JP2006104537A - Method for casting aluminum alloy - Google Patents

Method for casting aluminum alloy Download PDF

Info

Publication number
JP2006104537A
JP2006104537A JP2004294191A JP2004294191A JP2006104537A JP 2006104537 A JP2006104537 A JP 2006104537A JP 2004294191 A JP2004294191 A JP 2004294191A JP 2004294191 A JP2004294191 A JP 2004294191A JP 2006104537 A JP2006104537 A JP 2006104537A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mold
molten metal
crystal
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004294191A
Other languages
Japanese (ja)
Inventor
Keisuke Ban
恵介 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2004294191A priority Critical patent/JP2006104537A/en
Publication of JP2006104537A publication Critical patent/JP2006104537A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for casting an aluminum alloy where solution treatment and quenching can be made needless. <P>SOLUTION: At the time when a molten metal composed of an aluminum alloy is poured into the cavity of a molding mold and is cooled, so as to discharge a cast product from the molding mold, as the aluminum alloy, an aluminum alloy where, in its phase diagram, a solid solution component(s) allowed to enter into solid solution in α crystals composed of aluminum forming a solid phase region near pure aluminum is added by ≥5 wt.% to pure aluminum, and the addition amount of the solid solution component(s) lies in the range corresponding to the solid solution degree line forming the boundary of the α crystal region composed of the α crystals and the eutectic region in which the α crystals and β crystals composed of the solid solution component(s) are made eutectic is used, and the cooling rate of the molten metal charged into the molding mold is controlled to ≥800°C/min. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はアルミニウム合金の鋳造方法に関し、更に詳細にはアルミニウム合金から成る溶湯を成形型のキャビティに注湯して冷却し、前記成形型から鋳造製品を取り出すアルミニウム合金の鋳造方法に関する。   The present invention relates to an aluminum alloy casting method, and more particularly, to an aluminum alloy casting method in which a molten metal made of an aluminum alloy is poured into a cavity of a mold and cooled to take out a cast product from the mold.

本発明者は、先に下記特許文献1において、成形型のキャビティ内にアルミニウム合金の溶湯を注湯して鋳造する際に、キャビティ内に存在させた還元性化合物によって溶湯表面の酸化皮膜を還元しつつ、キャビティ内に溶湯を充填するアルミニウム合金の鋳造方法を提案した。
特開2002−219555号公報
The present inventor previously reduced the oxide film on the surface of the molten metal by the reducing compound present in the cavity when the molten aluminum alloy was poured into the cavity of the mold and casted in Patent Document 1 below. However, an aluminum alloy casting method for filling the cavity with molten metal was proposed.
JP 2002-219555 A

上記特許文献1に提案された鋳造方法によれば、キャビティ内での溶湯の流動性を著しく向上でき、内壁面に塗型剤を塗布することなくキャビティに溶湯を充分に充填できるため、キャビティに充填された溶湯の急速冷却を可能にでき、良好な外観の鋳造製品を得ることができる。
しかし、得られた鋳造製品には、従来の鋳造製品と同様に、その強度や硬さを調質すべく、溶体化処理、焼き入れ、時効処理等の各種熱処理が施される。
かかる各種熱処理のうち、溶体化処理及び焼き入れは、鋳造製品を490〜530℃に加熱した状態を約3時間ほど保持しなくてはならず、処理時間が長く且つ冷却速度等に熟練が必要であるため、鋳造製品の生産性向上にネックとなっている。
そこで、本発明の課題は、溶体化処理及び焼き入れを不要化し得るアルミニウム合金の鋳造方法を提供することにある。
According to the casting method proposed in Patent Document 1, the fluidity of the molten metal in the cavity can be remarkably improved, and the molten metal can be sufficiently filled in the cavity without applying a coating agent to the inner wall surface. The molten metal filled can be rapidly cooled, and a cast product having a good appearance can be obtained.
However, the obtained cast product is subjected to various heat treatments such as solution treatment, quenching, and aging treatment in order to temper its strength and hardness in the same manner as conventional cast products.
Among these various heat treatments, the solution treatment and quenching must maintain the state in which the cast product is heated to 490 to 530 ° C. for about 3 hours, requires a long treatment time and requires skill in cooling rate, etc. Therefore, it has become a bottleneck in improving the productivity of cast products.
Then, the subject of this invention is providing the casting method of the aluminum alloy which can make a solution treatment and quenching unnecessary.

本発明者は、前記課題を解決すべく検討したところ、成形型のキャビティに充填されたアルミニウム合金からなる溶湯を、1000℃/分の冷却速度で急速冷却した後、成形型を型開きして得られた鋳造製品は、溶体化処理及び焼き入れを施さなくても、所定の硬度、伸びや強度を有していることを知り、本発明に到達した。
すなわち、本発明は、アルミニウム合金から成る溶湯を成形型のキャビティに注湯して冷却し、前記成形型から鋳造製品を取り出す際に、該アルミニウム合金として、前記アルミニウム合金の状態図において、純アルミニウムの近傍の固相領域を形成するアルミニウムから成るα晶に固溶する固溶成分が、純アルミニウムに対して5重量%以上添加され、且つ前記固溶成分の添加量が、前記α晶から成るα晶領域と、前記α晶と固溶成分から成るβ晶とが共晶する共晶領域との境界を形成する固溶度線に対応する範囲内であるアルミニウム合金を用い、前記成形型での冷却速度を、前記鋳造製品の樹枝状結晶の間隔が平均で20μm以下となるように調整することを特徴とするアルミニウム合金の鋳造方法にある。
The present inventor has studied to solve the above problems, and after rapidly cooling a molten metal made of an aluminum alloy filled in the mold cavity at a cooling rate of 1000 ° C./min, the mold is opened and the mold is opened. The obtained cast product was found to have a predetermined hardness, elongation and strength even without solution treatment and quenching, and reached the present invention.
That is, according to the present invention, when a molten metal made of an aluminum alloy is poured into a cavity of a mold and cooled, and the cast product is taken out from the mold, the aluminum alloy is used as a pure aluminum in the state diagram of the aluminum alloy. 5% by weight or more of a solid solution component dissolved in the α crystal composed of aluminum forming a solid phase region in the vicinity of is added to the pure aluminum, and the added amount of the solid solution component is composed of the α crystal. Using an aluminum alloy that is within a range corresponding to a solid solubility line that forms a boundary between an α crystal region and a eutectic region in which the α crystal and a β crystal composed of a solid solution component are eutectic, The aluminum alloy casting method is characterized in that the cooling rate is adjusted so that the average interval between dendritic crystals in the cast product is 20 μm or less.

かかる本発明において、成形型のキャビティに充填された溶湯の冷却速度を、800℃/分以上(更に好ましくは1000℃/分以上)とすることによって、樹枝状結晶の間隔が平均で20μm以下(更に好ましくは17μm以下)の鋳造製品を容易に得ることができる。
この様に、成形型のキャビティに充填された溶湯を急速冷却するには、強制冷却手段が設けられた成形型を用いることが好ましい。
特に、成形型のキャビティ内に注湯した溶湯の表面の酸化皮膜を、前記キャビティ内に在る還元性化合物によって還元しつつ、前記キャビティ内に充填した溶湯を強制冷却することによって、キャビティの内壁面に塗型剤を塗布することを要せず、キャビティに充填された溶湯の急速冷却を容易に行なうことができる。
また、α晶に固溶する固溶成分としては、Si、Mn、Mg及びCuから成る群から選ばれた一種を好適に用いることができる。
更に、成形型から取り出した鋳造製品に、溶体化処理用の熱処理を施すことなく時効処理用の熱処理を施すことによって、鋳造製品の物性を更に向上できる。
In the present invention, the cooling rate of the molten metal filled in the mold cavity is set to 800 ° C./min or more (more preferably 1000 ° C./min or more), whereby the average interval between dendritic crystals is 20 μm or less ( More preferably, a cast product of 17 μm or less can be easily obtained.
Thus, in order to rapidly cool the molten metal filled in the mold cavity, it is preferable to use a mold provided with a forced cooling means.
In particular, by reducing the oxide film on the surface of the molten metal poured into the cavity of the mold by the reducing compound present in the cavity, the molten metal filled in the cavity is forcibly cooled to thereby reduce the inside of the cavity. It is not necessary to apply a coating agent to the wall surface, and rapid cooling of the molten metal filled in the cavity can be easily performed.
Moreover, as a solid solution component which dissolves in the α crystal, one selected from the group consisting of Si, Mn, Mg and Cu can be suitably used.
Furthermore, the physical properties of the cast product can be further improved by subjecting the cast product taken out from the mold to the heat treatment for aging treatment without performing the heat treatment for solution treatment.

従来の溶体化処理及び焼き入れは、アルミニウム合金の状態図において、アルミニウムから成るα晶によって形成されているα晶領域と、α晶と添加された固溶成分から成るβ晶とが共晶する共晶領域との境界を形成する固溶度線よりも高温となるように鋳造製品を昇温し、昇温した温度に対応した固溶成分が固溶された状態のα晶を形成する。
かかる状態の鋳造製品を水等で急速に冷却することによって、α晶に固溶された固溶成分がβ晶として晶出することなく冷却されるため、冷却された鋳造製品の温度においては、α晶に過剰の固溶成分が固溶された過飽和状態を形成する。
この点、本発明によれば、成形型のキャビティに充填されたアルミニウム合金から成る溶湯を急速冷却することによって、アルミニウム合金の状態図において、高温下でα晶領域のα晶に固溶している固溶成分がβ晶として晶出することなく冷却され、冷却された鋳造製品の温度下では、α晶に過剰の固溶成分が固溶された過飽和状態を形成する。このため、成形型を型開きして取り出された鋳造製品は、溶体化処理及び焼き入れたものと略同等なものである。
その結果、成形型から取り出された鋳造製品に対し、再度、熟練を要する溶体化処理及び焼き入れを施すことを要しないため、鋳造製品の生産性を向上でき、且つ熟練者でなくても良好な品質の鋳造製品を得ることができる。
In the conventional solution treatment and quenching, in the phase diagram of an aluminum alloy, the α crystal region formed by the α crystal composed of aluminum and the β crystal composed of the α crystal and the added solid solution component are co-crystallized. The cast product is heated to a temperature higher than the solid solubility line that forms the boundary with the eutectic region, and an α crystal in which a solid solution component corresponding to the raised temperature is dissolved is formed.
By rapidly cooling the cast product in such a state with water or the like, the solid solution component dissolved in the α crystal is cooled without crystallizing as a β crystal. Therefore, at the temperature of the cooled cast product, A supersaturated state is formed in which excess solid solution components are dissolved in the α crystal.
In this regard, according to the present invention, by rapidly cooling a molten metal made of an aluminum alloy filled in the cavity of the mold, the aluminum alloy is dissolved in the α crystal in the α crystal region at a high temperature in the phase diagram of the aluminum alloy. The solid solution component is cooled without crystallizing as β crystals, and under the temperature of the cooled cast product, a supersaturated state is formed in which excess solid solution components are dissolved in α crystals. For this reason, the cast product taken out by opening the mold is substantially the same as that obtained by solution treatment and quenching.
As a result, the casting product taken out from the mold does not need to be subjected to solution treatment and quenching that require skill again, so the productivity of the casting product can be improved and it is good even if it is not an expert. Quality casting products can be obtained.

本発明で用いるアルミニウム合金の状態図を図1に示す。図1に示す状態図は、横軸に添加物量(重量%)を示すと共に、縦軸に温度を示す。
この図1において、横軸の添加物量がゼロのところがアルミニウム100%(純アルミニウム)であることをを示し、L領域はアルミニウム及び添加物が溶融している液相領域である。
更に、(L+α)領域は液相L中にアルミニウムから成るα晶が晶出している領域を示し、(L+β)領域は液相L中に添加物から成るβ晶が晶出している領域を示す。このα晶には添加物が固溶されており、β晶にはアルミニウムが固溶されている。
また、α領域はα晶によって形成されている領域であり、(α+β)領域はα晶とβ晶とが共晶されている共晶領域である。
かかるα領域と(α+β)領域との境界を形成する線は固溶度線Aであり、固溶度線Aと交差し、(L+α)領域及び(L+β)領域と(α+β)領域との境界を形成する線は共晶線Dである。
本発明で用いるアルミニウム合金は、純アルミニウムの近傍に位置するα晶領域を形成するα晶に固溶する固溶成分(以下、α晶固溶成分と称することがある)が添加物として添加されたアルミニウム合金である。この添加物としては、Si、Mn、Mg及びCuから成る群から選ばれた一種を上げることができる。
A phase diagram of the aluminum alloy used in the present invention is shown in FIG. The state diagram shown in FIG. 1 shows the amount of additive (wt%) on the horizontal axis and the temperature on the vertical axis.
In FIG. 1, the point where the amount of additive on the horizontal axis is zero indicates that aluminum is 100% (pure aluminum), and the L region is a liquid phase region in which aluminum and the additive are melted.
Further, the (L + α) region indicates a region where α crystal composed of aluminum is crystallized in the liquid phase L, and the (L + β) region indicates a region where β crystal composed of an additive is crystallized in the liquid phase L. . Additives are dissolved in the α crystal, and aluminum is dissolved in the β crystal.
The α region is a region formed by α crystals, and the (α + β) region is a eutectic region in which α crystals and β crystals are eutectic.
The line forming the boundary between the α region and the (α + β) region is the solid solubility line A, intersects the solid solubility line A, and the boundary between the (L + α) region and the (L + β) region and the (α + β) region. The line forming is the eutectic line D.
In the aluminum alloy used in the present invention, a solid solution component (hereinafter sometimes referred to as an α crystal solid solution component) that dissolves in an α crystal forming an α crystal region located in the vicinity of pure aluminum is added as an additive. Aluminum alloy. As this additive, one kind selected from the group consisting of Si, Mn, Mg and Cu can be raised.

本発明では、かかる添加物の添加量は、純アルミニウムに対して5重量%以上であって、固溶度線Aの領域内、すなわち固溶度線Aと共晶線Dとが交差する添加物量C0以下であることが必要である。
ここで、添加物の添加量が、純アルミニウムに対して5重量%未満である場合、溶湯の急速冷却の効果が発現し難く、得られた鋳造製品に溶体化処理及び焼き入れを施すことが必要となり易い。一方、添加物の添加量が、固溶度線Aの領域を越えた場合、すなわち固溶度線Aと共晶線Dとが交差する添加物の添加量C0を越えた場合にも、溶湯を冷却すると、α晶領域を経由することなく直ちに共晶領域に達し、固溶成分から成るβ晶が晶出し易いため、溶湯の急速冷却の効果が発現し難く、得られた鋳造製品に溶体化処理及び焼き入れを施すことが必要となり易い。
In the present invention, the additive is added in an amount of 5% by weight or more with respect to pure aluminum, and is added in the region of the solid solubility line A, that is, the solid solubility line A and the eutectic line D intersect. It is necessary that the quantity C 0 or less.
Here, when the addition amount of the additive is less than 5% by weight with respect to pure aluminum, the effect of rapid cooling of the molten metal is hardly exhibited, and the obtained cast product may be subjected to solution treatment and quenching. Easy to need. On the other hand, when the additive amount exceeds the region of the solid solubility line A, that is, when the additive amount exceeds the additive amount C 0 at which the solid solubility line A and the eutectic line D intersect, When the molten metal is cooled, it immediately reaches the eutectic region without going through the α crystal region, and the β crystal consisting of the solid solution component is easily crystallized, so that the effect of rapid cooling of the molten metal is difficult to be expressed. It is often necessary to perform solution treatment and quenching.

この様なアルミニウム合金から成る溶湯を成形型のキャビティに充填した後、キャビティ内の溶湯を急速冷却する。かかる溶湯の冷却速度は、得られる鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で20μm以下、好ましくは17μm以下となるように調整する必要がある。
鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で20μmを越える場合は、溶湯の冷却速度が遅く、成形型から取り出した鋳造製品に溶体化処理及び焼き入れを施すことが必要と成り易い。
かかる鋳造製品の樹枝状結晶(デンドライト)の間隔と溶湯の冷却速度との関係を図2に示す。この図2は、実験室的に溶湯の冷却速度を種々変更することによって、得られた鋳造製品の一部分を採取し、電子顕微鏡によって樹枝状結晶(デンドライト)の間隔を測定して得たものである。図2において、測定して得られた樹枝状結晶(デンドライト)の間隔を「DASII値」として縦軸に示し、横軸に溶湯の冷却速度を示した。
After filling the molten metal made of such an aluminum alloy into the cavity of the mold, the molten metal in the cavity is rapidly cooled. The cooling rate of the molten metal needs to be adjusted so that the average interval between dendritic crystals (dendrites) in the resulting cast product is 20 μm or less, preferably 17 μm or less.
When the interval between dendritic crystals (dendrites) in the cast product exceeds 20 μm on average, the cooling rate of the molten metal is slow, and it is likely to be necessary to perform solution treatment and quenching on the cast product taken out from the mold.
The relationship between the distance between dendritic crystals (dendrites) of the cast product and the cooling rate of the molten metal is shown in FIG. This FIG. 2 is obtained by sampling a part of the obtained cast product by variously changing the cooling rate of the molten metal in the laboratory and measuring the interval between dendrites using an electron microscope. is there. In FIG. 2, the interval between the dendritic crystals (dendrites) obtained by the measurement is shown as “DASII value” on the vertical axis, and the cooling rate of the molten metal is shown on the horizontal axis.

図2から明らかな様に、鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で20μm以下となる溶湯の冷却速度は800℃/分以上の領域であり、鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で17μm以下となる溶湯の冷却速度は1000℃/分以上の領域である。
この様な高速の冷却速度を呈し得る成形型としては、強制冷却手段を具備する成形型、例えば水冷用のジャケットを具備する成形型を好適に用いることができる。
更に、成形型のキャビティの内壁に塗型剤を塗布すると、冷却速度が低下するため、塗型剤を塗布しないことが好ましい。
また、冷却速度が著しく速い成形型を用いて鋳造する際には、成形型のキャビティ内に溶湯を可及的に迅速に充填することが必要である。しかし、溶湯の表面には酸化皮膜が形成されており、内壁面に塗型剤が塗布されていないキャビティには、溶湯を迅速に充填することが困難である場合が多い。
As is clear from FIG. 2, the cooling rate of the molten metal where the interval between dendritic crystals (dendrites) in the cast product becomes 20 μm or less on average is in the region of 800 ° C./min or more, and dendritic crystals (dendrites) in the cast products. The cooling rate of the molten metal whose average interval is 17 μm or less is in the region of 1000 ° C./min or more.
As a mold capable of exhibiting such a high cooling rate, a mold having a forced cooling means, for example, a mold having a water cooling jacket can be suitably used.
Furthermore, when a coating agent is applied to the inner wall of the cavity of the mold, it is preferable not to apply the coating agent because the cooling rate decreases.
Further, when casting using a mold having a remarkably high cooling rate, it is necessary to fill the molten metal into the cavity of the mold as quickly as possible. However, an oxide film is formed on the surface of the molten metal, and it is often difficult to quickly fill the cavity in which the mold agent is not applied to the inner wall surface.

かかる場合には、溶湯の表面に形成された酸化皮膜を、キャビティ内に在る還元性化合物によって還元しつつ、成形型のキャビティに溶湯を充填することが好ましい。還元性化合物によって酸化皮膜が還元されてなくなった溶湯の流動性は向上され、塗型剤が内壁面に塗布されていないキャビティ内にも迅速に溶湯を充填できる。
この還元性化合物としては、マグネシウムガスと窒素ガスとの反応によって形成できるマグネシウム窒素化合物(Mg32)を好適に用いることができる。かかるマグネシウムガスと窒素ガスとの各々を別々に成形型のキャビティに導入することによって、キャビティ内でマグネシウム窒素化合物(Mg32)を生成できる。
In such a case, it is preferable to fill the molten metal in the mold cavity while reducing the oxide film formed on the surface of the molten metal with the reducing compound present in the cavity. The fluidity of the molten metal whose oxide film has been reduced by the reducing compound is improved, and the molten metal can be quickly filled into the cavity where the coating agent is not applied to the inner wall surface.
As the reducing compound, a magnesium nitrogen compound (Mg 3 N 2 ) that can be formed by a reaction between magnesium gas and nitrogen gas can be suitably used. A magnesium nitrogen compound (Mg 3 N 2 ) can be generated in the cavity by separately introducing each of the magnesium gas and the nitrogen gas into the cavity of the mold.

この様にして成形型のキャビティ内に充填されたアルミニウム合金から成る溶湯を急速冷却し、成形型を型開きして取り出した鋳造製品は、その硬度や伸び等が溶体化処理及び焼き入れを施した鋳造製品と略同等であるため、再度、溶体化処理及び焼き入れを施すことを要しない。
尚、かかる鋳造製品であっても、更に鋳造製品の伸びや強度等を調質すべく、140〜180℃に昇温して約3時間ほど保持する時効処理を施してもよい。
本発明に係るアルミニウム合金の鋳造方法によれば、従来の鋳造製品の製造工程では必要とされていた溶体化処理及び焼き入れを施す工程を省略でき、鋳造製品の生産性を向上できる。
更に、溶体化処理及び焼き入れを施す設備を不要にでき、鋳造製品の製造設備の設備投資も低減できる。
In this way, the molten product made of the aluminum alloy filled in the cavity of the mold is rapidly cooled, and the cast product taken out by opening the mold is subjected to solution treatment and quenching due to its hardness and elongation. Therefore, it is not necessary to perform solution treatment and quenching again.
Even in such a cast product, an aging treatment in which the temperature is raised to 140 to 180 ° C. and held for about 3 hours may be performed in order to further refine the elongation and strength of the cast product.
According to the aluminum alloy casting method of the present invention, the solution treatment and quenching steps required in the conventional casting product manufacturing process can be omitted, and the productivity of the cast product can be improved.
Furthermore, the equipment for solution treatment and quenching can be eliminated, and the capital investment of the production equipment for casting products can be reduced.

アルミニウム合金として、Al−Si―Mg系のアルミニウム合金(A356)の溶湯を用いて鋳造した。このアルミニウム合金には、α晶固溶成分としてのSi成分が、純アルミニウムに対して7.0wt%添加されていると共に、α晶固溶成分に含まれない添加物として、Mg成分が純アルミニウムに対して0.40wt%添加されている。
成形型としては、水冷用のジャケットを具備し且つキャビティの内壁に塗型剤を塗布しなかった成形型を用いた。
このジャケットに水を流して強制冷却する成形型のキャビティ内に、マグネシウムガスと窒素とを送り込み、キャビティ内に還元性化合物であるマグネシウム窒素化合物(Mg32)を生成させた後、アルミニウム合金の溶湯を注湯して冷却した。
成形型のキャビティに充填された溶湯の冷却速度は、1500℃/分であり、冷却後に成形型を型開きして取り出した鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で約14μmであった。
更に、得られた鋳造製品を200℃の雰囲気中に3時間保持してから冷却する時効処理を施した。
成形型から取り出した鋳造製品の物性及び時効処理を施した鋳造製品の物性を、下記表1に示す。
The aluminum alloy was cast using a melt of an Al—Si—Mg aluminum alloy (A356). In this aluminum alloy, 7.0 wt% of Si component as an α crystal solid solution component is added to pure aluminum, and Mg component is pure aluminum as an additive not included in the α crystal solid solution component. 0.40 wt% is added to the amount.
As the mold, a mold having a water cooling jacket and having no coating agent applied to the inner wall of the cavity was used.
Magnesium gas and nitrogen are fed into a mold cavity for forced cooling by flowing water through this jacket to produce a magnesium nitrogen compound (Mg 3 N 2 ) as a reducing compound in the cavity, and then an aluminum alloy The molten metal was poured and cooled.
The cooling rate of the molten metal filled in the mold cavity was 1500 ° C./min, and the average interval between dendritic crystals (dendrites) in the cast product taken out by opening the mold after cooling was about 14 μm. It was.
Furthermore, the obtained cast product was kept in a 200 ° C. atmosphere for 3 hours and then subjected to an aging treatment for cooling.
The physical properties of the cast product taken out from the mold and the physical properties of the cast product subjected to the aging treatment are shown in Table 1 below.

比較例として、成形型のキャビティに充填された溶湯の冷却速度を250℃/分とした他は、実施例1と同様にして鋳造し成形型から取り出した鋳造製品では、その樹枝状結晶(デンドライト)の間隔が平均で約30μmであった。この鋳造製品についても、実施例1と同様にして時効処理を施した。
成形型から取り出した鋳造製品の物性及び時効処理を施した鋳造製品の物性を下記表1に併せて示す。
更に、参考例として、比較例の成形型から取り出した鋳造製品を、200℃の雰囲気中に3時間保持してから急冷する溶体化処理及び焼き入れを施した後、実施例1と同様な時効処理を施した鋳造製品の物性も下記表1に併せて示す。

Figure 2006104537
表1から明らかな様に、実施例1の成形型から取り出した鋳造製品に時効処理を施した鋳造製品の物性は、参考例の溶体化処理及び焼き入れを施した後、時効処理を施した鋳造製品の物性並であった。 As a comparative example, a dendritic crystal (dendritic crystal) was used in a cast product cast in the same manner as in Example 1 except that the cooling rate of the molten metal filled in the mold cavity was 250 ° C./min. ) Interval was about 30 μm on average. This cast product was also subjected to an aging treatment in the same manner as in Example 1.
The physical properties of the cast product taken out from the mold and the physical properties of the cast product subjected to the aging treatment are also shown in Table 1 below.
Further, as a reference example, a cast product taken out from the mold of the comparative example was subjected to solution treatment and quenching after being held in an atmosphere of 200 ° C. for 3 hours and then quenched, and then the same aging as in Example 1. The physical properties of the cast products subjected to the treatment are also shown in Table 1 below.
Figure 2006104537
As is apparent from Table 1, the physical properties of the cast product obtained by subjecting the cast product taken out from the mold of Example 1 to the aging treatment were subjected to the aging treatment after the solution treatment and quenching in the reference example. The physical properties of the cast products were the same.

アルミニウム合金として、Al−Cu系のアルミニウム合金の溶湯を用いて鋳造した。このアルミニウム合金中のα晶固溶成分は、Cu成分であって、その添加量は純アルミニウムに対して5.65wt%であった。
成形型としては、水冷用のジャケットを具備し且つキャビティの内壁に塗型剤を塗布しなかった成形型を用いた。
このジャケットに水を流して強制冷却する成形型のキャビティ内に、マグネシウムガスと窒素とを送り込み、キャビティ内に還元性化合物であるマグネシウムチ窒素化合物(Mg32)を生成させた後、アルミニウム合金の溶湯を注湯して冷却した。
成形型のキャビティに充填された溶湯の冷却速度は、1000℃/分であり、冷却後に成形型を型開きして取り出した鋳造製品の樹枝状結晶(デンドライト)の間隔が平均で約17μmであった。この鋳造製品の硬度(HRB)は35であった。
更に、得られた鋳造製品を200℃の雰囲気中に3時間保持してから徐冷する時効処理を施した。この時効処理後の鋳造製品の硬度(HRB)は53であった。
比較例として、成形型のキャビティに充填された溶湯の冷却速度を250℃/分とした他は、実施例2と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は10であり、時効処理後の鋳造製品の硬度(HRB)は30であった。
The aluminum alloy was cast using a molten Al-Cu aluminum alloy. The α crystal solid solution component in this aluminum alloy was a Cu component, and the amount added was 5.65 wt% with respect to pure aluminum.
As the mold, a mold having a water cooling jacket and having no coating agent applied to the inner wall of the cavity was used.
Magnesium gas and nitrogen are fed into a cavity of a mold that is forced to cool by flowing water through the jacket to produce a magnesium thinitrogen compound (Mg 3 N 2 ), which is a reducing compound, in the cavity. The molten alloy was poured and cooled.
The cooling rate of the molten metal filled in the mold cavity was 1000 ° C./min, and the average interval between dendritic crystals (dendrites) in the cast product taken out by opening the mold after cooling was about 17 μm. It was. The cast product had a hardness (HRB) of 35.
Furthermore, the obtained cast product was subjected to an aging treatment in which it was kept in an atmosphere of 200 ° C. for 3 hours and then gradually cooled. The hardness (HRB) of the cast product after this aging treatment was 53.
As a comparative example, casting was performed in the same manner as in Example 2 except that the cooling rate of the molten metal filled in the mold cavity was 250 ° C./min, and an aging treatment was performed.
The hardness (HRB) of the cast product taken out from the mold was 10, and the hardness (HRB) of the cast product after the aging treatment was 30.

実施例2において、アルミニウム合金として、Al−Mg系のアルミニウム合金(α晶固溶成分としてのMg成分が純アルミニウムに対して14.9%添加されている)の溶湯を用いて鋳造した他は、実施例2と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は38であり、時効処理後の鋳造製品の硬度(HRB)は57であった。
比較例として、成形型のキャビティに充填された溶湯の冷却速度を250℃/分とした他は、実施例3と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は12であり、時効処理後の鋳造製品の硬度(HRB)は33であった。
In Example 2, the aluminum alloy was cast using a molten metal of an Al—Mg-based aluminum alloy (Mg component as an α crystal solid solution component was added 14.9% to pure aluminum). This was cast in the same manner as in Example 2 and subjected to aging treatment.
The hardness (HRB) of the cast product taken out from the mold was 38, and the hardness (HRB) of the cast product after the aging treatment was 57.
As a comparative example, casting was performed in the same manner as in Example 3 except that the cooling rate of the molten metal filled in the mold cavity was 250 ° C./min, and an aging treatment was performed.
The hardness (HRB) of the cast product taken out from the mold was 12, and the hardness (HRB) of the cast product after the aging treatment was 33.

実施例2において、アルミニウム合金として、Al−Zn系のアルミニウム合金(α晶固溶成分としてのZn成分が純アルミニウムに対して71%添加されている)の溶湯を用いて鋳造した他は、実施例2と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は46であり、時効処理後の鋳造製品の硬度(HRB)は60であった。
比較例として、成形型のキャビティに充填された溶湯の冷却速度を250℃/分とした他は、実施例4と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は22であり、時効処理後の鋳造製品の硬度(HRB)は42であった。
In Example 2, the aluminum alloy was cast using a molten metal of an Al—Zn-based aluminum alloy (Zn component as an α crystal solid solution component was added to pure aluminum by 71%). Casting was performed in the same manner as in Example 2 and aging treatment was performed.
The hardness (HRB) of the cast product taken out from the mold was 46, and the hardness (HRB) of the cast product after the aging treatment was 60.
As a comparative example, casting was performed in the same manner as in Example 4 except that the cooling rate of the molten metal filled in the mold cavity was 250 ° C./min, and an aging treatment was performed.
The hardness (HRB) of the cast product taken out from the mold was 22, and the hardness (HRB) of the cast product after the aging treatment was 42.

比較例1Comparative Example 1

実施例2において、アルミニウム合金として、Al−Si系のアルミニウム合金(α晶固溶成分としてのSi成分が純アルミニウムに対して1.65%添加されている)の溶湯を用いて鋳造した他は、実施例2と同様に鋳造し、時効処理を施した。
成形型から取り出した鋳造製品の硬度(HRB)は10であり、実施例2〜実施例4の鋳造製品が呈する硬度よりも劣るものである。
また、時効処理後の鋳造製品の硬度(HRB)も40であり、実施例2〜実施例4の時効処理後の鋳造製品が呈する硬度よりも劣るものである。
In Example 2, the aluminum alloy was cast using a molten metal of an Al—Si based aluminum alloy (Si component as an α crystal solid solution component was added 1.65% with respect to pure aluminum). This was cast in the same manner as in Example 2 and subjected to aging treatment.
The hardness (HRB) of the cast product taken out from the mold is 10, which is inferior to the hardness exhibited by the cast products of Examples 2 to 4.
Moreover, the hardness (HRB) of the cast product after the aging treatment is 40, which is inferior to the hardness exhibited by the cast product after the aging treatment of Examples 2 to 4.

アルミニウム合金の状態図を説明するための説明図である。It is explanatory drawing for demonstrating the phase diagram of an aluminum alloy. 冷却速度と鋳造製品の樹枝状結晶(デンドライト)の間隔との関係を示すグラフである。It is a graph which shows the relationship between a cooling rate and the space | interval of the dendritic crystal | crystallization (dendrite) of a cast product.

Claims (6)

アルミニウム合金から成る溶湯を成形型のキャビティに注湯して冷却し、前記成形型から鋳造製品を取り出す際に、
該アルミニウム合金として、前記アルミニウム合金の状態図において、純アルミニウムの近傍の固相領域を形成するアルミニウムから成るα晶に固溶する固溶成分が、純アルミニウムに対して5重量%以上添加され、且つ前記固溶成分の添加量が、前記α晶から成るα晶領域と、前記α晶と固溶成分から成るβ晶とが共晶する共晶領域との境界を形成する固溶度線に対応する範囲内であるアルミニウム合金を用い、
前記成形型での冷却速度を、前記鋳造製品の樹枝状結晶の間隔が平均で20μm以下となるように調整することを特徴とするアルミニウム合金の鋳造方法。
When a molten metal made of an aluminum alloy is poured into the mold cavity and cooled, the cast product is taken out of the mold,
As the aluminum alloy, in the phase diagram of the aluminum alloy, a solid solution component dissolved in an α crystal composed of aluminum forming a solid phase region in the vicinity of pure aluminum is added in an amount of 5% by weight or more with respect to pure aluminum. The addition amount of the solid solution component is a solid solubility line that forms a boundary between the α crystal region composed of the α crystal and the eutectic region where the α crystal and the β crystal composed of the solid solution component are eutectic. Using an aluminum alloy that is within the corresponding range,
A method for casting an aluminum alloy, characterized in that the cooling rate in the mold is adjusted so that the average interval between dendritic crystals in the cast product is 20 μm or less.
前記成形型のキャビティに充填された溶湯の冷却速度を、800℃/分以上とする請求項1記載のアルミニウム合金の鋳造方法。   The aluminum alloy casting method according to claim 1, wherein a cooling rate of the molten metal filled in the mold cavity is set to 800 ° C./min or more. 前記α晶に固溶する固溶成分を、Si、Mn、Mg及びCuから成る群から選ばれた一種とする請求項1又は請求項2記載のアルミニウム合金の鋳造方法。   The aluminum alloy casting method according to claim 1 or 2, wherein the solid solution component dissolved in the α crystal is selected from the group consisting of Si, Mn, Mg, and Cu. 前記成形型から取り出した鋳造製品に、溶体化処理用の熱処理を施すことなく時効処理用の熱処理を施す請求項1〜3のいずれか一項記載のアルミニウム合金の鋳造方法。   The casting method of the aluminum alloy as described in any one of Claims 1-3 which performs the heat processing for an aging treatment, without performing the heat processing for a solution treatment to the cast product taken out from the said shaping | molding die. 前記成形型として、強制冷却手段が設けられた成形型を用いる請求項1〜4のいずれか一項記載のアルミニウム合金の鋳造方法。   The aluminum alloy casting method according to any one of claims 1 to 4, wherein a molding die provided with forced cooling means is used as the molding die. 前記成形型のキャビティ内に注湯した溶湯の表面の酸化皮膜を、前記キャビティ内に在る還元性化合物によって還元しつつ、前記キャビティ内に充填した溶湯を強制冷却する請求項1〜5のいずれか一項記載のアルミニウム合金の鋳造方法。
6. The molten metal filled in the cavity is forcibly cooled while the oxide film on the surface of the molten metal poured into the cavity of the mold is reduced by a reducing compound present in the cavity. A method for casting an aluminum alloy according to claim 1.
JP2004294191A 2004-10-06 2004-10-06 Method for casting aluminum alloy Pending JP2006104537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294191A JP2006104537A (en) 2004-10-06 2004-10-06 Method for casting aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294191A JP2006104537A (en) 2004-10-06 2004-10-06 Method for casting aluminum alloy

Publications (1)

Publication Number Publication Date
JP2006104537A true JP2006104537A (en) 2006-04-20

Family

ID=36374609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294191A Pending JP2006104537A (en) 2004-10-06 2004-10-06 Method for casting aluminum alloy

Country Status (1)

Country Link
JP (1) JP2006104537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500923A (en) * 2006-08-16 2010-01-14 アロテック リミテッド エルエルシー Solidification microstructure of molded molded products molded with aggregate molds
CN113106310A (en) * 2021-04-23 2021-07-13 吉林大学 High-strength heat-resistant Al-Cu-Sc wrought aluminum alloy and preparation method thereof
CN113817937A (en) * 2021-08-13 2021-12-21 联想(北京)有限公司 5-series aluminum alloy
CN114393180A (en) * 2021-12-24 2022-04-26 西南铝业(集团)有限责任公司 Preparation method of 7021 aluminum alloy oversized ingot

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS63140060A (en) * 1986-12-02 1988-06-11 Furukawa Alum Co Ltd Free-cutting aluminum-alloy casting and its production
JPS6439339A (en) * 1987-08-03 1989-02-09 Kobe Steel Ltd Wear-resistant aluminum alloy cast rod and its production
JPH07109536A (en) * 1993-10-12 1995-04-25 Nippon Light Metal Co Ltd Aluminum alloy for forging and heat treatment therefor
JPH1112673A (en) * 1997-06-23 1999-01-19 Nippon Light Metal Co Ltd Aluminum alloy casting and its production
JP2000144296A (en) * 1998-08-25 2000-05-26 Kobe Steel Ltd High-strength and high-toughness aluminum alloy forged material
JP2002047526A (en) * 2000-07-31 2002-02-15 Nippon Light Metal Co Ltd Aluminum alloy casting having excellent strength and thermal impact characteristic and its production method
JP2002331351A (en) * 2001-05-09 2002-11-19 Nissin Kogyo Co Ltd Reducing casting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS63140060A (en) * 1986-12-02 1988-06-11 Furukawa Alum Co Ltd Free-cutting aluminum-alloy casting and its production
JPS6439339A (en) * 1987-08-03 1989-02-09 Kobe Steel Ltd Wear-resistant aluminum alloy cast rod and its production
JPH07109536A (en) * 1993-10-12 1995-04-25 Nippon Light Metal Co Ltd Aluminum alloy for forging and heat treatment therefor
JPH1112673A (en) * 1997-06-23 1999-01-19 Nippon Light Metal Co Ltd Aluminum alloy casting and its production
JP2000144296A (en) * 1998-08-25 2000-05-26 Kobe Steel Ltd High-strength and high-toughness aluminum alloy forged material
JP2002047526A (en) * 2000-07-31 2002-02-15 Nippon Light Metal Co Ltd Aluminum alloy casting having excellent strength and thermal impact characteristic and its production method
JP2002331351A (en) * 2001-05-09 2002-11-19 Nissin Kogyo Co Ltd Reducing casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500923A (en) * 2006-08-16 2010-01-14 アロテック リミテッド エルエルシー Solidification microstructure of molded molded products molded with aggregate molds
JP2014039958A (en) * 2006-08-16 2014-03-06 Alotech Ltd Llc Coagulation microstructure of molding mold molded by aggregate-using casting mold
CN113106310A (en) * 2021-04-23 2021-07-13 吉林大学 High-strength heat-resistant Al-Cu-Sc wrought aluminum alloy and preparation method thereof
CN113106310B (en) * 2021-04-23 2022-01-21 吉林大学 High-strength heat-resistant Al-Cu-Sc wrought aluminum alloy and preparation method thereof
CN113817937A (en) * 2021-08-13 2021-12-21 联想(北京)有限公司 5-series aluminum alloy
CN114393180A (en) * 2021-12-24 2022-04-26 西南铝业(集团)有限责任公司 Preparation method of 7021 aluminum alloy oversized ingot

Similar Documents

Publication Publication Date Title
US8486329B2 (en) Process for production of semisolidified slurry of iron-base alloy and process for production of cast iron castings by using a semisolidified slurry
JP6495246B2 (en) Aluminum alloy and die casting method
KR101402896B1 (en) Aluminium alloy and manufacturing method thereof
JP2008018467A (en) CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY
CN104831137B (en) Aging strengthening type magnesium alloy and heat treatment process thereof
Zhang et al. Effect of fine-grained raw material addition on microstructure refinement and tensile properties in horizontal continuous casting Al–12% Si alloy billets
US20210025034A1 (en) Aluminum Alloy For Die Casting, And A Method For Producing A Cast Product Using The Aluminum Alloy
JP2006104537A (en) Method for casting aluminum alloy
JPS5810455B2 (en) Aluminum alloy for rolling
JPH09137239A (en) Method for molding half-molten metal
US20190390305A1 (en) Semi-solid die-casting aluminum alloy and method for preparing semi-solid die-casting aluminum alloy casting
KR101340292B1 (en) Aluminium alloy and manufacturing method thereof
RU2385783C1 (en) Method for production of shaped castings of aluminium-silicon alloys
JP6975421B2 (en) Aluminum alloy manufacturing method
JP3246273B2 (en) Forming method of semi-molten metal
JP5747103B1 (en) Radiation fin made of aluminum alloy and method of manufacturing the same
JP2003183756A (en) Aluminum alloy for semi-solid molding
JP2006037190A (en) Aluminum alloy, method for molding aluminum alloy casting and chassis structural member for vehicle molded with aluminum alloy
Birol Internal cooling to produce aluminium alloy slurries for rheocasting
CN111074105A (en) Anodic-oxidation die-casting aluminum alloy material, preparation method thereof and die-casting method thereof
CN110157956A (en) The manufacturing method of Al alloy founding materials
CN110938763A (en) Preparation method of die-casting aluminum alloy material capable of being anodized and die-casting method
JP2019005758A (en) Die-cast product, method for producing the same, and die casting machine
JP3339333B2 (en) Method for forming molten metal
JPH09279266A (en) Method for precast forming metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330