JP4933788B2 - Bulge molding method and hollow molded body - Google Patents

Bulge molding method and hollow molded body Download PDF

Info

Publication number
JP4933788B2
JP4933788B2 JP2006035487A JP2006035487A JP4933788B2 JP 4933788 B2 JP4933788 B2 JP 4933788B2 JP 2006035487 A JP2006035487 A JP 2006035487A JP 2006035487 A JP2006035487 A JP 2006035487A JP 4933788 B2 JP4933788 B2 JP 4933788B2
Authority
JP
Japan
Prior art keywords
hollow
temperature
hollow workpiece
strength
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006035487A
Other languages
Japanese (ja)
Other versions
JP2007210027A (en
Inventor
大介 山本
出 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006035487A priority Critical patent/JP4933788B2/en
Publication of JP2007210027A publication Critical patent/JP2007210027A/en
Application granted granted Critical
Publication of JP4933788B2 publication Critical patent/JP4933788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、中空ワークに圧力流体を流通させて成形加工を施すバルジ成形方法及びそれによって得られる中空成形体に関する。   The present invention relates to a bulge forming method in which a pressure fluid is circulated through a hollow workpiece to perform a forming process, and a hollow formed body obtained by the method.

長尺であり、且つ長手方向に直交する方向の断面形状ないし寸法が部位によって相違する中空成形体を作製する手法として、中空ワークに圧力流体(一般的には高圧水)を流通しながら成形を施すバルジ成形加工が採用されている。   As a method for producing a hollow molded body that is long and has a different cross-sectional shape or dimension in a direction orthogonal to the longitudinal direction, the molding is performed while circulating a pressure fluid (generally high-pressure water) through the hollow workpiece. The applied bulge forming process is adopted.

直管を原材料とする場合を例示して説明すると、先ず、直管を予備成形金型に収容し、この状態で、圧力流体を直管の内部に供給する。これにより直管の内周壁が圧力流体に押圧され、その結果、該直管に、直径方向外方に膨張した部位が形成される。なお、直管が金型に収容されているので、膨張した部位は最終的に金型で堰止される。この工程は、拡管工程とも呼称される。   The case where the straight pipe is used as a raw material will be described as an example. First, the straight pipe is accommodated in a preforming mold, and in this state, the pressure fluid is supplied into the straight pipe. As a result, the inner peripheral wall of the straight pipe is pressed by the pressure fluid, and as a result, a portion that expands radially outward is formed in the straight pipe. In addition, since the straight pipe is accommodated in the mold, the expanded portion is finally blocked by the mold. This process is also called a pipe expansion process.

次に、膨張部位を有する直管が別の金型に移され、圧縮機構の作用下に前記膨張部位が主に押圧されて所定の形状に押圧成形される。さらに、別の金型で本成形加工が施され、これにより中空成形体が得られるに至る。   Next, the straight pipe having the expansion portion is transferred to another mold, and the expansion portion is mainly pressed under the action of the compression mechanism to be pressed into a predetermined shape. Further, the main forming process is performed with another mold, and thereby a hollow molded body is obtained.

この種のバルジ成形加工において、前記断面形状ないし寸法を精度よく得るための様々な試みがなされつつある。例えば、特許文献1には、予備成形金型の温度を中空ワークの再結晶温度以上に設定するとともに、本成形金型の温度を該中空ワークの再結晶温度以下に設定することが提案されている。   In this type of bulge forming process, various attempts are being made to obtain the cross-sectional shape or dimensions with high accuracy. For example, Patent Document 1 proposes setting the temperature of the preforming die to be equal to or higher than the recrystallization temperature of the hollow workpiece and setting the temperature of the main molding die to be equal to or lower than the recrystallization temperature of the hollow workpiece. Yes.

また、特許文献2には、中空成形体の肉厚分布の制御を容易にするべく、中空ワークの長手方向に沿って温度分布を設けることが提案されている。この場合、高温に加熱された部位の伸び量が大きくなるので肉厚が小さくなる一方、比較的低温となるように加熱された部位の伸び量が小さくなるので肉厚が大きくなる。   Patent Document 2 proposes providing a temperature distribution along the longitudinal direction of the hollow workpiece in order to facilitate the control of the thickness distribution of the hollow molded body. In this case, the thickness of the portion heated to a high temperature increases, so that the thickness decreases. On the other hand, the extension of the portion heated to a relatively low temperature decreases, so the thickness increases.

特開2003−126923号公報JP 2003-126923 A 特開2003−103327号公報JP 2003-103327 A

特許文献1記載の従来技術では、中空ワークの材質である金属の転位の低減に着目し、再結晶温度以上に加熱して予備成形加工を行うようにしているが、中空ワークとしてAl合金からなるものを用いてこのような温度域まで加熱すると、Alと他の金属原子との均一固溶体化が起こることがある。この場合、冷却速度によっては、中空ワークの金属組織中に前記金属原子を含む粗大粒子が析出し、その結果、中空成形体に低強度な部位が形成されるという不具合を招く。   In the prior art described in Patent Document 1, attention is paid to the reduction of dislocations in the metal that is the material of the hollow work, and the preforming process is performed by heating above the recrystallization temperature, but the hollow work is made of an Al alloy. When a material is used and heated to such a temperature range, uniform solid solution of Al and other metal atoms may occur. In this case, depending on the cooling rate, coarse particles containing the metal atoms are precipitated in the metal structure of the hollow workpiece, and as a result, there is a problem that a low-strength portion is formed in the hollow molded body.

また、中空成形体として、部位によって強度が相違するものが希求されることがある。例えば、自動車車体のフレームを構成するフレーム部材として中空成形体を用いる場合等である。この場合、フレーム部材に強度、ひいては衝撃吸収を担う部位と担わない部位とが存在すると、衝撃吸収を担うレーム部材と担わないフレーム部材とを別個に作製する必要がなくなり、フレーム部材の点数が少なくなる。従って、該フレーム部材同士を溶接してフレームを構成する際の工程数が低減する等の利点がある。   In addition, there is a demand for hollow molded bodies having different strengths depending on the part. For example, it is a case where a hollow molded body is used as a frame member constituting a frame of an automobile body. In this case, if the frame member has a strength, and hence a portion that does not bear the shock absorption, and a portion that does not bear the shock, it is not necessary to separately prepare the frame member that bears the shock absorption and the frame member that does not bear the shock, and the number of the frame members is reduced. Become. Therefore, there are advantages such as a reduction in the number of processes when the frame members are welded to form a frame.

この点、特許文献2記載の従来技術では、肉厚を異ならせることで強度を相違させることは可能であるが、肉厚が略同等でありながら強度を相違させることは困難である。   In this regard, in the prior art described in Patent Document 2, it is possible to vary the strength by varying the thickness, but it is difficult to vary the strength while the thickness is substantially equal.

本発明は上記した問題を解決するためになされたもので、所定の部位以外に低強度部位が形成されることを回避可能である一方、中空成形体を得ることが容易なバルジ成形方法と、部位によって強度が相違する中空成形体とを提供することを目的とする。   The present invention was made in order to solve the above-mentioned problem, and while avoiding the formation of a low-strength portion other than a predetermined portion, a bulge forming method that makes it easy to obtain a hollow molded body, It aims at providing the hollow molded object from which intensity | strength changes with parts.

前記の目的を達成するために、本発明は、合金製の中空ワークに圧力流体を流通させて成形加工を施すバルジ成形方法であって、
前記中空ワークを加熱する工程と、
前記中空ワークの強度向上に寄与しない金属相が前記合金の金属組織に析出する析出温度以上に設定された予備成形金型内で、前記中空ワークに圧力流体を流通しながら予備成形する予備成形工程と、
予備成形が施された前記中空ワークを、焼入れ処理が可能な温度に設定された本成形金型に収容し、前記金属相が析出しない冷却速度で前記中空ワークを前記本成形金型によって冷却しながら該中空ワークに対して本成形加工を施す本成形加工工程と、
本成形加工が施された前記中空ワークに対して時効処理を施し、前記中空ワークの強度向上に寄与する金属相を金属組織に析出させる時効処理工程と、
を有することを特徴とする。なお、以下においては、金属相を単に「相」と表記することもある。
In order to achieve the above object, the present invention is a bulge forming method in which a pressure fluid is circulated through a hollow work made of an alloy to perform a forming process,
Heating the hollow workpiece;
A preforming step in which preforming is performed while circulating a pressure fluid through the hollow workpiece in a preforming mold set at a temperature equal to or higher than a precipitation temperature at which a metal phase that does not contribute to improving the strength of the hollow workpiece is precipitated in the metal structure of the alloy. When,
The hollow work that has been preformed is housed in a main mold set at a temperature at which quenching can be performed, and the hollow work is cooled by the main mold at a cooling rate at which the metal phase does not precipitate. However, a main molding process for subjecting the hollow workpiece to a main molding process,
An aging treatment step of performing an aging treatment on the hollow workpiece subjected to the main forming process and precipitating a metal phase contributing to an improvement in the strength of the hollow workpiece in a metal structure,
It is characterized by having. In the following, the metal phase may be simply referred to as “phase”.

すなわち、本発明においては、予備成形加工終了後の中空ワークを、本成形加工を行う金型で急冷する際、強度向上に寄与しない相が析出しない冷却速度にして過飽和固溶体を形成し、次に、この過飽和固溶体に対して時効処理を施すことで強度向上に寄与する相を析出させるようにしている。これにより、強度に優れた成形体が得られる。このように、中空ワークの温度及び冷却速度を制御することで、強度向上に寄与しない相が析出して低強度な部位が中空成形体に生じることを回避することができる。勿論、強度向上に寄与しない相、強度向上に寄与する相のいずれにも、合金を形成する溶質原子が含まれる。   That is, in the present invention, when the hollow work after completion of the preforming process is quenched with a mold for performing the forming process, a supersaturated solid solution is formed at a cooling rate at which a phase that does not contribute to strength improvement does not precipitate, By applying an aging treatment to the supersaturated solid solution, a phase contributing to strength improvement is precipitated. Thereby, the molded object excellent in intensity | strength is obtained. Thus, by controlling the temperature and cooling rate of the hollow workpiece, it is possible to avoid the occurrence of a low strength portion in the hollow molded body due to precipitation of a phase that does not contribute to strength improvement. Of course, both of the phase that does not contribute to the improvement of strength and the phase that contributes to the improvement of strength include solute atoms forming the alloy.

ここで、析出相が強度向上に寄与するか否かは、例えば、原材料である合金からなるテストピースと、該テストピースに対して熱処理を施した後に様々な冷却速度で冷却することで互いに別種の相を析出させた熱処理テストピースとで強度を比較することで判断することが可能である。中空ワークがAl−Mg−Si系合金である場合、β相(Mg2Si)が強度向上に寄与しない相に該当する。 Here, whether or not the precipitated phase contributes to improving the strength is determined by, for example, testing a test piece made of an alloy as a raw material, and by cooling the test piece at various cooling rates after heat treatment. It can be judged by comparing the strength with a heat-treated test piece in which the above phase is precipitated. When the hollow workpiece is an Al—Mg—Si alloy, the β phase (Mg 2 Si) corresponds to a phase that does not contribute to strength improvement.

なお、強度向上に寄与する相と寄与しない相とを別部位に析出させ、これにより強度が互いに相違する部位を同一部材内に設けることもできる。すなわち、本発明は、合金製の中空ワークに圧力流体を流通させて成形加工を施すバルジ成形方法であって、
前記中空ワークを加熱する工程と、
前記中空ワークの強度向上に寄与しない金属相が前記合金の金属組織に析出する析出温度以上に設定された第1部位と、前記析出温度未満の温度に設定された第2部位とが設けられた予備成形金型内で、前記中空ワークに圧力流体を流通しながら予備成形する予備成形工程と、
予備成形が施された前記中空ワークを、焼入れ処理が可能な温度に設定された本成形金型に収容し、前記第1部位に前記金属相が析出しない冷却速度で前記中空ワークを前記本成形金型で冷却することで、前記第1部位の金属組織に前記金属相を析出させず且つ前記第2部位の金属組織に前記金属相を析出させながら該中空ワークに対して本成形加工を施す本成形加工工程と、
本成形加工が施された前記中空ワークに対して時効処理を施し、前記中空ワークの強度向上に寄与する金属相を前記第1部位の金属組織に析出させる時効処理工程と、
を有することを特徴とする。
In addition, the phase which contributes to strength improvement, and the phase which does not contribute can be deposited in another site | part, and the site | part from which intensity | strength differs mutually can also be provided in the same member. That is, the present invention is a bulge forming method for performing a forming process by circulating a pressure fluid through a hollow work made of an alloy,
Heating the hollow workpiece;
There are provided a first part set to be equal to or higher than a precipitation temperature at which a metal phase that does not contribute to improving the strength of the hollow workpiece is precipitated in the metal structure of the alloy, and a second part set to a temperature lower than the precipitation temperature. In a preforming mold, a preforming step for preforming while circulating a pressure fluid through the hollow work,
The hollow workpiece that has been preformed is accommodated in a main mold set at a temperature at which quenching can be performed, and the hollow workpiece is formed at a cooling rate at which the metal phase does not precipitate in the first part. by cooling the mold, subjected to the molding against the hollow workpiece while precipitating the metal phase and the second portion of the metal structure without precipitation of the metal phase in the first portion of the metal structure The main molding process,
An aging treatment is performed on the hollow work subjected to the main forming process, and a metal phase contributing to the strength improvement of the hollow work is precipitated in the metal structure of the first part;
It is characterized by having.

この場合、予備成型工程が営まれると、中空ワークには、強度向上に寄与しない相が析出する析出温度以上に上昇した高温部位(第1部位)と、該析出温度未満である低温部位(第2部位)とが生じる。この中空ワークを本成形加工時に急冷すると、高温部位からは前記相が析出しないものの、低温部位からは前記相が析出する。上記したように、前記相が析出しない部位では時効処理を施すと別相が析出して強度が比較的大きくなるのに対し、前記相が析出した部位では、時効処理が施されても強度はさほど向上しない。従って、低温部位は前記高温部位に比して低強度となる。   In this case, when the preforming process is performed, the hollow workpiece has a high-temperature portion (first portion) that rises above the precipitation temperature at which a phase that does not contribute to strength improvement is precipitated, and a low-temperature portion (first portion) that is lower than the precipitation temperature. 2 sites). When the hollow workpiece is rapidly cooled during the main forming process, the phase does not precipitate from the high temperature part, but the phase precipitates from the low temperature part. As described above, when an aging treatment is performed at a portion where the phase does not precipitate, another phase is precipitated and the strength becomes relatively large. On the other hand, at a portion where the phase is precipitated, the strength is increased even when the aging treatment is performed. Not much improvement. Accordingly, the low temperature portion has a lower strength than the high temperature portion.

このように、予備成形金型に高温部位と低温部位を設けることで、部位に応じて強度が異なる中空成形体を容易に作製することができる。しかも、この場合、強度を変更するために肉厚を変更する必要もない。   Thus, by providing a high temperature part and a low temperature part in a preforming mold, it is possible to easily produce a hollow molded body having different strengths depending on the part. Moreover, in this case, it is not necessary to change the wall thickness in order to change the strength.

さらに、この場合、強度が異なる中空成形体を個別に設ける必要がないので、原材料コストを低減することができるとともに、成形工程数を減少することもできる。その上、接合工程数も低減する。   Further, in this case, since it is not necessary to separately provide hollow molded bodies having different strengths, raw material costs can be reduced and the number of molding steps can be reduced. In addition, the number of bonding steps is reduced.

前記予備成形工程に、中空ワークを膨張させる拡管工程を含めるようにしてもよい。この場合、拡管工程で得られる膨張後の中空ワークの膨張部位を該中空ワークの長手方向に直交する方向に切断して露呈する断面の外周寸法を、前記本成形加工工程で本成形加工が施された後の中空ワークの成形部位を前記と同一方向に切断して露呈する断面の外周寸法と略同一にすることが好ましい。   The preforming step may include a tube expansion step for expanding the hollow workpiece. In this case, the outer peripheral dimension of the cross section exposed by cutting the expanded portion of the expanded hollow work obtained in the tube expansion process in a direction perpendicular to the longitudinal direction of the hollow work is subjected to the main forming process in the main forming process. It is preferable that the molded part of the hollow work after being made is substantially the same as the outer peripheral dimension of the cross section exposed by cutting in the same direction as described above.

このような寸法設定を行うと、本成形加工の際、中空ワークを内圧によって延伸させる必要がなく、従って、成形部位の外周寸法(周囲長)の寸法変化がほとんどない。このため、本成形加工において、温度を上昇させない場合であっても、中空成形体の寸法精度、ひいては形状の精度を確保することが容易となる。   When such dimension setting is performed, it is not necessary to stretch the hollow workpiece with the internal pressure during the main forming process, and therefore there is almost no change in the outer peripheral dimension (peripheral length) of the molding part. For this reason, even if it is a case where temperature is not raised in this shaping | molding process, it becomes easy to ensure the dimensional accuracy of a hollow molded object and by extension, the precision of a shape.

ここで、本成形金型の設定温度は、溶質原子を含む相が析出しない冷却速度が得られる温度であれば特に限定されるものではなく、人工時効処理温度以下、例えば、概ね200℃程度以下であればよいが、室温であると冷却速度が大きくなるので好適である。   Here, the set temperature of the present molding die is not particularly limited as long as it is a temperature at which a cooling rate at which a phase containing solute atoms does not precipitate is obtained, and it is not more than an artificial aging temperature, for example, about 200 ° C. or less. However, it is preferable that the temperature is room temperature because the cooling rate increases.

さらに、本発明は、合金からなり、且つ長手方向に直交する方向の断面形状又は寸法が部位によって相違する長尺な中空成形体であって、
強度向上に寄与しない第1金属相を金属組織中に含む第1部位と、強度向上に寄与する第2金属相を金属組織中に含み且つ前記第1部位に比して高強度な第2部位とを有する単一部材であることを特徴とする。
Furthermore, the present invention is a long hollow molded body made of an alloy and having a different cross-sectional shape or dimension in a direction orthogonal to the longitudinal direction, depending on the site,
A first part containing in the metal structure a first metal phase that does not contribute to improving the strength, and a second part containing a second metal phase contributing to improving the strength in the metal structure and having a higher strength than the first part. It is the single member which has these.

この中空成形体は、強度が相違する部分を一体的に有する。従って、部位に応じて強度が異なる構造体を設ける際、強度が互いに相違する複数個の中空成形体を個別に設け、これらを接合する必要がない。このため、原材料コストを低減することができる上、成形工程数を減少することもできる。   This hollow molded body integrally has portions with different strengths. Therefore, when providing structures having different strengths according to the portions, it is not necessary to individually provide a plurality of hollow molded bodies having different strengths and to join them. For this reason, raw material costs can be reduced, and the number of molding steps can be reduced.

このような中空成形体の材質の好適な例としては、Mg及びSiを含有するAl合金が挙げられる。この場合、第1相としてはMg2Si(β相)が形成され、一方、第2相としては、β’相が形成される。 A suitable example of the material of such a hollow molded body is an Al alloy containing Mg and Si. In this case, Mg 2 Si (β phase) is formed as the first phase, while β ′ phase is formed as the second phase.

本発明においては、予備成型金型の所定部位を所定温度に保持することで中空ワークにおける対応部位を所定温度に設定し、強度向上に寄与しない相の析出・不析出を制御するようにしている。この析出・不析出に応じ、中空成形体(中空ワーク)の各部位の強度が設定される。   In the present invention, the predetermined part of the preforming mold is held at a predetermined temperature so that the corresponding part in the hollow workpiece is set to the predetermined temperature to control the precipitation / non-precipitation of the phase that does not contribute to the strength improvement. . The strength of each part of the hollow molded body (hollow workpiece) is set according to this precipitation / non-deposition.

すなわち、本発明によれば、中空成形体(中空ワーク)の所定の部位を所定の強度に設定することができる。換言すれば、所定の部位以外に低強度部位が形成されることを回避することができるのみならず、部位によって強度が相違する中空成形体を容易に作製することもできる。   That is, according to the present invention, a predetermined portion of the hollow molded body (hollow workpiece) can be set to a predetermined strength. In other words, it is possible not only to avoid the formation of a low-strength part other than the predetermined part, but also to easily produce a hollow molded body having a different strength depending on the part.

以下、本発明に係るバルジ成形方法及び中空成形体につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the bulge forming method and the hollow molded body according to the present invention will be described in detail with reference to the accompanying drawings.

第1実施形態に係るバルジ成形方法のフローチャートを、直管(中空ワーク)から中空成形体を得る場合を例示して図1A〜図1Eに示す。このバルジ成形方法では、直管10を加熱する加熱工程S1と、予備成形工程としての拡管工程S2及び押圧成形工程S3と、本成形加工工程S4と、時効処理工程S5とが実施され、拡管工程S2、押圧成形工程S3、本成形加工工程S4のそれぞれでは、第1半製品12、第2半製品14、中空成形体16が作製される。   Flowcharts of the bulge forming method according to the first embodiment are shown in FIGS. 1A to 1E exemplifying a case where a hollow molded body is obtained from a straight pipe (hollow workpiece). In this bulge forming method, a heating step S1 for heating the straight pipe 10, a tube expanding step S2 and a press forming step S3 as a preforming step, a main forming step S4, and an aging treatment step S5 are performed, and the tube expanding step In each of S2, press molding process S3, and main molding process S4, the 1st semi-finished product 12, the 2nd semi-finished product 14, and the hollow molded object 16 are produced.

この場合、バルジ成形加工を行うバルジ成形装置は、加熱ステーション、拡管ステーション、押圧成形ステーション、本成形加工ステーションを有し、各ステーションにて加熱工程S1〜本成形加工工程S4の各工程が行われる。なお、時効処理工程S5は、熱処理炉にて実施される。   In this case, the bulge forming apparatus that performs the bulge forming process includes a heating station, a tube expansion station, a press forming station, and a main forming process station, and each step of the heating process S1 to the main forming process S4 is performed in each station. . The aging treatment step S5 is performed in a heat treatment furnace.

第1実施形態において、直管10は、JISに規格されるいわゆる6000系のAl合金、換言すれば、Al−Mg−Si系合金からなる。この種のAl合金の具体例としては、A6063合金が挙げられる。   In the first embodiment, the straight pipe 10 is made of a so-called 6000 series Al alloy standardized by JIS, in other words, an Al-Mg-Si series alloy. A specific example of this type of Al alloy is A6063 alloy.

この直管10は、挟持機構によって両端から挟持され、この状態で前記加熱ステーションに搬送される。その後、直管10は、図1Aに示すように、加熱ステーションに設けられた加熱手段、例えば、電極20、22で加熱されて500℃以上に昇温される。これにより、加熱工程S1が実施される。   The straight pipe 10 is clamped from both ends by a clamping mechanism, and is conveyed to the heating station in this state. Thereafter, as shown in FIG. 1A, the straight pipe 10 is heated by heating means provided in the heating station, for example, the electrodes 20 and 22, and is heated to 500 ° C. or higher. Thereby, heating process S1 is implemented.

加熱された直管10は、拡管工程S2を行う拡管ステーションに移送され、該拡管ステーションに配設されて所定距離で離間した拡管下型30と拡管上型32の間に位置する(図2参照)。   The heated straight pipe 10 is transferred to a pipe expansion station that performs the pipe expansion step S2, and is positioned between the pipe expansion lower mold 30 and the pipe expansion upper mold 32 that are disposed in the pipe expansion station and separated by a predetermined distance (see FIG. 2). ).

ここで、拡管下型30及び拡管上型32の双方には、該拡管下型30及び該拡管上型32の長手方向に沿って延在する長尺円柱体形状のヒータ34a〜34e、36a〜36eがそれぞれ埋設されている。拡管下型30及び拡管上型32の温度は、これらヒータ34a〜34e、36a〜36eが予め付勢されることで、直管10の材質であるAl−Mg−Si系合金(例えば、A6063合金)のβ相の析出温度以上に保持されている。β相であるMg2Siの析出温度が約480℃であることから、拡管下型30及び拡管上型32の保持温度は、例えば、約500℃以上に設定すればよい。 Here, in both of the lower pipe expansion mold 30 and the upper pipe expansion mold 32, heaters 34a to 34e, 36a to 36a, which are elongated cylindrical bodies extending along the longitudinal direction of the lower pipe expansion mold 30 and the upper pipe expansion mold 32. 36e is embedded. The temperature of the expanded pipe lower mold 30 and the expanded pipe upper mold 32 is such that the heaters 34a to 34e and 36a to 36e are energized in advance so that an Al—Mg—Si based alloy (for example, A6063 alloy) that is the material of the straight pipe 10 is used. ) Of the β-phase precipitation temperature. Since the precipitation temperature of Mg 2 Si as the β phase is about 480 ° C., the holding temperature of the lower pipe expansion die 30 and the upper pipe expansion die 32 may be set to about 500 ° C. or more, for example.

その後、拡管下型30が直管10に指向して上昇することにより型締めがなされ、図2に示すように、拡管下型30と拡管上型32で形成されるキャビティ38に直管10が収容される。キャビティ38において、長手方向に直交する周囲方向の一部は、直管10の直径に比して大寸法に設定されている。このため、当該部位では、直管10の外周壁は、拡管下型30及び拡管上型32の双方から離間した状態となっている。   Thereafter, the lower mold 30 is raised toward the straight pipe 10 to clamp the mold, and as shown in FIG. 2, the straight pipe 10 is inserted into the cavity 38 formed by the lower pipe mold 30 and the upper pipe mold 32. Be contained. In the cavity 38, a part of the circumferential direction orthogonal to the longitudinal direction is set to be larger than the diameter of the straight pipe 10. For this reason, in the said part, the outer peripheral wall of the straight pipe 10 is in the state spaced apart from both the pipe expansion lower mold | type 30 and the pipe expansion upper mold | type 32. FIG.

次に、前記挟持機構を介して圧縮エアが直管10の内部に供給され、これに伴って直管10の内部の圧力が上昇する。すなわち、直管10が圧縮エアによって内部から押圧され、拡管下型30と拡管上型32から離間した前記部位では、これら拡管下型30と拡管上型32に指向して直管10が膨張し始める。   Next, compressed air is supplied into the straight pipe 10 via the clamping mechanism, and the pressure inside the straight pipe 10 increases accordingly. That is, in the portion where the straight pipe 10 is pressed from the inside by the compressed air and separated from the pipe expansion lower mold 30 and the pipe expansion upper mold 32, the straight pipe 10 expands toward the pipe expansion lower mold 30 and the pipe expansion upper mold 32. start.

膨張した部位は、最終的に、拡管下型30及び拡管上型32に堰止される。これにより膨張が停止され、キャビティ38に対応する形状の第1半製品12(図1B参照)が形成される。   The expanded portion is finally dammed by the expanded lower die 30 and the expanded upper die 32. Accordingly, the expansion is stopped, and the first semi-finished product 12 (see FIG. 1B) having a shape corresponding to the cavity 38 is formed.

この拡管工程S2が行われている間、直管10には、拡管下型30及び拡管上型32から熱が伝達される。熱を受けた直管10は、拡管下型30及び拡管上型32の温度が直管10の材質であるAl−Mg−Si系合金のβ相の析出温度以上に保持されているため、Mg、SiがAlに溶質原子として固溶する固溶体化が促進される。   While this pipe expansion step S <b> 2 is performed, heat is transmitted to the straight pipe 10 from the pipe expansion lower mold 30 and the pipe expansion upper mold 32. In the straight pipe 10 that has received heat, the temperature of the lower pipe expansion die 30 and the upper pipe expansion die 32 is maintained at or above the β-phase precipitation temperature of the Al—Mg—Si alloy that is the material of the straight pipe 10. , The solid solution of Si as a solute atom in Al is promoted.

型締めがされて所定時間が経過した後、第1半製品12内の圧縮エアが排気され、さらに、拡管下型30が下降して型開きがなされる。露呈した第1半製品12は、次に、押圧成形ステーションに移送され、所定距離で互いに離間した押圧成形下型40と押圧成形上型42の間に配置される(図3参照)。   After a predetermined time has passed after the mold is clamped, the compressed air in the first semi-finished product 12 is exhausted, and the expanded pipe lower mold 30 is lowered to open the mold. The exposed first semi-finished product 12 is then transferred to a press molding station and placed between a press molding lower die 40 and a press molding upper die 42 that are separated from each other by a predetermined distance (see FIG. 3).

前記拡管下型30及び前記拡管上型32と同様に、これら押圧成形下型40及び押圧成形上型42にも、押圧成形下型40及び押圧成形上型42の長手方向に沿って延在する長尺円柱体形状のヒータ44a〜44e、46a〜46eがそれぞれ埋設されている。そして、これらヒータ44a〜44e、46a〜46eが予め付勢されることにより、押圧成形下型40及び押圧成形上型42も、その温度がAl−Mg−Si系合金のβ相の析出温度以上、例えば、約500℃に保持されている。   Similarly to the pipe expansion lower mold 30 and the pipe expansion upper mold 32, the press molding lower mold 40 and the press molding upper mold 42 extend along the longitudinal direction of the press molding lower mold 40 and the press molding upper mold 42. Long cylindrical body-shaped heaters 44a to 44e and 46a to 46e are respectively embedded. And when these heaters 44a to 44e and 46a to 46e are energized in advance, the temperature of the press-molding lower mold 40 and the press-molding upper mold 42 is equal to or higher than the precipitation temperature of the β phase of the Al—Mg—Si alloy. For example, it is maintained at about 500 ° C.

押圧成形工程S3の開始に伴って押圧成形下型40が上昇すると、第1半製品12が押圧成形上型42に指向して押圧される。押圧成形下型40が第1半製品12に当接する直前に、前記挟持機構を介して圧縮エアが供給される。この際の供給圧力は、第1半製品12が拡管されない程度に設定すればよい。   When the press-molding lower mold 40 rises with the start of the press-molding step S3, the first semi-finished product 12 is pressed toward the press-molding upper mold 42. Immediately before the press-molding lower mold 40 comes into contact with the first semi-finished product 12, compressed air is supplied through the clamping mechanism. The supply pressure at this time may be set to such an extent that the first semi-finished product 12 is not expanded.

押圧成形下型40が所定の位置まで上昇変位すると、図3に示すキャビティ48が形成される。この場合、押圧成形下型40及び押圧成形上型42の一部で第1半製品12における前記膨張部位等が押圧成形され、最終的に、第2半製品14(図1C参照)が作製される。このようにして押圧成形工程S3が行われている間も、拡管工程S2時と同様に、押圧成形下型40及び押圧成形上型42の熱が第1半製品12に伝達される。従って、第1半製品12ないし第2半製品14に対し、溶体化処理が施される。   When the press-molding lower mold 40 is displaced up to a predetermined position, a cavity 48 shown in FIG. 3 is formed. In this case, the expansion part or the like in the first semi-finished product 12 is press-molded by a part of the press-molding lower die 40 and the press-molding upper die 42, and finally the second semi-finished product 14 (see FIG. 1C) is produced. The While the pressure molding step S3 is performed in this manner, the heat of the pressure molding lower die 40 and the pressure molding upper die 42 is transmitted to the first semi-finished product 12 as in the tube expansion step S2. Therefore, the solution treatment is performed on the first semi-finished product 12 and the second semi-finished product 14.

押圧成形工程S3が終了すると第2半製品14内の圧縮エアが排気され、その後、押圧成形下型40が下降して型開きがなされる。露呈した第2半製品14は、直管10の円周方向に沿って約90°回転され、その後、所定距離で互いに離間した本成形加工ステーションの本成形下型50と本成形上型52の間に配置される(図4参照)。   When the press molding step S3 is completed, the compressed air in the second semi-finished product 14 is exhausted, and then the press molding lower mold 40 is lowered to open the mold. The exposed second semi-finished product 14 is rotated about 90 ° along the circumferential direction of the straight pipe 10, and then the main molding lower mold 50 and the main molding upper mold 52 of the main molding station separated from each other by a predetermined distance. (See FIG. 4).

これら本成形下型50及び本成形上型52には、冷却媒体を流通させるための冷媒通路54a〜54e、56a〜56eがそれぞれ設けられている。各冷媒通路54a〜54e、56a〜56eには、水や油、圧縮空気等の冷却媒体が流通され、これにより、本成形下型50及び本成形上型52の双方が室温に保持されている。   The main molding lower mold 50 and the main molding upper mold 52 are respectively provided with refrigerant passages 54a to 54e and 56a to 56e for circulating the cooling medium. A cooling medium such as water, oil, or compressed air is circulated through each of the refrigerant passages 54a to 54e and 56a to 56e, whereby both the main molding lower mold 50 and the main molding upper mold 52 are maintained at room temperature. .

従って、本成形加工工程S4が開始され、本成形下型50が上昇して型締めがなされると、第2半製品14は、β相析出温度以上の温度から室温に急冷される。このような急冷が施された第2半製品14では、その材質であるAl−Mg−Si系合金の金属組織中に、β相であるMg2Siが析出することが回避される。 Accordingly, when the main forming step S4 is started and the main lower mold 50 is raised and the mold is clamped, the second semi-finished product 14 is rapidly cooled to a room temperature from a temperature equal to or higher than the β phase precipitation temperature. In the second semi-finished product 14 that has been subjected to such rapid cooling, it is avoided that Mg 2 Si as the β phase is precipitated in the metal structure of the Al—Mg—Si alloy as the material.

以上のように、第1実施形態においては、予備成形工程、すなわち、拡管工程S2及び押圧成形工程S3で直管10、第1半製品12及び第2半製品14をβ相析出温度以上に加熱する一方、本成形加工工程S4では、第2半製品14を室温まで急冷しながら中空成形体16を作製するようにしている。これにより、β相(Mg2Si)が析出することが回避され、過飽和固溶体からなる中空成形体16(図1D参照)が形成される。 As described above, in the first embodiment, the straight pipe 10, the first semi-finished product 12, and the second semi-finished product 14 are heated to the β-phase precipitation temperature or higher in the preforming step, that is, the tube expanding step S 2 and the press forming step S 3. On the other hand, in this molding process S4, the hollow molded body 16 is produced while the second semi-finished product 14 is rapidly cooled to room temperature. Thereby, the precipitation of β phase (Mg 2 Si) is avoided, and a hollow molded body 16 (see FIG. 1D) made of a supersaturated solid solution is formed.

なお、第2半製品14において、押圧成形工程S3で成形される部位を長手方向に対して直交する方向に沿って切断し、露呈する断面の外周寸法(周囲長)は、中空成形体16における対応部位の周囲長に略同一となるように設定される。この周囲長の制御は、押圧成形下型40及び押圧成形上型42によって形成されるキャビティ48の対応部位の周囲方向寸法と、本成形下型50及び本成形上型52によって形成されるキャビティ58の対応部位の周囲方向寸法とを略合致させることによって行うことができる。   In addition, in the second semi-finished product 14, the outer shape (peripheral length) of the cross section exposed by cutting the portion molded in the press molding step S <b> 3 along the direction orthogonal to the longitudinal direction is the same as that in the hollow molded body 16. It is set to be substantially the same as the perimeter of the corresponding part. The peripheral length is controlled by measuring the peripheral dimensions of the corresponding portion of the cavity 48 formed by the press molding lower mold 40 and the press molding upper mold 42, and the cavity 58 formed by the main molding lower mold 50 and the main molding upper mold 52. This can be done by substantially matching the circumferential dimension of the corresponding part.

このように、第2半製品14から中空成形体16に変形させる際に周囲長をほとんど変化させることなく本成形加工工程S4を行うことにより、中空成形体16の寸法精度、ひいては形状の精度を確保することが容易となる。この場合、第2半製品14を内圧によって延伸させる必要がほとんどなく、従って、第2半製品14から中空成形体16に変形する過程で寸法変化がほとんどないからである。   As described above, when the second semi-finished product 14 is deformed to the hollow molded body 16, the dimensional accuracy of the hollow molded body 16, and thus the accuracy of the shape, can be improved by performing this molding process step S 4 with almost no change in the peripheral length. It is easy to ensure. In this case, there is almost no need to stretch the second semi-finished product 14 by internal pressure, and therefore there is almost no dimensional change in the process of deforming from the second semi-finished product 14 to the hollow molded body 16.

また、この本成形加工工程S4が実施される間も、第2半製品14の内部に圧縮エアが供給される。   Further, compressed air is supplied to the inside of the second semi-finished product 14 while the main forming step S4 is performed.

その後、時効処理工程S5が実施される。すなわち、中空成形体16を前記熱処理炉内に収容し、人工時効処理を施す。時効処理条件は、例えば、180℃、6時間とすればよい。又は、自然時効を行うようにしてもよい。   Thereafter, an aging treatment step S5 is performed. That is, the hollow molded body 16 is accommodated in the heat treatment furnace and subjected to artificial aging treatment. The aging treatment condition may be, for example, 180 ° C. and 6 hours. Or you may make it perform natural aging.

この時効処理により、中空成形体16の材質であるAl−Mg−Si系合金(過飽和固溶体)の金属組織中に、溶質原子であるMg、Siがβ’相として析出する。β’相はAl−Mg−Si系合金の強度向上に寄与する相であり、従って、中空成形体16の強度は、直管10に比して高くなる。なお、β’相の典型的な形態は微細粒子であるが、特にこれに限定されるものではない。   By this aging treatment, Mg and Si as solute atoms are precipitated as β ′ phase in the metal structure of the Al—Mg—Si based alloy (supersaturated solid solution) that is the material of the hollow molded body 16. The β ′ phase is a phase that contributes to improving the strength of the Al—Mg—Si alloy, and therefore the strength of the hollow molded body 16 is higher than that of the straight pipe 10. A typical form of the β ′ phase is fine particles, but is not particularly limited thereto.

すなわち、第1実施形態では、中空成形体16の材質であるAl−Mg−Si系合金の金属組織中にβ相(Mg2Si)が析出しない冷却速度で第2半製品14を急冷して過飽和固溶体とし、次に、時効処理によってβ’相を前記過飽和固溶体から析出させるようにしている。このような金属組織が形成された中空成形体16は、拡管工程S2、押圧成形工程S3及び本成形加工工程S4を約500℃で行った後、溶体化処理、焼入処理(急冷)、時効処理を行って得られた材質、形状及び寸法等がすべて同一の中空成形体16に比して、抗張力で1.5倍以上、耐力で2.5倍以上の優れた物性を示す。 That is, in the first embodiment, the second semi-finished product 14 is rapidly cooled at a cooling rate at which the β phase (Mg 2 Si) does not precipitate in the metal structure of the Al—Mg—Si alloy that is the material of the hollow molded body 16. A supersaturated solid solution is formed, and then the β ′ phase is precipitated from the supersaturated solid solution by an aging treatment. The hollow molded body 16 in which such a metal structure is formed is subjected to a solution treatment, a quenching process (rapid cooling), an aging after the tube expansion process S2, the pressure molding process S3, and the main molding process S4 are performed at about 500 ° C. Compared to the hollow molded body 16 having the same material, shape, dimensions and the like obtained by the treatment, it exhibits excellent physical properties of 1.5 times or more in tensile strength and 2.5 or more times in proof stress.

以上のように、本成形加工工程S4時にβ相が析出しない冷却条件を設定することにより、低強度な部位が形成されることを回避することができる。   As described above, it is possible to avoid the formation of a low-strength portion by setting the cooling condition in which the β phase does not precipitate during the main forming step S4.

複数個の中空成形体16を連続して作製するべく、加熱工程S1〜本成形加工工程S4が連続して実施されると、前回に作製された中空成形体16の熱が本成形下型50及び本成形上型52に伝達される。この場合、伝達された熱は、冷媒通路54a〜54e、56a〜56eに流通する冷却媒体に速やかに吸収され、本成形下型50及び本成形上型52から除去される。従って、本成形下型50及び本成形上型52の温度上昇が回避されるので、本成形加工工程S4の実施回数とともに第2半製品14の熱膨張量が異なることに起因して中空成形体16の精度が低減することが回避される。   When the heating step S1 to the main forming step S4 are continuously performed in order to continuously produce a plurality of hollow molded bodies 16, the heat of the previously produced hollow molded body 16 is reduced to the main molding lower mold 50. And, it is transmitted to the main molding upper mold 52. In this case, the transferred heat is quickly absorbed by the cooling medium flowing through the refrigerant passages 54 a to 54 e and 56 a to 56 e and is removed from the main molding lower mold 50 and the main molding upper mold 52. Therefore, since the temperature rise of the main molding lower mold 50 and the main molding upper mold 52 is avoided, the hollow molded body is caused by the fact that the amount of thermal expansion of the second semi-finished product 14 differs with the number of times of the main molding processing step S4. A reduction in the accuracy of 16 is avoided.

次に、第2実施形態につき説明する。   Next, a second embodiment will be described.

第2実施形態では、拡管工程S2及び押圧成形工程S3において、拡管下型30、拡管上型32、押圧成形下型40及び押圧成形上型42に高温部位と低温部位が設けられる。高温部位と低温部位、すなわち、温度が互いに相違する部位を設けるには、例えば、ヒータ34a〜34e、36a〜36e、44a〜44e、46a〜46e中、特定のヒータへの通電を停止したり、ヒータとして発熱容量が異なるものを使用したりすればよい。又は、ヒータ34a〜34e、36a〜36e、44a〜44e、46a〜46eの各々で通電量を相違させるようにしてもよい。勿論、低温部位にヒータが疎に設けられ、高温部位にヒータが密に設けられた拡管下型、拡管上型、押圧成形下型及び押圧成形上型を使用するようにしてもよい。   In the second embodiment, in the tube expansion step S2 and the press molding step S3, a high temperature region and a low temperature region are provided in the tube expansion lower die 30, the tube expansion upper die 32, the pressure molding lower die 40, and the pressure molding upper die 42. In order to provide a high temperature part and a low temperature part, that is, a part where the temperatures are different from each other, for example, in the heaters 34a to 34e, 36a to 36e, 44a to 44e, 46a to 46e, A heater with a different heat generation capacity may be used. Or you may make it make the energization amount differ in each of heater 34a-34e, 36a-36e, 44a-44e, 46a-46e. Of course, a lower tube expansion die, an upper tube expansion die, a lower pressure forming die, and an upper pressure forming die in which heaters are provided sparsely at low temperature portions and heaters are densely provided at high temperature portions may be used.

拡管下型30及び拡管上型32において、中空成形体16の低強度部位に対応する低温部位は、β相の析出温度未満に設定される。一方、中空成形体16の高強度部位に対応する高温部位は、β相の析出温度以上の温度に設定される。勿論、押圧成形下型40及び押圧成形上型42も同様にして高温部位と低温部位が設けられている。   In the lower pipe expansion die 30 and the upper pipe expansion die 32, the low temperature portion corresponding to the low strength portion of the hollow molded body 16 is set to be lower than the precipitation temperature of the β phase. On the other hand, the high-temperature part corresponding to the high-strength part of the hollow molded body 16 is set to a temperature equal to or higher than the β-phase precipitation temperature. Of course, the press molding lower mold 40 and the press molding upper mold 42 are similarly provided with a high temperature portion and a low temperature portion.

直管10は、上記第1実施形態と同様に、加熱工程S1を経て拡管ステーションに移送され、拡管下型30及び拡管上型32による拡管工程S2が営まれて第1半製品12となる。この拡管工程S2においては、上記したように、拡管下型30及び拡管上型32に高温部位及び低温部位が設けられているので、第1半製品12において、前記高温部位に当接した部位はβ相析出温度以上の温度に上昇する一方、前記低温部位に当接した部位はβ相析出温度を下回る温度までしか上昇しない。   Similarly to the first embodiment, the straight pipe 10 is transferred to the pipe expansion station through the heating process S1, and the pipe expansion process S2 is performed by the pipe expansion lower mold 30 and the pipe expansion upper mold 32 to become the first semi-finished product 12. In the pipe expansion step S2, as described above, the high temperature part and the low temperature part are provided in the pipe expansion lower mold 30 and the pipe expansion upper mold 32. Therefore, in the first semi-finished product 12, the part in contact with the high temperature part is While the temperature rises to a temperature equal to or higher than the β-phase precipitation temperature, the portion in contact with the low temperature portion rises only to a temperature lower than the β-phase precipitation temperature.

次に、第1半製品12に対して押圧成形工程S3が営まれ、第2半製品14が作製される。この過程で、第1半製品12が成形される際にβ相析出温度以上の温度に上昇した高温部位は、押圧成形下型40及び押圧成形上型42の高温部位に当接する。また、β相析出温度を下回る温度の低温部位は、押圧成形下型40及び押圧成形上型42の低温部位に当接する。このため、第2半製品14においても、第1半製品12での高温部位及び低温部位の各温度が保たれる。   Next, the press molding step S3 is performed on the first semi-finished product 12, and the second semi-finished product 14 is produced. In this process, when the first semi-finished product 12 is molded, the high-temperature portion that has risen to a temperature equal to or higher than the β-phase precipitation temperature contacts the high-temperature portions of the press-molding lower mold 40 and the press-molding upper mold 42. In addition, a low temperature portion having a temperature lower than the β-phase precipitation temperature contacts the low temperature portions of the press-molding lower mold 40 and the press-molding upper mold 42. For this reason, also in the 2nd semi-finished product 14, each temperature of the high temperature site | part and low-temperature site | part in the 1st semi-finished product 12 is maintained.

その後、第2半製品14が本成形加工ステーションに移送され、本成形加工S3が実施される。この際、室温に保持された本成形下型50及び本成形上型52に挟まれることに伴って第2半製品14が冷却される。従って、第2半製品14の温度が急降下する。   Thereafter, the second semi-finished product 14 is transferred to the main molding processing station, and the main molding processing S3 is performed. At this time, the second semi-finished product 14 is cooled as it is sandwiched between the main molding lower mold 50 and the main molding upper mold 52 held at room temperature. Accordingly, the temperature of the second semi-finished product 14 drops rapidly.

上記したように、第2実施形態では、第2半製品14にβ相析出温度以上の高温部位と、β相析出温度未満の低温部位とを設けている。これら高温部位と低温部位とが急冷されると、高温部位では過飽和固溶体が形成され、低温部位では金属組織中にβ相が析出する。   As described above, in the second embodiment, the second semi-finished product 14 is provided with a high-temperature portion that is equal to or higher than the β-phase precipitation temperature and a low-temperature portion that is lower than the β-phase precipitation temperature. When these high-temperature parts and low-temperature parts are rapidly cooled, a supersaturated solid solution is formed at the high-temperature parts, and the β phase is precipitated in the metal structure at the low-temperature parts.

この中空成形体16に対して時効処理を施すと、過飽和固溶体からなる部位では、第1実施形態と同様にβ’相が析出する。すなわち、第2実施形態では、β相が析出した部位と、β’相が析出した部位とが混在した中空成形体16が作製される。   When the hollow molded body 16 is subjected to an aging treatment, a β ′ phase is precipitated in a portion made of a supersaturated solid solution, as in the first embodiment. That is, in the second embodiment, the hollow molded body 16 is produced in which the portion where the β phase is precipitated and the portion where the β ′ phase is precipitated are mixed.

この中空成形体16では、β相が析出した部位に比してβ’相が析出した部位の方が高強度となる。すなわち、単一部材でありながら、強度が高い部位(高強度部位)と、強度が低い部位(低強度部位)とを有する中空成形体16が得られる。このような中空成形体16は、例えば、自動車車体のフレームを構成するフレーム部材として好適である。このフレーム部材では、強度の相違に基づいて衝撃吸収を担う部位と担わない部位とが存在する。従って、衝撃吸収を担うフレーム部材と担わないフレーム部材とを別個に作製する必要がなくなり、このためにフレーム部材の点数を低減することができるからである。   In the hollow molded body 16, the portion where the β ′ phase is precipitated has higher strength than the portion where the β phase is precipitated. That is, the hollow molded body 16 having a high strength portion (high strength portion) and a low strength portion (low strength portion) while being a single member is obtained. Such a hollow molded body 16 is suitable, for example, as a frame member constituting a frame of an automobile body. In this frame member, there are a part responsible for shock absorption and a part not responsible for shock absorption based on the difference in strength. Therefore, it is not necessary to separately produce a frame member that bears shock absorption and a frame member that does not bear shock, and the number of frame members can be reduced for this purpose.

以上から諒解されるように、第2実施形態では、強度を相違させるべく、拡管工程S2及び押圧成形工程S3での第1半製品12及び第2半製品14の到達温度を部位によって相違させるようにしている。従って、強度を相違させるべく肉厚を相違させる必要は特にない。すなわち、第2実施形態によれば、肉厚を相違させることなく強度を相違させることが可能となる。   As can be understood from the above, in the second embodiment, the ultimate temperatures of the first semi-finished product 12 and the second semi-finished product 14 in the tube expansion step S2 and the press molding step S3 are made different depending on the part in order to make the strength different. I have to. Therefore, it is not particularly necessary to make the thicknesses different in order to make the strengths different. That is, according to the second embodiment, it is possible to make the strengths different without making the thicknesses different.

この第2実施形態においても、上記第1実施形態と同様の理由から、押圧成形工程S3で成形される第2半製品14の押圧成形部位の周囲長を、本成形加工工程S4で成形される中空成形体16の対応部位の周囲長と略同一に設定することが好ましい。   Also in the second embodiment, for the same reason as in the first embodiment, the peripheral length of the press forming portion of the second semi-finished product 14 formed in the press forming step S3 is formed in the main forming step S4. It is preferable to set substantially the same as the peripheral length of the corresponding portion of the hollow molded body 16.

なお、上記した各実施形態では、圧縮エアを使用して成形加工を行うようにしているが、液体を使用するようにしてもよいことはいうまでもない。   In each of the above-described embodiments, the molding process is performed using compressed air, but it goes without saying that a liquid may be used.

また、本成形下型50及び本成形上型52に冷却媒体を流通することに代替し、熱伝導性の高い材質、例えば、Cu等からなる放熱板を本成形下型50及び本成形上型52に装着するようにしてもよい。勿論、冷却媒体の流通と放熱板の装着とを併用するようにしてもよい。   Further, instead of circulating a cooling medium through the main molding lower mold 50 and the main molding upper mold 52, a heat dissipation plate made of a material having high thermal conductivity, such as Cu, is used as the main molding lower mold 50 and the main molding upper mold. 52 may be attached. Of course, the circulation of the cooling medium and the mounting of the heat sink may be used in combination.

さらに、拡管下型30、拡管上型32、押圧成形下型40及び押圧成形上型42を所定の温度に保持するための加熱手段はヒータ34a〜34e、36a〜36e、44a〜44e、46a〜46eに限定されるものではなく、高周波誘導加熱手段等のその他の加熱手段であってもよい。   Further, the heating means for maintaining the expanded pipe lower mold 30, expanded pipe upper mold 32, press molded lower mold 40 and pressed molded upper mold 42 at predetermined temperatures are heaters 34a to 34e, 36a to 36e, 44a to 44e, 46a to 46a. It is not limited to 46e, Other heating means, such as a high frequency induction heating means, may be sufficient.

さらにまた、上記の各実施形態では直管10を用いるようにしているが、ワークは特にこれに限定されるものではなく、圧力流体を流通可能な中空体であればよい。   Furthermore, in each of the above-described embodiments, the straight pipe 10 is used, but the workpiece is not particularly limited to this, and may be a hollow body capable of circulating a pressure fluid.

そして、中空ワークの材質もAl−Mg−Si系合金に特に限定されるものではなく、例えば、強度向上に寄与する相と強度向上に寄与しない相とを析出するような合金であればよい。   The material of the hollow workpiece is not particularly limited to the Al—Mg—Si alloy, and may be any alloy that precipitates a phase contributing to strength improvement and a phase not contributing to strength improvement.

図1A〜図1Eは、第1実施形態に係るバルジ成形方法のフローチャートである。1A to 1E are flowcharts of a bulge forming method according to the first embodiment. 直管に対し、拡管下型と拡管上型で拡管加工を施す状態を示す要部概略縦断面図である。It is a principal part schematic longitudinal cross-sectional view which shows the state which pipe-expands with a pipe expansion lower type | mold and a pipe expansion upper type | mold with respect to a straight pipe. 第1半製品を押圧成形下型と押圧成形上型で挟持した状態の一部を示す要部概略縦断面図である。It is a principal part schematic longitudinal cross-sectional view which shows a part of state which clamped the 1st semi-finished product with the press-molding lower mold | type and the press-molding upper mold | type. 第2半製品を本成形下型と本成形上型で挟持した状態を示す要部概略縦断面図である。It is a principal part schematic longitudinal cross-sectional view which shows the state which clamped the 2nd semifinished product with the main shaping | molding lower mold | type and the main shaping | molding upper mold.

符号の説明Explanation of symbols

10…直管 12、14…半製品
16…中空成形体 20、22…電極
30…拡管下型 32…拡管上型
34a〜34e、36a〜36e、44a〜44e、46a〜46e…ヒータ
40…押圧成形下型 42…押圧成形上型
50…本成形下型 52…本成形上型
54a〜54e、56a〜56e…冷媒通路
DESCRIPTION OF SYMBOLS 10 ... Straight pipe 12, 14 ... Semi-finished product 16 ... Hollow molded object 20, 22 ... Electrode 30 ... Expanded pipe lower mold 32 ... Expanded pipe upper mold 34a-34e, 36a-36e, 44a-44e, 46a-46e ... Heater 40 ... Press Molding lower mold 42 ... Press molding upper mold 50 ... Main molding lower mold 52 ... Main molding upper molds 54a to 54e, 56a to 56e ... Refrigerant passage

Claims (6)

合金製の中空ワークに圧力流体を流通させて成形加工を施すバルジ成形方法であって、
前記中空ワークを加熱する工程と、
前記中空ワークの強度向上に寄与しない金属相が前記合金の金属組織に析出する析出温度以上に設定された予備成形金型内で、前記中空ワークに圧力流体を流通しながら予備成形する予備成形工程と、
予備成形が施された前記中空ワークを、焼入れ処理が可能な温度に設定された本成形金型に収容し、前記金属相が析出しない冷却速度で前記中空ワークを前記本成形金型によって冷却しながら該中空ワークに対して本成形加工を施す本成形加工工程と、
本成形加工が施された前記中空ワークに対して時効処理を施し、前記中空ワークの強度向上に寄与する金属相を金属組織に析出させる時効処理工程と、
を有することを特徴とするバルジ成形方法。
A bulge forming method in which a pressure fluid is passed through a hollow workpiece made of an alloy to perform a forming process,
Heating the hollow workpiece;
A preforming step in which preforming is performed while circulating a pressure fluid through the hollow workpiece in a preforming mold set at a temperature equal to or higher than a precipitation temperature at which a metal phase that does not contribute to improving the strength of the hollow workpiece is precipitated in the metal structure of the alloy. When,
The hollow work that has been preformed is housed in a main mold set at a temperature at which quenching can be performed, and the hollow work is cooled by the main mold at a cooling rate at which the metal phase does not precipitate. However, a main molding process for subjecting the hollow workpiece to a main molding process,
An aging treatment step of performing an aging treatment on the hollow workpiece subjected to the main forming process and precipitating a metal phase contributing to an improvement in the strength of the hollow workpiece in a metal structure,
A bulge forming method characterized by comprising:
合金製の中空ワークに圧力流体を流通させて成形加工を施すバルジ成形方法であって、
前記中空ワークを加熱する工程と、
前記中空ワークの強度向上に寄与しない金属相が前記合金の金属組織に析出する析出温度以上に設定された第1部位と、前記析出温度未満の温度に設定された第2部位とが設けられた予備成形金型内で、前記中空ワークに圧力流体を流通しながら予備成形する予備成形工程と、
予備成形が施された前記中空ワークを、焼入れ処理が可能な温度に設定された本成形金型に収容し、前記第1部位に前記金属相が析出しない冷却速度で前記中空ワークを前記本成形金型で冷却することで、前記第1部位の金属組織に前記金属相を析出させず且つ前記第2部位の金属組織に前記金属相を析出させながら該中空ワークに対して本成形加工を施す本成形加工工程と、
本成形加工が施された前記中空ワークに対して時効処理を施し、前記中空ワークの強度向上に寄与する金属相を前記第1部位の金属組織に析出させる時効処理工程と、
を有することを特徴とするバルジ成形方法。
A bulge forming method in which a pressure fluid is passed through a hollow workpiece made of an alloy to perform a forming process,
Heating the hollow workpiece;
There are provided a first part set to be equal to or higher than a precipitation temperature at which a metal phase that does not contribute to improving the strength of the hollow workpiece is precipitated in the metal structure of the alloy, and a second part set to a temperature lower than the precipitation temperature. In a preforming mold, a preforming step for preforming while circulating a pressure fluid through the hollow work,
The hollow workpiece that has been preformed is accommodated in a main mold set at a temperature at which quenching can be performed, and the hollow workpiece is formed at a cooling rate at which the metal phase does not precipitate in the first part. by cooling the mold, subjected to the molding against the hollow workpiece while precipitating the metal phase and the second portion of the metal structure without precipitation of the metal phase in the first portion of the metal structure The main molding process,
An aging treatment is performed on the hollow work subjected to the main forming process, and a metal phase contributing to the strength improvement of the hollow work is precipitated in the metal structure of the first part;
A bulge forming method characterized by comprising:
請求項1又は2記載の成形方法において、前記予備成形工程は、前記中空ワークを膨張させる拡管工程を含み、
前記拡管工程で得られる膨張後の前記中空ワークの膨張部位を該中空ワークの長手方向に直交する方向に切断して露呈する断面の外周寸法を、前記本成形加工工程で本成形加工が施された後の前記中空ワークの成形部位を該中空ワークの長手方向に直交する方向に切断して露呈する断面の外周寸法と略同一にすることを特徴とするバルジ成形方法。
In the shaping | molding method of Claim 1 or 2, the said preforming process includes the pipe expansion process which expands the said hollow workpiece,
The outer peripheral dimension of the cross section that is exposed by cutting the expanded portion of the hollow workpiece after expansion obtained in the tube expansion step in a direction perpendicular to the longitudinal direction of the hollow workpiece is subjected to main molding processing in the main molding step. A bulge forming method characterized in that the formed part of the hollow workpiece after the cutting is cut in a direction perpendicular to the longitudinal direction of the hollow workpiece so as to be substantially the same as the outer peripheral dimension of the exposed cross section.
請求項1〜3のいずれか1 項に記載の成形方法において、前記本成形金型の温度を室温に設定することを特徴とするバルジ成形方法。   The bulge forming method according to any one of claims 1 to 3, wherein the temperature of the main mold is set to room temperature. 合金からなり、且つ長手方向に直交する方向の断面形状又は寸法が部位によって相違する長尺な中空成形体であって、
強度向上に寄与しない第1金属相を金属組織中に含む第1部位と、強度向上に寄与する第2金属相を金属組織中に含み且つ前記第1部位に比して高強度な第2部位とを有する単一部材であることを特徴とする中空成形体。
A long hollow molded body made of an alloy and having a different cross-sectional shape or dimension in a direction orthogonal to the longitudinal direction, depending on the site,
A first part containing in the metal structure a first metal phase that does not contribute to improving the strength, and a second part containing a second metal phase contributing to improving the strength in the metal structure and having a higher strength than the first part. A hollow molded body characterized by being a single member.
請求項5記載の中空成形体において、前記合金がMg及びSiを含有するAl合金であり、前記第1金属相がMgSiであることを特徴とする中空成形体。 6. The hollow molded body according to claim 5, wherein the alloy is an Al alloy containing Mg and Si, and the first metal phase is Mg 2 Si.
JP2006035487A 2006-02-13 2006-02-13 Bulge molding method and hollow molded body Expired - Fee Related JP4933788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035487A JP4933788B2 (en) 2006-02-13 2006-02-13 Bulge molding method and hollow molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035487A JP4933788B2 (en) 2006-02-13 2006-02-13 Bulge molding method and hollow molded body

Publications (2)

Publication Number Publication Date
JP2007210027A JP2007210027A (en) 2007-08-23
JP4933788B2 true JP4933788B2 (en) 2012-05-16

Family

ID=38488883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035487A Expired - Fee Related JP4933788B2 (en) 2006-02-13 2006-02-13 Bulge molding method and hollow molded body

Country Status (1)

Country Link
JP (1) JP4933788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942109A (en) * 2015-07-01 2015-09-30 上海凌云汽车模具有限公司 Method and device for producing variable-strength heat forming part

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931769B2 (en) * 2013-02-01 2016-06-08 アイシン高丘株式会社 Infrared furnace and infrared heating method
JP5937524B2 (en) * 2013-02-01 2016-06-22 アイシン高丘株式会社 Infrared furnace, infrared heating method, and steel plate manufactured using the same
JP6240564B2 (en) * 2014-06-19 2017-11-29 住友重機械工業株式会社 Molding apparatus and method for replacing parts of molding apparatus
CN104438878A (en) * 2014-12-08 2015-03-25 无锡朗贤汽车组件研发中心有限公司 High-pressure gas bulging thermoforming die of boron steel pipe
JP6860548B2 (en) * 2016-03-01 2021-04-14 住友重機械工業株式会社 Molding equipment and molding method
CN106756664B (en) * 2016-11-23 2018-08-17 燕山大学 A kind of preparation method of high strength alumin ium alloy plate members
JP7313765B2 (en) * 2019-09-30 2023-07-25 ファナック株式会社 ROBOT ARM MANUFACTURING METHOD AND ROBOT ARM
CN111633079B (en) * 2020-06-02 2022-11-29 碳元科技股份有限公司 Method for treating heat conduction pipe
JP7183310B2 (en) * 2021-01-04 2022-12-05 住友重機械工業株式会社 molding equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116324A (en) * 1982-12-24 1984-07-05 Kasuya Seikou Kk Cam shaft formed of pipe for moving valve of internal- combustion engine
JPH1192849A (en) * 1997-09-17 1999-04-06 Hitachi Metals Ltd Load wheel and its production
CH693673A5 (en) * 1999-03-03 2003-12-15 Alcan Tech & Man Ag Use of an aluminum alloy of the AlMgSi type for the production of structural components.
JP2002018533A (en) * 2000-07-04 2002-01-22 Mazda Motor Corp Method for manufacturing metal formed body with using fluid and metal formed body
JP2003088927A (en) * 2001-09-14 2003-03-25 Honda Motor Co Ltd Hot forming method of tubular member
JP4164453B2 (en) * 2004-02-25 2008-10-15 株式会社神戸製鋼所 Forming method of aluminum alloy material
US7191032B2 (en) * 2004-05-14 2007-03-13 Novelis Inc. Methods of and apparatus for forming hollow metal articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942109A (en) * 2015-07-01 2015-09-30 上海凌云汽车模具有限公司 Method and device for producing variable-strength heat forming part
CN104942109B (en) * 2015-07-01 2017-03-01 上海凌云汽车模具有限公司 Produce the equipment of intensity adjustable thermoforming part

Also Published As

Publication number Publication date
JP2007210027A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4933788B2 (en) Bulge molding method and hollow molded body
KR101827498B1 (en) Method of Forming a Component of Complex Shape from Sheet Material
JP5808724B2 (en) Die quench apparatus and die quench method for aluminum alloy material
CN108380722A (en) A kind of hot press-formed method of lightweight car body of aluminum alloy component
US9822421B2 (en) Method for producing press-hardened components for motor vehicles
US20100218860A1 (en) Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy
CN106583489A (en) Regression and formation integrated technology of high-strength aluminum alloy plate
JP2005205416A (en) Hot press-forming method and hot press-forming die
CN107186139A (en) The H profile steel manufacture method of nuclear fusion stack magnet support
JP2008073763A (en) Method of manufacturing vehicle wheel
CN109048221B (en) Forming method of foamed aluminum part with complex curved surface
CN112296616B (en) Method for manufacturing a plate heat exchanger and plate heat exchanger
CN107460416B (en) Agitating friction welds tailor welded solid solution aging integral forming method
JP5291370B2 (en) Method for producing aluminum alloy automotive panel member
KR102550402B1 (en) How to mold parts from sheet material
WO2021217266A1 (en) Stamping apparatus for forming tailored properties on a stamped part
US3196528A (en) Metal sheet article and process for making
CN113333986A (en) Method for quickly forming dissimilar alloy tailor-welded blank component
CN111719097B (en) Forming method of aluminum extruded material
US20080105023A1 (en) Method of forming a panel from a metal alloy sheet
KR101630175B1 (en) Push Rod Producing Method for Vehcle
CN105247080B (en) The method and hardening tool hardened for component or semi-finished product
JP5342161B2 (en) Method for producing aluminum alloy automotive panel member
JP2007136512A (en) Tight fitting copper pipe to die hole for water-cooling
EP3896188A1 (en) A method of manufacturing of energy-absorbing elements made of age-hardenable aluminum alloy sheets that facilitate further joining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Ref document number: 4933788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees