 is subjected to a homogenization treatment at a temperature of 450 ° C. or more and less than the melting point of the ingot, and at least a temperature from the homogenization treatment temperature. A homogenization treatment step of cooling at an average cooling rate of 25 ° C./h or more up to 250 ° C., and an aluminum alloy ingot after the homogenization treatment is heated to 450 ° C. or more and lower than the melting point of the ingot to perform extrusion. An extrusion step, a press quenching step of cooling the extruded material immediately after extrusion to a temperature of 100 ° C. or less at a cooling rate of 10 ° C./sec or more while the surface temperature of the extruded material is maintained at 450 ° C. or more; One of a quenching step of performing a solution treatment at a temperature lower than the melting point of the extruded material and then cooling to a temperature of 100 ° C. or less at a cooling rate of 10 ° C./sec or more, and 150 to 200 ° C. for 2 to 24 hours Heat treatment A method for producing a high-strength aluminum alloy extruded material having excellent corrosion resistance, comprising a return treatment step.
JP18305199A 1999-06-29 1999-06-29 Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance Expired - Fee Related JP4201434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18305199A JP4201434B2 (en) 1999-06-29 1999-06-29 Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18305199A JP4201434B2 (en) 1999-06-29 1999-06-29 Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2001011559A true JP2001011559A (en) 2001-01-16
JP4201434B2 JP4201434B2 (en) 2008-12-24

Family

ID=16128888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18305199A Expired - Fee Related JP4201434B2 (en) 1999-06-29 1999-06-29 Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4201434B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430965A2 (en) * 2002-11-01 2004-06-23 Sumitomo Light Metal Industries, Ltd. Method of manufacturing high-strength aluminium alloy extruded product excelling in corrosion resistance and stress corrosion cracking resistance
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
JP2007247000A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step
JP2007254825A (en) * 2006-03-23 2007-10-04 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet superior in bendability
JP2007262484A (en) * 2006-03-28 2007-10-11 Kobe Steel Ltd Method for producing 6000 series aluminum alloy sheet for automobile panel excellent in hem bendability and bake hardenability
KR20210037108A (en) * 2019-09-27 2021-04-06 현대제철 주식회사 Aluminum alloy and method of manufacturing the same
CN113564433A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Corrosion-resistant 6082 aluminum alloy material and casting process thereof
CN114790528A (en) * 2022-05-27 2022-07-26 广东澳美铝业有限公司 AlZnMgCu alloy with low Zr content, low deformation resistance and high strength
CN115323227A (en) * 2022-08-04 2022-11-11 广东伟业铝厂集团有限公司 Aluminum alloy photovoltaic module frame and preparation method thereof
CN115717206A (en) * 2022-10-28 2023-02-28 北京科技大学 High-strength and high-corrosion-resistance Al-Mg-Si alloy and preparation method thereof
CN115786780A (en) * 2022-11-30 2023-03-14 福建祥鑫股份有限公司 Preparation method of 6XXX aluminum alloy with high Cu content and section bar thereof
CN116219237A (en) * 2023-03-15 2023-06-06 昆明理工大学 Medium-high strength aluminum alloy and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430965A2 (en) * 2002-11-01 2004-06-23 Sumitomo Light Metal Industries, Ltd. Method of manufacturing high-strength aluminium alloy extruded product excelling in corrosion resistance and stress corrosion cracking resistance
EP1430965A3 (en) * 2002-11-01 2005-03-16 Sumitomo Light Metal Industries, Ltd. Method of manufacturing high-strength aluminium alloy extruded product excelling in corrosion resistance and stress corrosion cracking resistance
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
JP2007247000A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step
JP2007254825A (en) * 2006-03-23 2007-10-04 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet superior in bendability
JP2007262484A (en) * 2006-03-28 2007-10-11 Kobe Steel Ltd Method for producing 6000 series aluminum alloy sheet for automobile panel excellent in hem bendability and bake hardenability
KR20210037108A (en) * 2019-09-27 2021-04-06 현대제철 주식회사 Aluminum alloy and method of manufacturing the same
KR102312430B1 (en) 2019-09-27 2021-10-12 현대제철 주식회사 Aluminum alloy and method of manufacturing the same
CN113564433A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Corrosion-resistant 6082 aluminum alloy material and casting process thereof
CN114790528A (en) * 2022-05-27 2022-07-26 广东澳美铝业有限公司 AlZnMgCu alloy with low Zr content, low deformation resistance and high strength
CN114790528B (en) * 2022-05-27 2023-11-28 广东齐力澳美高新材料股份有限公司 AlZnMgCu alloy with low Zr, low deformation resistance and high strength
CN115323227A (en) * 2022-08-04 2022-11-11 广东伟业铝厂集团有限公司 Aluminum alloy photovoltaic module frame and preparation method thereof
CN115717206A (en) * 2022-10-28 2023-02-28 北京科技大学 High-strength and high-corrosion-resistance Al-Mg-Si alloy and preparation method thereof
CN115717206B (en) * 2022-10-28 2024-02-13 北京科技大学 High-strength high-corrosion-resistance Al-Mg-Si alloy and preparation method thereof
CN115786780A (en) * 2022-11-30 2023-03-14 福建祥鑫股份有限公司 Preparation method of 6XXX aluminum alloy with high Cu content and section bar thereof
CN116219237A (en) * 2023-03-15 2023-06-06 昆明理工大学 Medium-high strength aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4201434B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4101614B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent resistance to corrosion and stress corrosion cracking
JP3194742B2 (en) Improved lithium aluminum alloy system
JP5110938B2 (en) Automotive undercarriage parts and manufacturing method thereof
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
WO2011122263A1 (en) Aluminium alloy forging and method of manufacture for same
JP6273158B2 (en) Aluminum alloy plate for structural materials
JP6090725B2 (en) Method for manufacturing plastic processed product made of aluminum alloy
JP3053352B2 (en) Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability
JP2008223108A (en) Forged material of aluminum alloy and manufacturing method therefor
JPH0372147B2 (en)
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JPH0995750A (en) Aluminum alloy excellent in heat resistance
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
JPS6150141B2 (en)
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees