US20100218860A1 - Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy - Google Patents

Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy Download PDF

Info

Publication number
US20100218860A1
US20100218860A1 US12/702,367 US70236710A US2010218860A1 US 20100218860 A1 US20100218860 A1 US 20100218860A1 US 70236710 A US70236710 A US 70236710A US 2010218860 A1 US2010218860 A1 US 2010218860A1
Authority
US
United States
Prior art keywords
sheet
heated
accordance
capacitively
conductively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/702,367
Inventor
Jochen Dörr
Rafael Garcia Gomez
Markus Pellmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Assigned to BENTELER AUTOMOBILTECHNIK GMBH reassignment BENTELER AUTOMOBILTECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DORR, JOCHEN, DR., GARCIA GOMEZ, RAFAEL, PELLMANN, MARKUS
Publication of US20100218860A1 publication Critical patent/US20100218860A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention relates to a method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy.
  • Forming is the only way to increase the strength of those aluminum alloys in which an increase in hardness cannot be attained using a thermal treatment (natural or artificial aging).
  • a thermal treatment naturally or artificial aging
  • they are generally shaped in a soft temper, like the hardenable alloys. This means that these non-hardenable aluminum alloys are for instance soft-annealed in advance.
  • Non-hardenable aluminum alloys are generally distinguished by very good resistance to corrosion. In addition, they are frequently used in components that are not subject to high stress, but in applications in which the focus is not specifically on lightweight design.
  • the underlying object of the invention is therefore to provide an option for producing a high-strength component that is complex in terms of shaping from sheets that comprise as-roiled, non-hardenable aluminum alloys.
  • One essential step of the invention is that the temperature range at which the sheet is to be heated is less than 300° C., in particular is less than 250° C. This is because of the fact that most of the strength is lost after heating in the furnace when conventional heating methods to temperatures of about 300° C. are used. However, it has been found that both the recrystallization and the recovery of the structure are a function of a temperature threshold. Therefore the invention provides that an as-rolled, non-hardenable aluminum sheet is heated at an extremely high speed.
  • the sheet temper is H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36 or H38 according to European Standard EN515:1993, the disclosure of which is included herein by reference.
  • the sheet includes at least magnesium and where necessary manganese as alloy components. Then the sheet is shaped so rapidly in a cold shaping tool that most of the strength is retained in the entire component. To this end the sheet must be heated at least locally to a temperature between 200° C. and 250° C., preferably 240° C., within a period of 1 to 60 seconds. This heating period is preferably significantly shorter and is especially a period of 1 to 10 seconds.
  • European Standard EN 515 establishes how to designate basic tempers for aluminum semi-finished products.
  • the letter H means strain hardened. This designation applies for products that are subjected to cold deformation or a combination of cold deformation and recovery annealing and stabilization after soft annealing (or after hot forming) to assure the established mechanical properties. Two digits follow the letter H; the first identifies the type of thermal treatment, and the second identifies the degree of strain hardening.
  • Cold deformation includes plastic deformation of a metal at a temperature and speed that leads to strain hardening. Strain hardening is the change in the metal structure due to cold deformation, which leads to increased strength and hardness, reducing formability.
  • H1x means only cold-worked products that are strain hardened, without additional thermal treatment, to attain the desired strength.
  • H2x means cold-worked and partially annealed. It applies to products that are strain hardened beyond the desired final strength and then are reduced in strength to the desired strength level by partial annealing.
  • H3x means cold-worked and stabilized and applies to strain-hardened products whose mechanical properties are stabilized either by a low temperature thermal treatment or as a result of heat introduced during fabrication. Stabilization improves formability in general. This designation applies only to alloys that lose strength without stabilization by being stored at room temperature.
  • the second digit after the H indicates the final degree of strain hardening, which is characterized by the minimum value of the tensile strength.
  • the number 8 is associated with the hardest tempers that are normally produced.
  • the number 9 identifies tempers whose minimum tensile strength is about 10 MPa or more above the H8x tempers.
  • the numbers 2, 4, and 6 identify intermediate tempers. Consequently, H12 means strain hardened—1/4 hard, H14 means strain hardened— 1 / 2 hard, H16 means strain hardened—3/4 hard, and H18 means strain hardened—4/4 hard (fully hardened). Therefore strain hardened and partially annealed materials are categorized in tempers H22/24/26/28 and strain hardened and stabilized materials are categorized in tempers H32/34/36/38. Overall, therefore, sheets that are as-rolled and thus have been strain-hardened by rolling should be used.
  • the advantage of the invention is that a relatively complex component can be fabricated that is made of an as-rolled, non-hardenable aluminum alloy and that has high strength overall or in parts. What is particularly noteworthy is that the parts that have high strength do not depend on the forming and the degree of forming. The result is an alternative fabrication compared to hardenable alloys that are associated with high production costs due to lengthy thermal treatment for up to 24 hours.
  • an open molded sheet metal part is an element manufactured from a sheet metal plate using molding, that is, from an essentially flat start condition.
  • the starting material has been strain hardened by rolling to a specific target value.
  • An open molded sheet metal part in the context of the invention is not a hollow profile.
  • the as-rolled, non-hardenable aluminum sheet should preferably be completely heated and formed.
  • partial thermal forming in which different areas of the sheet metal are heated to different temperatures, is also possible. It is also possible for the sheet metal to have areas that have been heated for different lengths of time, whether to attain different target temperatures or to use the length of heating time to influence the local deformation properties of the sheet metal, and thus its tensile strengths.
  • the sheet metal can preferably be heated resistively, conductively, or capacitively.
  • the inventive method it is also possible to create components that should have high strength only in certain areas, it being possible for the components to have a lower strength in other areas, with improved strain values at the same time.
  • the goal pursued is to create a component that is in general better than a completely hard component. It will especially have better properties in terms of deformation behavior in an accident, whether with respect to energy absorption or savings in weight.
  • the forming die can have a cavity with at least one area that is heated. Locations in the die that are to be heated alternatively or additionally can also be provided cooled areas. The heated areas in the forming die provide the opportunity to keep the die at a higher temperature within an additional period in that a specific area is first heated continuously for a longer period.
  • multi-stage forming it is also possible to provide cavities that are partially heated in additional die steps.
  • a process step that follows the forming it is possible to have temporally extended heating using an oven that is active at times or using an inductor. However, it is considered useful to have the extended heating time or higher temperature prior to the forming and not following the forming.

Abstract

Method for producing an open molded sheet metal part from a non-hardenable aluminum alloy that has the following steps:
    • a) a sheet is prepared that is made of a non-hardenable aluminum alloy, the temper of which is H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36 or H38 according to European Standard EN 515:1993 and that in addition to aluminum includes at least magnesium and where necessary manganese;
    • b) the aluminum is heated at least locally to a temperature between 200° C. and 350° C. within a period of 1 to 60 seconds;
    • c) the heated sheet is placed in a cold forming die of a forming press and the sheet is formed, creating a molded sheet metal part.

Description

    CLAIM OF PRIORITY
  • Applicants hereby claim the priority benefits under the provisions of 35 U.S.C. §119, basing said claim of priority on German Patent Application Serial No. 102009008282.4, filed Feb. 10, 2009.
  • FIELD OF THE INVENTION
  • The invention relates to a method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy.
  • BACKGROUND OF THE INVENTION
  • Producing highly-stressed vehicle components from aluminum sheet is known. Primarily hardenable alloys are used for this. Normally production consists of pre-forming the low-strength aluminum sheet and then aging it to obtain increased strength.
  • Forming is the only way to increase the strength of those aluminum alloys in which an increase in hardness cannot be attained using a thermal treatment (natural or artificial aging). In order to be able to produce complex geometries from sheets of these alloys, as well, they are generally shaped in a soft temper, like the hardenable alloys. This means that these non-hardenable aluminum alloys are for instance soft-annealed in advance.
  • It is a disadvantage that the strength of pressed parts that are produced by shaping these soft-annealed, non-hardenable aluminum alloys increases considerably only in areas that have undergone significant shaping. The result is that there is relatively limited potential in lightweight design for using shaped parts that are made of the inexpensive, non-hardenable aluminum alloys. This is also the reason that non-hardenable aluminum alloys are used predominantly as thick-walled components in the chassis. Non-hardenable aluminum alloys are generally distinguished by very good resistance to corrosion. In addition, they are frequently used in components that are not subject to high stress, but in applications in which the focus is not specifically on lightweight design.
  • There must be an effort to save weight in all components in order to satisfy current and future requirements for motor vehicles to optimize weight. This applies to components made of non-hardenable aluminum alloys, as well. These aluminum alloys are available as high-strength and higher-strength sheets that are produced by cold rolling or by cold rolling with partial annealing. However, in the past it has not been possible to produce complex components from these commercially readily available semi-finished products, even though this would be very attractive economically due to the potential weight reduction and savings in materials.
  • SUMMARY OF THE INVENTION
  • The underlying object of the invention is therefore to provide an option for producing a high-strength component that is complex in terms of shaping from sheets that comprise as-roiled, non-hardenable aluminum alloys.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • This object is attained in a method having the features of patent claim 1. One essential step of the invention is that the temperature range at which the sheet is to be heated is less than 300° C., in particular is less than 250° C. This is because of the fact that most of the strength is lost after heating in the furnace when conventional heating methods to temperatures of about 300° C. are used. However, it has been found that both the recrystallization and the recovery of the structure are a function of a temperature threshold. Therefore the invention provides that an as-rolled, non-hardenable aluminum sheet is heated at an extremely high speed. The sheet temper is H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36 or H38 according to European Standard EN515:1993, the disclosure of which is included herein by reference. In addition to aluminum, the sheet includes at least magnesium and where necessary manganese as alloy components. Then the sheet is shaped so rapidly in a cold shaping tool that most of the strength is retained in the entire component. To this end the sheet must be heated at least locally to a temperature between 200° C. and 250° C., preferably 240° C., within a period of 1 to 60 seconds. This heating period is preferably significantly shorter and is especially a period of 1 to 10 seconds.
  • European Standard EN 515 establishes how to designate basic tempers for aluminum semi-finished products. The letter H means strain hardened. This designation applies for products that are subjected to cold deformation or a combination of cold deformation and recovery annealing and stabilization after soft annealing (or after hot forming) to assure the established mechanical properties. Two digits follow the letter H; the first identifies the type of thermal treatment, and the second identifies the degree of strain hardening.
  • Cold deformation includes plastic deformation of a metal at a temperature and speed that leads to strain hardening. Strain hardening is the change in the metal structure due to cold deformation, which leads to increased strength and hardness, reducing formability.
  • H1x means only cold-worked products that are strain hardened, without additional thermal treatment, to attain the desired strength.
  • H2x means cold-worked and partially annealed. It applies to products that are strain hardened beyond the desired final strength and then are reduced in strength to the desired strength level by partial annealing.
  • H3x means cold-worked and stabilized and applies to strain-hardened products whose mechanical properties are stabilized either by a low temperature thermal treatment or as a result of heat introduced during fabrication. Stabilization improves formability in general. This designation applies only to alloys that lose strength without stabilization by being stored at room temperature.
  • The second digit after the H indicates the final degree of strain hardening, which is characterized by the minimum value of the tensile strength. The number 8 is associated with the hardest tempers that are normally produced. The number 9 identifies tempers whose minimum tensile strength is about 10 MPa or more above the H8x tempers. The numbers 2, 4, and 6 identify intermediate tempers. Consequently, H12 means strain hardened—1/4 hard, H14 means strain hardened—1/2 hard, H16 means strain hardened—3/4 hard, and H18 means strain hardened—4/4 hard (fully hardened). Therefore strain hardened and partially annealed materials are categorized in tempers H22/24/26/28 and strain hardened and stabilized materials are categorized in tempers H32/34/36/38. Overall, therefore, sheets that are as-rolled and thus have been strain-hardened by rolling should be used.
  • The advantage of the invention is that a relatively complex component can be fabricated that is made of an as-rolled, non-hardenable aluminum alloy and that has high strength overall or in parts. What is particularly noteworthy is that the parts that have high strength do not depend on the forming and the degree of forming. The result is an alternative fabrication compared to hardenable alloys that are associated with high production costs due to lengthy thermal treatment for up to 24 hours.
  • In the context of this invention, an open molded sheet metal part is an element manufactured from a sheet metal plate using molding, that is, from an essentially flat start condition. The starting material has been strain hardened by rolling to a specific target value. An open molded sheet metal part in the context of the invention is not a hollow profile.
  • In the framework of the invention, the as-rolled, non-hardenable aluminum sheet should preferably be completely heated and formed. However, partial thermal forming, in which different areas of the sheet metal are heated to different temperatures, is also possible. It is also possible for the sheet metal to have areas that have been heated for different lengths of time, whether to attain different target temperatures or to use the length of heating time to influence the local deformation properties of the sheet metal, and thus its tensile strengths.
  • The sheet metal can preferably be heated resistively, conductively, or capacitively.
  • With the inventive method it is also possible to create components that should have high strength only in certain areas, it being possible for the components to have a lower strength in other areas, with improved strain values at the same time. The goal pursued is to create a component that is in general better than a completely hard component. It will especially have better properties in terms of deformation behavior in an accident, whether with respect to energy absorption or savings in weight.
  • In the framework of the invention it is also possible to continue heating the sheet by area for different lengths of time and to different temperatures during the forming process. To this end the forming die can have a cavity with at least one area that is heated. Locations in the die that are to be heated alternatively or additionally can also be provided cooled areas. The heated areas in the forming die provide the opportunity to keep the die at a higher temperature within an additional period in that a specific area is first heated continuously for a longer period.
  • In multi-stage forming, it is also possible to provide cavities that are partially heated in additional die steps. In the same manner, in a process step that follows the forming it is possible to have temporally extended heating using an oven that is active at times or using an inductor. However, it is considered useful to have the extended heating time or higher temperature prior to the forming and not following the forming.

Claims (20)

1. Method for producing an open molded sheet metal part from an as-rolled, non-hardenable aluminum alloy that has the following steps:
a) preparing a sheet that is made of a non-hardenable aluminum alloy, the temper of which is H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36 or H38 according to European Standard EN 515:1993 and that in addition to aluminum includes at least magnesium and where necessary manganese;
b) heating the aluminum at least locally to a temperature between 200° C. and 350° C. within a period of 1 to 60 seconds;
c) placing the heated sheet in a cold forming die of a forming press and forming the sheet, creating a molded sheet metal part.
2. Method in accordance with claim 1, characterized in that the sheet is heated to a temperature between 200° C. and 240° C. in a period of 1 to 10 seconds.
3. Method in accordance with claim 2, characterized in that the sheet is heated to different temperatures by area prior to forming.
4. Method in accordance with claim 3, characterized in that the sheet is heated resistively, conductively, or capacitively.
5. Method in accordance with claim 3, characterized in that areas of the sheet are heated for different lengths of time.
6. Method in accordance with claim 5, characterized in that the sheet is heated resistively, conductively, or capacitively.
7. Method in accordance with claim 6, characterized in that the forming die has a cavity that has at least one area that is heated.
8. Method in accordance with claim 2, characterized in that areas of the sheet are heated for different lengths of time.
9. Method in accordance with claim 8, characterized in that the sheet is heated resistively, conductively, or capacitively.
10. Method in accordance with claim 2, characterized in that the sheet is heated resistively, conductively, or capacitively.
11. Method in accordance with claim 2, characterized in that the forming die has a cavity with at least one area that is heated.
12. Method in accordance with claim I, characterized in that the sheet is heated to different temperatures by area prior to forming.
13. Method in accordance with claim 12, characterized in that areas of the sheet are heated for different lengths of time.
14. Method in accordance with claim 13, characterized in that the sheet is heated resistively, conductively, or capacitively.
15. Method in accordance with claim 12, characterized in that the sheet is heated resistively, conductively, or capacitively.
16. Method in accordance with claim 12, characterized in that the forming die has a cavity with at least one area that is heated.
17. Method in accordance with claim 1, characterized in that areas of the sheet are heated for different lengths of time.
18. Method in accordance with claim 17, characterized in that the sheet is heated resistively, conductively, or capacitively.
19. Method in accordance with claim 1, characterized in that the sheet is heated resistively, conductively, or capacitively.
20. Method in accordance with claim 1, characterized in that the forming die has a cavity with at least one area that is heated.
US12/702,367 2009-02-10 2010-02-09 Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy Abandoned US20100218860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008282A DE102009008282A1 (en) 2009-02-10 2009-02-10 Process for producing a sheet metal part from a hard, non-hardenable aluminum alloy
DE102009008282.4 2009-02-10

Publications (1)

Publication Number Publication Date
US20100218860A1 true US20100218860A1 (en) 2010-09-02

Family

ID=42338593

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/702,367 Abandoned US20100218860A1 (en) 2009-02-10 2010-02-09 Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy

Country Status (3)

Country Link
US (1) US20100218860A1 (en)
DE (1) DE102009008282A1 (en)
FR (1) FR2941879B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150291227A1 (en) * 2014-04-10 2015-10-15 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
US20150354043A1 (en) * 2014-06-10 2015-12-10 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
CN105268843A (en) * 2014-06-10 2016-01-27 本特勒尔汽车技术有限公司 Method for manufacturing a motor vehicle part made of aluminium
US20160339497A1 (en) * 2014-02-17 2016-11-24 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
US9719161B2 (en) 2014-08-20 2017-08-01 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from a hardenable aluminum alloy
US10029624B2 (en) 2010-08-02 2018-07-24 Benteler Automobiltechnik Gmbh Sheet metal molding for motor vehicles and process for producing a sheet metal molding for motor vehicles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415882B1 (en) * 2010-08-02 2016-03-23 Benteler Automobiltechnik GmbH Method for producing a shaped metal sheet from a rolled, non-hardenable aluminium alloy
FR2995322B1 (en) * 2012-09-10 2015-04-17 Peugeot Citroen Automobiles Sa VEHICLE BODY PIECE EMBROIDED FROM HIGH PERFORMANCE ALUMINUM SHEET.
DE102013002121B4 (en) * 2013-02-08 2015-04-02 Benteler Automobiltechnik Gmbh Method and pressing tool for the production of aluminum body components and car body component
CN107787376A (en) 2015-06-25 2018-03-09 海德鲁铝业钢材有限公司 High intensity and the excellent AlMg bands of shaping and its production method
DE102016124971B4 (en) 2016-12-20 2020-10-15 Benteler Automobiltechnik Gmbh Process for the production of light metal formed components
DE102017102685B4 (en) 2017-02-10 2021-11-04 Benteler Automobiltechnik Gmbh Battery tray with a deep-drawn tray made of aluminum and a method for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359622A (en) * 1980-05-19 1982-11-16 Vanzetti Infrared & Computer Systems, Inc. Controller for spot welding
US20040118488A1 (en) * 2002-12-18 2004-06-24 Carsley John E. Heating of metal alloy sheet by thermal conduction
US20060130941A1 (en) * 2003-02-26 2006-06-22 Pierre Litalien Method for warm swaging al-mg alloy parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359622A (en) * 1980-05-19 1982-11-16 Vanzetti Infrared & Computer Systems, Inc. Controller for spot welding
US20040118488A1 (en) * 2002-12-18 2004-06-24 Carsley John E. Heating of metal alloy sheet by thermal conduction
US20060130941A1 (en) * 2003-02-26 2006-06-22 Pierre Litalien Method for warm swaging al-mg alloy parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029624B2 (en) 2010-08-02 2018-07-24 Benteler Automobiltechnik Gmbh Sheet metal molding for motor vehicles and process for producing a sheet metal molding for motor vehicles
US20160339497A1 (en) * 2014-02-17 2016-11-24 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
US10384252B2 (en) * 2014-02-17 2019-08-20 GM Global Technology Operations LLC Warm forming of work-hardened sheet alloys
US20150291227A1 (en) * 2014-04-10 2015-10-15 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
EP2942418A1 (en) * 2014-04-10 2015-11-11 Benteler Automobiltechnik GmbH Method for manufacturing a motor vehicle part made of aluminium
US9914491B2 (en) * 2014-04-10 2018-03-13 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
US20150354043A1 (en) * 2014-06-10 2015-12-10 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
EP2963140A1 (en) * 2014-06-10 2016-01-06 Benteler Automobiltechnik GmbH Method for manufacturing a motor vehicle part made of aluminium
CN105268843A (en) * 2014-06-10 2016-01-27 本特勒尔汽车技术有限公司 Method for manufacturing a motor vehicle part made of aluminium
US9821859B2 (en) 2014-06-10 2017-11-21 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
US9938613B2 (en) * 2014-06-10 2018-04-10 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
US9719161B2 (en) 2014-08-20 2017-08-01 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from a hardenable aluminum alloy

Also Published As

Publication number Publication date
FR2941879A1 (en) 2010-08-13
DE102009008282A1 (en) 2010-08-19
FR2941879B1 (en) 2015-06-19

Similar Documents

Publication Publication Date Title
US20100218860A1 (en) Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy
US10501829B2 (en) Method for producing a structural sheet metal component, and a structural sheet metal component
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP6802187B2 (en) Impact heat treatment of aluminum alloy articles
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
US4840852A (en) Aluminum alloy vehicular member
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
US10029624B2 (en) Sheet metal molding for motor vehicles and process for producing a sheet metal molding for motor vehicles
WO2014135367A1 (en) Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP6429519B2 (en) Warm forming method of Al-Mg-Si alloy rolled sheet
WO2009130175A1 (en) Method of manufacturing a structural aluminium alloy part
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
KR102329710B1 (en) A process for warm forming an age hardenable aluminum alloy in t4 temper
KR20210032429A (en) 7xxx aluminum alloy thin sheet manufacturing method suitable for forming and assembly
CN110551953A (en) High strength aluminothermic stamping with intermediate quench
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
US6406571B1 (en) Heat treatment of formed aluminum alloy products
CA2372736A1 (en) Heat treatment of formed aluminum alloy products
US20020174920A1 (en) Heat treatment of formed aluminum alloy products
WO2006056481A1 (en) Aluminium alloy sheet for automotive applications
JP2009242907A (en) Method for producing aluminum alloy blank for press forming
JP2012152780A (en) Molding working method for aluminum alloy plate
US10428412B2 (en) Artificial aging of strained sheet metal for strength uniformity
KR100604592B1 (en) Heat treatment method of aluminum extruding object and a aluminum extruding object manufacture by the heat treatment method
CN105377469B (en) The method for being used to form the aluminium alloy part with special mechanical performance

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENTELER AUTOMOBILTECHNIK GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DORR, JOCHEN, DR.;GARCIA GOMEZ, RAFAEL;PELLMANN, MARKUS;SIGNING DATES FROM 20100223 TO 20100301;REEL/FRAME:024391/0372

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION