JP2003226926A - Aluminum alloy sheet having excellent bending workability and production method thereof - Google Patents

Aluminum alloy sheet having excellent bending workability and production method thereof

Info

Publication number
JP2003226926A
JP2003226926A JP2002345733A JP2002345733A JP2003226926A JP 2003226926 A JP2003226926 A JP 2003226926A JP 2002345733 A JP2002345733 A JP 2002345733A JP 2002345733 A JP2002345733 A JP 2002345733A JP 2003226926 A JP2003226926 A JP 2003226926A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
plane
ratio
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345733A
Other languages
Japanese (ja)
Other versions
JP4383039B2 (en
Inventor
Masamichi Aono
雅路 青野
Tetsuya Masuda
哲也 増田
Manabu Nakai
学 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP2002345733A priority Critical patent/JP4383039B2/en
Publication of JP2003226926A publication Critical patent/JP2003226926A/en
Application granted granted Critical
Publication of JP4383039B2 publication Critical patent/JP4383039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si alloy sheet which has excellent bending workability such as flat hemming in particular, and further has the other properties required for a panel, and to provide a production method thereof. <P>SOLUTION: The Al-Mg-Si aluminum alloy sheet comprising 0.4 to 1.3% Si, 0.2 to 1.2% Mg, 0.01 to 0.65% Mn, and 0.001 to 1.0% Cu, and the balance Al with inevitable impurities. The ratio of the integrated intensity in the ä200} plane in the surface of the aluminum alloy sheet is ≥50%, and the ratio of the total integrated intensity in the ä200} plane and the ä400} plane is ≥60%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ヘム加工などの曲
げ加工性に優れたAl-Mg-Si系アルミニウム合金板(以
下、アルミニウムを単にAlと言う)およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg-Si based aluminum alloy plate (hereinafter, aluminum is simply referred to as Al) having excellent bending workability such as hemming and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、自動車、船舶あるいは車両な
どの輸送機、家電製品、建築、構造物の部材や部品用と
して、成形加工性 (以下、単に成形性と言う) に優れた
Al-Mg系のAA乃至JIS 規格に規定された (規格を満足す
る)5000 系や、成形性や焼付硬化性に優れたAl-Mg-Si系
のAA乃至JIS 6000系 (以下、単に5000系乃至6000系と言
う) のAl合金材(圧延板材、押出形材、鍛造材などの各
アルミニウム合金展伸材を総称する)が使用されてい
る。
2. Description of the Related Art Conventionally, it has been excellent in moldability (hereinafter simply referred to as "formability") for transportation vehicles such as automobiles, ships or vehicles, home electric appliances, construction and structural members.
5000-series (satisfying the standard) of Al-Mg-based AA to JIS or Al-Mg-Si-based AA to JIS 6000-series with excellent moldability and bake hardenability (hereinafter referred to simply as 5000-series) To 6000 series) Al alloy materials (generally referred to as rolled aluminum, extruded shapes, forged materials, and other wrought aluminum alloy materials) are used.

【0003】近年、排気ガス等による地球環境問題に対
して、自動車などの輸送機の車体の軽量化による燃費の
向上が追求されている。このため、特に、自動車の車体
に対し、従来から使用されている鋼材に代わって、より
軽量なAl合金材の適用が増加しつつある。
In recent years, in response to global environmental problems caused by exhaust gas and the like, improvement in fuel consumption has been pursued by reducing the weight of vehicle bodies of transportation machines such as automobiles. For this reason, in particular, the application of lighter Al alloy materials to the body of automobiles is increasing in place of the steel materials that have been conventionally used.

【0004】このAl合金材の中でも、自動車のフード、
フェンダー、ドア、ルーフ、トランクリッドなどのパネ
ル構造体の、アウタパネル (外板) やインナパネル( 内
板)等のパネルには、薄肉でかつ高強度Al合金板とし
て、過剰Si型の6000系のAl合金板の使用が検討されてい
る。
Among these Al alloy materials, automobile hoods,
For panels such as outer panels (outer plates) and inner panels (inner plates) of panel structures such as fenders, doors, roofs, and trunk lids, a thin, high-strength Al alloy plate is used as an excess Si type 6000 series. The use of Al alloy plates is being considered.

【0005】この過剰Si型の6000系Al合金は、基本的に
は、Si、Mgを必須として含み、かつSi/Mg が質量比で1
以上であるAl-Mg-Si系アルミニウム合金である。そし
て、この過剰Si型6000系Al合金は優れた時効硬化能を有
しているため、プレス成形や曲げ加工時には低耐力化に
より成形性を確保するとともに、成形後の焼付塗装処理
などの人工時効処理時の加熱により時効硬化して耐力が
向上し、必要な強度を確保できる利点がある。
This excess Si type 6000 series Al alloy basically contains Si and Mg as essential elements, and Si / Mg is 1 in mass ratio.
The above is an Al-Mg-Si based aluminum alloy. And since this excess Si type 6000 series Al alloy has excellent age hardening ability, it secures formability by low yield strength during press forming and bending, and artificial aging such as baking coating treatment after forming. There is an advantage that the required strength can be secured by age hardening by heat treatment and improving the yield strength.

【0006】また、これら過剰Si型6000系Al合金材は、
Mg量などの合金量が多い、他の5000系のAl合金などに比
して、合金元素量が比較的少ない。このため、これら60
00系Al合金材のスクラップを、Al合金溶解材 (溶解原
料) として再利用する際に、元の6000系Al合金鋳塊が得
やすく、リサイクル性にも優れている。
Further, these excess Si type 6000 series Al alloy materials are
Compared to other 5000 series Al alloys, which have a large amount of alloys such as Mg, the amount of alloying elements is relatively small. Because of this, these 60
When the scrap of 00 series Al alloy material is reused as the Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained and the recyclability is excellent.

【0007】一方、前記自動車などのアウタパネルで
は、Al合金板を張出や絞りあるいはトリム等のプレス成
形してアウタパネル化した後、アウタパネルの縁を折り
曲げて(180 度折り返して) インナパネルの縁との接合
を行う、ヘム( ヘミングの別称) 加工と呼ばれる厳しい
曲げ加工が複合して施される。また、インナパネルでは
深絞り等の厳しいプレス成形が複合して施される。
On the other hand, in the outer panel of the automobile, etc., an Al alloy plate is press-formed such as bulging, drawing or trim to form an outer panel, and then the edge of the outer panel is bent (turned back 180 degrees) to form the inner panel edge. The joint is subjected to a severe bending process called heme (also called hemming) process. Further, severe press forming such as deep drawing is combined and applied to the inner panel.

【0008】特に、アウタパネル用途としては、更に、
高強度 (高時効硬化性) 、高耐食性、高溶接性などを兼
備することも要求される。
In particular, as an outer panel application,
It is also required to combine high strength (high age hardening), high corrosion resistance, and high weldability.

【0009】前記アウタパネルのヘム加工は、アウタパ
ネルの縁をポンチなどの工具により90°に近い角度まで
折り曲げるダウンフランジ工程、アウタパネルの縁を更
に約135 °まで内側に折り曲げるプリヘム工程を経て、
フラットヘム工程やロープヘム工程により行われる。
The hem processing of the outer panel is performed by a down-flange step of bending the edge of the outer panel to an angle close to 90 ° with a tool such as a punch, and a prehem step of further bending the edge of the outer panel inward to about 135 °.
It is performed by a flat hem process or a rope hem process.

【0010】このフラットヘム工程やロープヘム工程で
は、図1 に示すように、インナパネル2 端部をアウタパ
ネル1 の折り曲げ部A 内に収容 (挿入) し、アウタパネ
ル1の縁1cを工具により更に180 °の角度まで内側に折
り曲げてヘムを形成する。この内、フラットヘムでは、
インナパネル2 の縁と、アウタパネル1 のフラットヘム
部(180 度折り曲げ部)Aとが接触して、両者が端部同士
において接合されるとともに密着され、フラットな曲げ
部形状を有する。一方、前記ロープヘムは、折り曲げ部
が円弧状に膨らんだロープ状の断面形状を有しており、
前記フラットヘム形状に比して、外観性も良くない。ま
た、アウタパネルとインナパネルとの接触面積が少なく
接合性や密着性に欠ける等の問題もある。
In the flat hem process and the rope hem process, as shown in FIG. 1, the end of the inner panel 2 is housed (inserted) in the bent portion A of the outer panel 1, and the edge 1c of the outer panel 1 is further rotated by 180 ° with a tool. Bend inward to form a hem. Of these, in the flat hem,
The edge of the inner panel 2 and the flat hem portion (180-degree bent portion) A of the outer panel 1 come into contact with each other, and the two end portions are joined together and brought into close contact with each other to have a flat bent portion shape. On the other hand, the rope hem has a rope-shaped cross-sectional shape in which the bent portion bulges in an arc shape,
The appearance is not good as compared with the flat hem shape. In addition, there is a problem that the contact area between the outer panel and the inner panel is small and the bondability and adhesion are poor.

【0011】このため、特に、外観や美観を重視する自
動車部品などにおいては、ヘム加工の最終工程を、厳し
い曲げ加工となる、フラットヘム工程により行うことが
通常となっている。
For this reason, particularly in automobile parts and the like where appearance and aesthetics are important, the final process of hem processing is usually performed by a flat hem process, which is a severe bending process.

【0012】ただ、フラットヘム形状の方が、前記フラ
ットな曲げ部形状ゆえに、ロープヘム形状よりも一段と
加工条件が厳しい。このため、Al合金板のフラットヘム
加工においては、従来の鋼板に比して、形成されるフラ
ットヘムの縁曲部 (ヘム部、折り曲げ部)Aには、図1 に
程度順に例示すような、肌荒れX 、微小な割れY 、比較
的大きな割れZ 等の不良が生じ易くなる。そして、この
ような不良が生じた場合、アウタパネルとしての適用が
できなくなる。
[0012] However, the flat hem shape is much more difficult to machine than the rope hem shape because of the flat bent portion shape. Therefore, in flat hem processing of an Al alloy sheet, the edge bend (hem section, bent section) A of the flat hem that is formed, as compared to conventional steel sheets, is as shown in Fig. 1 in order. Defects such as rough skin X, minute cracks Y, and relatively large cracks Z tend to occur. When such a defect occurs, the outer panel cannot be applied.

【0013】このようなAl合金板のフラットヘム加工に
対し、従来から、フラットヘム加工工程側や、Al合金板
の素材側で、前記縁曲部A の不良発生を防止して、フラ
ットヘム加工性を改善する技術も種々提案されている。
In contrast to the flat hem processing of such an Al alloy plate, conventionally, the flat hem processing is performed by preventing the occurrence of a defect in the edge bending portion A on the flat hem processing step side or the material side of the Al alloy plate. Various techniques for improving the property have been proposed.

【0014】フラットヘム加工工程側からは、例えば、
186MPa程度の高強度なAl合金板のフラットヘム加工にお
いて、前記ダウンフランジ工程において、アウタパネル
に形成されるフランジコーナー部の曲げ半径Rd (ダイス
の肩半径) を0.8t〜1.8t (但しt はAl合金板の板厚) と
大きくして、前記不良の発生を防止することが提案され
ている(特許文献1参照) 。また、フラットヘム加工を
ローラーヘムにより行うなどの加工方法自体の改良も提
案されている。
From the flat hem processing side, for example,
In flat hem processing of a high-strength Al alloy plate of about 186 MPa, the bending radius Rd (shoulder radius of the die) of the flange corner formed on the outer panel is 0.8t to 1.8t (where t is Al It is proposed to prevent the above defects from occurring by increasing the thickness of the alloy plate) (see Patent Document 1). Further, improvement of the processing method itself, such as performing flat hem processing with a roller hem, has been proposed.

【0015】[0015]

【特許文献1】特公昭63-2690 号公報[Patent Document 1] Japanese Patent Publication No. 63-2690

【0016】一方、素材側からはAl合金板の粒界析出物
を規制したり、Al合金板の耐力自体を140MPa以下に下げ
て、フラットヘム加工性を改善することが種々提案乃至
行われている。
On the other hand, various proposals and proposals have been made from the raw material side to improve the flat hem workability by controlling the grain boundary precipitates of the Al alloy plate or lowering the proof stress itself of the Al alloy plate to 140 MPa or less. There is.

【0017】[0017]

【発明が解決しようとする課題】しかし、フラットヘム
加工条件は、近年益々難しくなる傾向にある。その理由
は、先ず、アウタパネルのフラットヘム加工される部分
の形状 (デザイン) の複雑化である。フラットヘム加工
されるアウタパネルの端部輪郭形状が、図2 に示すよう
な、直線的な単純形状A ではなく、円弧形状B や、ある
いは角部C を有するような、複雑形状となった場合、前
記不良がより発生しやすくなる。
However, the flat hem processing conditions have tended to become more difficult in recent years. The reason is that the shape (design) of the flat-hem processed part of the outer panel is complicated. When the edge contour shape of the outer panel to be flat-hem processed is not a linear simple shape A as shown in Fig. 2 but a complicated shape with an arc shape B or a corner C, The defects are more likely to occur.

【0018】次に、前記アウタパネルとインナパネル用
のAl合金板は、パネルの軽量化のために、1.0mm 以下の
板厚に近年益々薄肉化されていることが理由に上げられ
る。例えば、アウタパネル用のAl合金板は1.0mm 以下
の、0.8 〜0.9mm の板厚などが主流である。また、イン
ナパネル用のAl合金板も1.0mm 以下の、0.5 〜0.8mm の
板厚などが主流である。これら薄肉化されたAl合金板で
は、特にアウタパネルの縁曲部に挿入されるインナパネ
ルの板厚が薄くなるほど、曲げ加工条件としては厳しく
なり、フラットヘム加工が難しくなる傾向にある。そし
て、前記した薄肉化されたAl合金板では、この傾向が顕
著となる。
The reason for this is that the Al alloy plates for the outer panel and the inner panel have become thinner in recent years to a plate thickness of 1.0 mm or less in order to reduce the weight of the panels. For example, Al alloy plates for outer panels have a thickness of 1.0 mm or less, 0.8 to 0.9 mm, and so on. Al alloy sheets for inner panels also have a thickness of 1.0 mm or less, 0.5 to 0.8 mm, and so on. In these thinned Al alloy plates, the thinner the plate thickness of the inner panel inserted in the curved edge of the outer panel, the more stringent the bending conditions become and the more difficult the flat hem processing becomes. This tendency becomes remarkable in the thinned Al alloy plate described above.

【0019】また、フラットヘム加工においては、アウ
タパネル1 の縁曲部A に挿入されるインナパネル2 の端
部2aと、縁曲部A の内面Aaとの間には、必然的に若干隙
間xがある状態で加工される。この隙間x は、図1 に示
すフランジ長さ (ヘム縁曲部A の周長) l との比(x/l)
で言うと、加工条件によっても異なるが、概ね0.6 以下
である。しかし、この隙間x がある乃至この隙間x が大
きくなると、アウタパネル1 の縁曲部A(曲げ部) の厚み
が薄くなり、曲げ条件としては厳しくなるため、割れZ
等の不良が生じ易くなる。
In flat hem processing, a slight gap x is inevitably formed between the end 2a of the inner panel 2 inserted into the curved edge A of the outer panel 1 and the inner surface Aa of the curved edge A. Is processed in the state. This gap x is the ratio (x / l) to the flange length (perimeter of hem edge A) l shown in Fig. 1.
With this, it is generally 0.6 or less, although it depends on the processing conditions. However, if there is this gap x or if this gap x becomes large, the thickness of the edge bend portion A (bending portion) of the outer panel 1 becomes thin, and the bending conditions become strict, so cracks Z
And other defects are likely to occur.

【0020】このようなAl合金板の厳しいフラットヘム
加工に対し、前記した、フラットヘム加工工程側やAl合
金板の素材側での従来の改善技術では、必ずしも対応し
きれない場合が生じる。また、フラットヘム加工の改善
が却ってAl合金板の前記他の特性を低下させることもあ
る。例えば、前記Al合金板の耐力自体を下げてフラット
ヘム加工性を改善した場合、プレス成形性が低下した
り、過剰Si型6000系Al合金板であっても、板成形後のパ
ネル塗装焼付工程などを用いた低温短時間での人工時効
硬化処理後の耐力が不足して、耐デント性が不足するな
どの問題を生じる。
For such a severe flat hem processing of an Al alloy plate, there are cases where the above-mentioned conventional improvement techniques on the side of the flat hem processing and on the side of the material of the Al alloy plate are not always sufficient. Further, the improvement of the flat hem processing may rather contradict the other characteristics of the Al alloy plate. For example, when the flat hem workability is improved by lowering the yield strength of the Al alloy plate itself, the press formability is lowered, or even with an excess Si type 6000 series Al alloy plate, the panel coating baking step after plate forming After the artificial age hardening treatment at a low temperature in a short time using such as, the yield strength is insufficient, and problems such as insufficient dent resistance occur.

【0021】本発明はこの様な事情に着目してなされた
ものであって、その目的は、特にフラットヘムなどの曲
げ加工性に優れ、他のパネル要求特性も兼備した、Al-M
g-Si系Al合金板とその製造方法を提供しようとするもの
である。
The present invention has been made by paying attention to such a situation, and its purpose is to improve the bending workability of flat hem and the like, and also to satisfy other panel required characteristics.
An object of the present invention is to provide a g-Si based Al alloy plate and a manufacturing method thereof.

【0022】[0022]

【課題を解決するための手段】この目的を達成するため
に、本発明アルミニウム合金板の要旨は、Si:0.4〜1.3
%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%
を含み、残部がAlおよび不可避的不純物であるAl-Mg-Si
系アルミニウム合金板であって、アルミニウム合金板表
面における{200 }面の積分強度の割合が50% 以上であ
るとともに{200}面と{400 }面との合計積分強度の
割合が60% 以上であることとする。
In order to achieve this object, the gist of the aluminum alloy sheet of the present invention is Si: 0.4 to 1.3.
%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%
Al-Mg-Si containing Al and the balance Al and unavoidable impurities
System aluminum alloy plate, the ratio of the integrated strength of the {200} plane on the surface of the aluminum alloy plate is 50% or more, and the ratio of the total integrated strength of the {200} plane and the {400} plane is 60% or more. Suppose there is.

【0023】また、同じく、この目的を達成するため
に、本発明アルミニウム合金板の製造方法の要旨は、S
i:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.
001〜1.0%を含むAl-Mg-Si系アルミニウム合金板を、圧
下率が60% 以上で冷間圧延後、必要により350 ℃以下の
温度で焼鈍し、溶体化および焼き入れ処理を含む調質処
理し、アルミニウム合金板表面における{200 }面の積
分強度の割合を50% 以上とするとともに、{200 }面と
{400 }面との合計積分強度の割合を60% 以上とし、か
つ導電率を43〜47IACS% の範囲とするとともに、結晶粒
径を50μm 以下とすることである。
Similarly, in order to achieve this object, the gist of the method for producing an aluminum alloy sheet of the present invention is S
i: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.
After cold rolling an Al-Mg-Si aluminum alloy sheet containing 001 to 1.0% at a rolling reduction of 60% or more, it is annealed at a temperature of 350 ° C or less if necessary, and heat treatment including solution treatment and quenching is performed. Treated to make the ratio of integrated strength of {200} plane on the surface of aluminum alloy plate 50% or more, and the ratio of total integrated strength of {200} plane and {400} plane 60% or more, and conductivity. Is 43 to 47 IACS% and the crystal grain size is 50 μm or less.

【0024】なお、本発明で言うAl合金板とは、冷間圧
延後、調質処理 (熱処理) を施した後に室温時効した板
であって、プレス成形や曲げ加工される前の成形用素材
板のことを言う。したがって、上記各要件も、調質処理
後のAl合金板の状態であって、調質処理後から、プレス
成形および/ またはフラットヘムなどの曲げ加工される
までの任意の期間における、短期間乃至長期間を問わ
ず、室温時効したAl合金板の状態をさして言う。また、
ここで言う調質処理とは、溶体化および焼き入れ処理
や、その後の後述する予備時効処理や、更に必要により
施す時効処理などの種々の調質処理を示す。
The Al alloy plate referred to in the present invention is a plate that has been subjected to tempering treatment (heat treatment) after cold rolling and aged at room temperature, and is a forming material before press forming or bending. It refers to a board. Therefore, each of the above requirements is also a state of the Al alloy plate after the heat treatment, and from a short period of time after the heat treatment to an arbitrary period from press forming and / or bending such as flat hem It refers to the state of an Al alloy plate that has been aged at room temperature, regardless of the long term. Also,
The term "tempering treatment" as used herein refers to various tempering treatments such as a solution heat treatment and a quenching treatment, a subsequent pre-aging treatment described later, and an aging treatment which is performed if necessary.

【0025】本発明者らは、特にフラットヘム加工性と
Al-Mg-Si系Al合金板の組織との関係について、改めて検
討した。この結果、Al-Mg-Si系Al合金板の結晶粒のキュ
ーブ方位 ({200 }面の積分強度の割合と、{200 }面
と{400 }面との合計積分強度の割合) がフラットヘム
加工性と密接に相関することを知見した。即ち、キュー
ブ方位を有する結晶粒の割合が多いほど、フラットヘム
加工性が改善される。一方、キューブ方位を有する結晶
粒の割合が小さいほど、フラットヘム加工性が低下す
る。
The present inventors have found that the flat hem machinability is
The relationship with the structure of the Al-Mg-Si system Al alloy plate was examined again. As a result, the cube orientation of the crystal grains of the Al-Mg-Si system Al alloy plate (ratio of integrated intensity of {200} plane and total integrated intensity of {200} plane and {400} plane) is flat hem. It was found that there is a close correlation with workability. That is, the flat hem processability is improved as the proportion of the crystal grains having the cube orientation increases. On the other hand, the smaller the proportion of the crystal grains having the cube orientation, the lower the flat hem processability.

【0026】なお、Al合金板分野において、キューブ方
位を有する結晶粒の割合を制御すること自体は公知であ
る。例えば、純Al系の電解コンデンサー電極用のAl合金
箔において、エッチングピットを増して電極特性を向上
させるために、{200 }面(立方体方位を持つ結晶粒)
の積分強度の割合を制御する技術が、特公平1-33546号
や特開平6-287723号公報などに開示されている。また、
Mg量が多い5000系Al合金板において、プレス成形の際の
曲げ加工性を向上させるために、{100 }面と{110 }
面との積分強度比を1 以上とする技術が、特開平10-817
6 号公報などに開示されている。
In the field of Al alloy plates, controlling the proportion of crystal grains having a cube orientation is known per se. For example, in an Al alloy foil for pure Al-based electrolytic capacitor electrodes, in order to increase the etching pits and improve the electrode characteristics, the {200} plane (crystal grains with cubic orientation)
A technique for controlling the ratio of the integrated intensity of is disclosed in Japanese Patent Publication No. 1-33546 and Japanese Patent Laid-Open No. 6-287723. Also,
In order to improve bending workability in press forming of 5000 series Al alloy plate with a large amount of Mg, {100} plane and {110} plane
A technique for setting the integrated intensity ratio with respect to the surface to be 1 or more is disclosed in Japanese Laid-Open Patent Publication No.
It is disclosed in Japanese Patent No. 6, etc.

【0027】ただ、前記Al合金箔の場合には、上記した
電極特性向上目的であり、本発明とは目的が全く異な
る。また、前記5000系Al合金板の場合は、本発明とは目
的が近似するものの、極限変形能を高めるために、{10
0 }面と{110 }面との積分強度比を1 以上としてい
る。しかし、本発明が対象とする6000系Al合金板におい
ては、特開平10-8176 号公報などの通りに、{100 }面
と{110 }面との積分強度比を1 以上としてもフラット
ヘム加工性は改善できない。この理由は、6000系Al合金
板の方が5000系Al合金板よりもフラットヘム加工性やプ
レス成形性が劣り、しかも本発明で意図するフラットヘ
ム加工条件は、上記公報で意図するプレス成形の際の曲
げ加工などよりも、より厳しい加工条件であるためであ
る。
However, in the case of the Al alloy foil, the purpose is to improve the electrode characteristics described above, and the purpose is completely different from the present invention. Further, in the case of the 5000 series Al alloy plate, although the purpose is similar to the present invention, in order to enhance the ultimate deformability, {10
The integrated intensity ratio between the 0} plane and the {110} plane is set to 1 or more. However, in the 6000 series Al alloy plate targeted by the present invention, flat hem processing is performed even if the integrated intensity ratio of the {100} plane and the {110} plane is 1 or more, as in Japanese Patent Laid-Open No. 10-8176. Sex cannot be improved. The reason for this is that the 6000 series Al alloy plate is inferior in flat hem processability and press formability to the 5000 series Al alloy plate, and the flat hem process conditions intended in the present invention are the same as those of the press form intended in the above publication. This is because the processing conditions are more severe than those for bending at the time.

【0028】なお、後述するごとく、常法で得られる通
常のAl-Mg-Si系Al合金板は、キューブ方位を有する結晶
粒の割合が小さい。言い換えると、本発明のような、キ
ューブ方位を有する結晶粒が特定量存在するAl合金板組
織を得るためには、後述する製造方法のように、特別な
工程の付加乃至工程条件が必要である。
As will be described later, an ordinary Al-Mg-Si-based Al alloy plate obtained by a conventional method has a small proportion of crystal grains having a cube orientation. In other words, in order to obtain an Al alloy plate structure in which crystal grains having a cube orientation are present in a specific amount as in the present invention, it is necessary to add special steps or process conditions as in the manufacturing method described later. .

【0029】ただ、本発明では、上記特別な製造工程に
よっても、Al合金板の製造が煩雑になったり、製造コス
トが著しく高くなることはない。したがって、この点が
本発明の利点でもある。
However, in the present invention, the production of the Al alloy plate does not become complicated and the production cost does not significantly increase even by the above-mentioned special production process. Therefore, this point is also an advantage of the present invention.

【0030】本発明では、従来のように、Al合金板の0.
2%耐力を140MPa以下の低強度とせずとも、特にフラット
ヘムなどのヘム加工性やプレス成形性が優れる。この結
果、Al合金板の0.2%耐力を140MPa以上の高強度にするこ
とができ、成形後の塗装焼き付け工程などを用いた170
℃×20分の低温人工時効硬化処理でも、180MPaを越える
ような高強度のパネルを得ることができる。
According to the present invention, as in the conventional case, it is possible to obtain
Even if the 2% proof stress is not set to a low strength of 140 MPa or less, it is particularly excellent in hem processability such as flat hem and press formability. As a result, the 0.2% proof stress of the Al alloy plate can be increased to a high strength of 140 MPa or higher.
A high-strength panel exceeding 180 MPa can be obtained even by low-temperature artificial age hardening treatment at ℃ × 20 minutes.

【0031】また、本発明Al合金板は、以上のような効
果を有するため、曲げ加工のうちでも特に厳しい、板厚
が0.5mm 以上のアウタパネルであって、板厚が1.3mm 以
下乃至1.0mm 以下の薄いインナパネルに対しヘム加工さ
れる場合に適用されて好ましい。同様に、本発明Al合金
板は、曲げ加工の中でも、厳しい曲げ条件であるフラッ
トヘム加工に適用されて好ましい。また、本発明Al合金
板はフラットヘム加工が汎用されるとともに、フラット
ヘム加工性の要求が厳しい、特に自動車アウタパネルに
適用されて好適である。
Further, since the Al alloy sheet of the present invention has the above effects, it is an outer panel having a plate thickness of 0.5 mm or more, which is particularly severe in bending, and has a plate thickness of 1.3 mm or less to 1.0 mm. It is preferably applied when hemmed to the following thin inner panel. Similarly, the Al alloy sheet of the present invention is preferably applied to flat hem processing which is a severe bending condition among bending processing. Further, the Al alloy sheet of the present invention is widely used for flat hem processing, and is suitable for being applied to an outer panel of an automobile, which is particularly required for flat hem processing.

【0032】[0032]

【発明の実施の形態】先ず、本発明Al合金板の組織の要
件につき、以下に説明する。なお、以下の説明では、曲
げ加工の中でも厳しい曲げ条件であるフラットヘム加工
を中心に行なうが、フラットヘム加工が向上すれば、他
のヘム加工性や、他の曲げ加工性も向上する。
BEST MODE FOR CARRYING OUT THE INVENTION First, the requirements for the structure of the Al alloy sheet of the present invention will be described below. In the following description, the flat hem processing, which is a severe bending condition among the bending processes, is mainly performed. However, if the flat hem processing is improved, other hem processability and other bend processability are also improved.

【0033】本発明では、フラットヘムなどの曲げ加工
性の向上のために、Al合金板結晶粒のキューブ方位につ
き、Al合金板表面の{200 }面のX 線回折による積分強
度の割合を50% 以上とするとともに{200 }面と{400
}面とのX 線回折による合計積分強度の割合を60% 以
上と特定する。
In the present invention, in order to improve the bending workability of flat hem or the like, the ratio of the integrated intensity of the {200} plane of the Al alloy plate surface by X-ray diffraction is 50 with respect to the cube orientation of the Al alloy plate crystal grains. % And above {200} face and {400
The ratio of the total integrated intensity by X-ray diffraction with respect to the} plane is specified to be 60% or more.

【0034】{200 }面のX 線回折による積分強度の割
合が50% 未満、あるいは{200 }面と{400 }面とのX
線回折による合計積分強度の割合を60% 未満では、従来
のAl合金板結晶粒組織と大差がなくなり、特にフラット
ヘムなどの曲げ加工性の向上効果がない。このため、特
に前記した厳しい条件でのフラットヘム加工ではAl合金
板の加工性が著しく低下する。
The ratio of the integrated intensity of the {200} plane by X-ray diffraction is less than 50%, or the X of the {200} plane and the {400} plane is X.
When the ratio of the total integrated intensity by line diffraction is less than 60%, there is no great difference from the crystal grain structure of the conventional Al alloy plate, and there is particularly no effect of improving bendability such as flat hem. Therefore, the workability of the Al alloy plate is remarkably deteriorated in the flat hem processing under the severe conditions described above.

【0035】一方、{200 }面の積分強度の割合が80%
を越えた場合、また、{200 }面と{400 }面との合計
積分強度の割合が90% を越えた場合、Al合金板の張出成
形や絞り成形などのプレス成形性が低下する可能性があ
る。この結果、プレス成形における、特にアウタパネル
などとして重要な、形状精度乃至形状凍結性などが著し
く低下する可能性がある。このため、ヘム加工性以外の
プレス成形性などの他の特性を低下させないためには、
キューブ方位を有する結晶粒の割合を、Al合金板表面に
おける{200 }面の積分強度の割合が50〜80% の範囲で
あるとともに、{200 }面と{400 }面との合計積分強
度の割合が60% 〜90% の範囲にすることが好ましい。
On the other hand, the ratio of the integrated intensity of the {200} plane is 80%.
If the ratio exceeds 90%, or if the ratio of the total integrated strength of the {200} face and the {400} face exceeds 90%, the press formability of the Al alloy sheet such as bulging and drawing can be reduced. There is a nature. As a result, in press molding, there is a possibility that shape accuracy or shape fixability, which is important particularly as an outer panel, may be significantly reduced. Therefore, in order to prevent deterioration of other properties such as press formability other than hemmability,
The ratio of the crystal grains having the cube orientation is such that the ratio of the integrated strength of the {200} plane on the Al alloy plate surface is in the range of 50 to 80% and the total integrated strength of the {200} and {400} planes is The ratio is preferably in the range of 60% to 90%.

【0036】なお、フラットヘムなどでの板の曲げ方向
と板のキューブ方位 (配行方向) との関係について、板
のキューブ方位が板の曲げ方向と平行になるように (板
の曲げ加工方向を板の圧延方向と平行にして) 曲げ加工
しても、板のキューブ方位の方向が板の曲げ方向と直角
になるように (板の曲げ方向を板の圧延方向と直角にし
て) 曲げ加工した場合にも、同様に、良好なフラットヘ
ム加工性は得られる。パネルのキューブ方位は90度回転
しても同一の構造であるため、0 度、90度の区別が無
い。このため、板の曲げ加工方向を素材板の圧延方向と
平行あるいは直角としても、キューブ方位は同じ構造と
なり、良好なフラットヘム加工性が得られる。ただ、板
のキューブ方位が板の曲げ方向と45度の方向になるな
ど、上記二つの方向以外の板の曲げ方向と板のキューブ
方位 (配行方向) との関係では、フラットヘムなどの曲
げ加工性が劣る可能性があり、曲げ加工における板の曲
げ方向は、上記二つの方向とすることが好ましい。
Regarding the relationship between the bending direction of the plate in a flat hem and the cube orientation of the plate (disposition direction), the cube orientation of the plate should be parallel to the bending direction of the plate (the bending direction of the plate. Even if it is bent (with the plate parallel to the rolling direction of the plate), the cube direction of the plate is bent at right angles to the bending direction of the plate (the bending direction of the plate is perpendicular to the rolling direction of the plate) Also in this case, good flat hem machinability can be obtained. There is no distinction between 0 degree and 90 degree because the cube orientation of the panel has the same structure even if rotated 90 degrees. Therefore, even if the bending direction of the plate is parallel to or perpendicular to the rolling direction of the material plate, the cube orientation has the same structure, and good flat hem processability can be obtained. However, in the relationship between the plate bending direction other than the above two directions and the plate cube direction (arrangement direction), such as the plate cube direction being 45 ° with the plate bending direction, the bending of flat hem etc. Since the workability may be poor, it is preferable that the bending direction of the plate in bending is the above two directions.

【0037】本発明において、Al合金板の結晶粒のキュ
ーブ方位発達の程度の測定は、X 線回折装置 (例えば、
リガクRAD-RCなど) を用い、Al合金板の表面を前処理無
しでそのまま計測する。標準サンプルとしては無配向性
のAl試料を用い、この標準サンプルに対する、{111 }
面、{200 }面、{220 }面、{311 }面、{222 }
面、{400 }面、{331 }面、{420 }面、{422 }
面、の各面の積分強度の総和A を求める。そして、この
A に対する前記{200 }面の積分強度I1の比率(%)、{2
00 }面と{400 }面との合計の積分強度I2の比率(%)
、を各々の積分強度の割合(%) とする。
In the present invention, the degree of cube orientation development of crystal grains of an Al alloy plate is measured by an X-ray diffractometer (for example,
Rigaku RAD-RC etc.) is used to measure the surface of the Al alloy plate without any pretreatment. A non-oriented Al sample was used as the standard sample, and {111} for this standard sample.
Plane, {200} plane, {220} plane, {311} plane, {222}
Plane, {400} plane, {331} plane, {420} plane, {422}
Calculate the total sum A of the integrated intensities of the surfaces and. And this
Ratio (%) of the integrated intensity I 1 of the {200} plane to A, {2
Ratio (%) of total integrated intensity I 2 of the 00} plane and the {400} plane
, Is the ratio (%) of each integrated intensity.

【0038】また、本発明では、Al合金板表面の導電率
を43〜47IACS% の範囲とすることが好ましい。この導電
率範囲とすることによって、パネル塗装焼き付け工程な
どの人工時効処理時に形成されるGPゾーンなどの化合物
相の量を確保し、プレス成形と塗装焼き付け工程の対応
する、例えば、2%ストレッチ後の170 ℃×20分での低温
人工時効処理時に、170MPa以上の必要強度を得ることを
保証する。なお、導電率測定対象Al合金板は0.05〜0.1m
m 機械研磨した後電解エッチングし、その表面の導電率
を測定する。
Further, in the present invention, it is preferable that the electric conductivity of the surface of the Al alloy plate is in the range of 43 to 47 IACS%. By setting this conductivity range, the amount of compound phase such as GP zone formed during artificial aging treatment such as panel coating baking process is secured, and it corresponds to press molding and coating baking process, for example, after 2% stretch. It is guaranteed that the required strength of 170 MPa or more will be obtained during low temperature artificial aging treatment at 170 ℃ × 20 minutes. The Al alloy plate whose conductivity is to be measured is 0.05 to 0.1 m.
m After mechanical polishing, electrolytically etch and measure the conductivity of the surface.

【0039】導電率が前記47IACS% を越えた場合には、
フラットヘム加工性が低下する可能性がある。また、プ
レス成形性も低下する可能性がある。したがって、導電
率の上限は47 IACS%と規定することが好ましい。
When the conductivity exceeds the above 47 IACS%,
Flat hem processability may be reduced. In addition, the press formability may decrease. Therefore, the upper limit of the conductivity is preferably specified as 47 IACS%.

【0040】一方、導電率が43 IACS%未満の場合には、
前記人工時効処理時に形成されるGPゾーンなどの化合物
相の量が少なくなる可能性がある。このため、人工時効
硬化能が低下し、特に、前記低温短時間の人工時効処理
によっては、170MPa以上の耐力 (σ0.2)が得られなくな
る可能性がある。したがって、板厚が1.0mm 以下の薄板
であっても、自動車用などのパネル外板としての耐デン
ト性などの剛性や強度を保証するために、導電率の下限
を43 IACS%と規定することが好ましい。
On the other hand, when the conductivity is less than 43 IACS%,
The amount of the compound phase such as GP zone formed during the artificial aging treatment may be reduced. Therefore, the artificial aging hardening ability is lowered, and in particular, the proof stress (σ 0.2 ) of 170 MPa or more may not be obtained by the artificial aging treatment at a low temperature for a short time. Therefore, even if the plate thickness is 1.0 mm or less, the lower limit of conductivity should be specified as 43 IACS% in order to guarantee rigidity and strength such as dent resistance as a panel outer plate for automobiles. Is preferred.

【0041】本発明では、また、Al合金板の結晶粒径を
50μm 以下と規定することが好ましい。結晶粒径をこの
範囲に細かく乃至小さくすることによって、フラットヘ
ム加工性やプレス成形性が確保乃至向上される。結晶粒
径が50μm を越えて粗大化した場合、フラットヘム加工
性やプレス成形性が著しく低下し、フラットヘム部での
割れなどの不良や、プレス成形によってパネル化される
際のオレンジピール不良などの肌荒れ不良が生じ易い。
In the present invention, the crystal grain size of the Al alloy plate is also changed.
It is preferably specified to be 50 μm or less. By making the crystal grain size fine or small within this range, flat hem processability and press formability are secured or improved. If the crystal grain size becomes coarser than 50 μm, the flat hem processability and press formability will be significantly reduced, such as defects such as cracks in the flat hem and orange peel defects when panelizing by press forming. It is easy for rough skin to occur.

【0042】なお、ここで言う結晶粒径とは板の圧延
(L) 方向の結晶粒の平均径である。この結晶粒径を、Al
合金板を0.05〜0.1mm 機械研磨した後電解エッチングし
た表面を、光学顕微鏡を用いて観察し、前記L 方向に、
ラインインターセプト法で測定する。1 測定ライン長さ
は0.95mmとし、1 視野当たり各3 本で合計5 視野を観察
することにより、全測定ライン長さを0.95×15mmとし
た。
The grain size referred to here is the rolling of the plate.
It is the average diameter of the crystal grains in the (L) direction. This crystal grain size is
The surface of the alloy plate that had been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched was observed using an optical microscope.
It is measured by the line intercept method. The length of one measurement line was 0.95 mm, and the total length of measurement lines was set to 0.95 × 15 mm by observing a total of 5 fields of view with 3 lines per field of view.

【0043】次に、本発明Al合金板の化学成分組成の実
施形態につき、以下に説明する。本発明Al合金板の基本
組成は、上記組織の規定や諸特性を確保するために、S
i:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.
001〜1.0%を含み、残部を、Alおよび不可避的不純物と
したAl-Mg-Si系(6000 系)Al 合金とする。なお、本発明
での化学成分組成の% 表示は、前記請求項の% 表示も含
めて、全て質量% の意味である。
Next, an embodiment of the chemical composition of the Al alloy sheet of the present invention will be described below. The basic composition of the Al alloy sheet of the present invention is S in order to secure the above-mentioned structure regulations and various characteristics.
i: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.
Al-Mg-Si (6000 series) Al alloy containing 001 to 1.0% and the balance Al and unavoidable impurities. In the present invention, all the percentages of chemical composition, including the percentages in the claims, mean mass%.

【0044】なお、上記合金元素以外の、Cr、Zr、Ti、
B 、Fe、Zn、Ni、V など、その他の合金元素は、基本的
には不純物元素である。しかし、リサイクルの観点か
ら、溶解材として、高純度Al地金だけではなく、6000系
合金やその他のAl合金スクラップ材、低純度Al地金など
を溶解原料として使用して、本発明Al合金組成を溶製す
る場合には、これら他の合金元素は必然的に含まれるこ
ととなる。したがって、本発明では、目的とする本発明
効果を阻害しない範囲で、これら他の合金元素が含有さ
れることを許容する。
Other than the above alloying elements, Cr, Zr, Ti,
Other alloying elements such as B 2, Fe, Zn, Ni and V are basically impurity elements. However, from the viewpoint of recycling, as a melting material, not only high-purity Al ingots, but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials, In the case of smelting, these other alloying elements are inevitably included. Therefore, the present invention permits the inclusion of these other alloying elements within a range that does not impair the intended effect of the present invention.

【0045】各元素の含有範囲と意義、あるいは許容量
について以下に説明する。 Si:0.4〜1.3%。 SiはMgとともに、固溶強化と、塗装焼き付け処理などの
前記低温での人工時効処理時に、GPゾーンなどの化合物
相を形成して、時効硬化能を発揮し、自動車のアウタパ
ネルとして必要な、例えば170MPa以上の必要強度を得る
ための必須の元素である。したがって、本発明過剰Si型
6000系Al合金板にあって、プレス成形性、ヘム加工性な
どの諸特性を兼備させるための最重要元素である。
The content range and meaning of each element, or the allowable amount will be described below. Si: 0.4 to 1.3%. Si, together with Mg, solid solution strengthening, during artificial aging treatment at the low temperature such as paint baking treatment, forms a compound phase such as GP zone, exerts age hardening ability, and is required as an outer panel of an automobile, for example, It is an essential element for obtaining the required strength of 170 MPa or more. Therefore, the present invention excess Si type
It is the most important element in 6000 series Al alloy sheet to combine various properties such as press formability and hemmability.

【0046】また、パネルへの成形後の低温塗装焼き付
け処理後(2% ストレッチ付与後170℃×20分の低温時効
処理時) の耐力を170MPa以上という、優れた低温時効硬
化能を発揮させるためにも、Si/Mg を質量比で1.0 以上
とし、SiをMgに対し過剰に含有させた過剰Si型6000系Al
合金組成とすることが好ましい。
Further, in order to exert an excellent low temperature age hardening ability of 170 MPa or more after the low temperature paint baking treatment after molding on the panel (at the time of low temperature aging treatment of 170 ° C. × 20 minutes after application of 2% stretch) In addition, the Si / Mg mass ratio was 1.0 or more, and the excess Si type 6000 series Al containing Si in excess of Mg was used.
The alloy composition is preferable.

【0047】Si量が0.4%未満では、前記時効硬化能、更
には、各用途に要求される、プレス成形性、ヘム加工性
などの諸特性を兼備することができない。一方、Siが1.
3%を越えて含有されると、特にヘム加工性やプレス成形
性が著しく阻害される。更に、溶接性を著しく阻害す
る。したがって、Siは0.4 〜1.3%の範囲とする。なお、
アウタパネルでは、ヘム加工性が特に重視されるため、
プレス成形性とともにフラットヘム加工性をより向上さ
せるために、Si含有量を0.6 〜1.2%と、より低めの範囲
とすることが好ましい。
When the amount of Si is less than 0.4%, it is impossible to combine the above-mentioned age hardening ability and various characteristics required for each application such as press formability and heme processability. On the other hand, Si is 1.
If the content exceeds 3%, heme workability and press formability are particularly impaired. Furthermore, the weldability is significantly impaired. Therefore, Si is in the range of 0.4 to 1.3%. In addition,
In the outer panel, hemmability is especially important, so
In order to further improve the press-formability and the flat hem workability, the Si content is preferably set to a lower range of 0.6 to 1.2%.

【0048】Mg:0.2〜1.2%。 Mgは、固溶強化と、塗装焼き付け処理などの前記人工時
効処理時に、SiとともにGPゾーンなどの化合物相を形成
して、時効硬化能を発揮し、パネルとして、例えば170M
Pa以上の必要強度を得るための必須の元素である。
Mg: 0.2-1.2%. Mg, solid solution strengthening, during the artificial aging treatment such as paint baking treatment, forms a compound phase such as GP zone together with Si, and exhibits age hardening ability, and as a panel, for example, 170M
It is an essential element for obtaining the required strength of Pa or higher.

【0049】Mgの0.2%未満の含有では、絶対量が不足す
るため、人工時効処理時に前記化合物相を形成できず、
時効硬化能を発揮できない。このためパネルとして必要
な170MPa以上の必要強度が得られない。
When the content of Mg is less than 0.2%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment.
It cannot exhibit age hardening ability. Therefore, the required strength of 170 MPa or more required for the panel cannot be obtained.

【0050】一方、Mgが1.2%を越えて含有されると、却
って、プレス成形性や曲げ加工性等の成形性が著しく阻
害される。したがって、Mgの含有量は、0.2 〜1.2%の範
囲で、かつSi/Mg が質量比で1.0 以上となるような量と
する。また、フラットヘム加工性をより向上させるため
に、Si含有量を前記0.6 〜1.2%のより低めの範囲とする
場合には、これに対応して過剰Si型6000系Al合金組成と
するために、Mg含有量も0.2 〜0.7%と低めの範囲とする
ことが好ましい。
On the other hand, if the Mg content exceeds 1.2%, the moldability such as press moldability and bending workability is rather impaired. Therefore, the content of Mg is in the range of 0.2 to 1.2%, and the amount of Si / Mg is 1.0 or more by mass ratio. Further, in order to further improve the flat heme workability, when the Si content is set to a lower range of 0.6 to 1.2%, in order to correspond to this, in order to obtain an excessive Si type 6000 series Al alloy composition , Mg content is also preferably in a lower range of 0.2 to 0.7%.

【0051】Cu:0.001〜1.0% Cuは、本発明の比較的低温短時間の人工時効処理の条件
で、Al合金材組織の結晶粒内へのGPIIやβ" 相析出を促
進させる効果がある。また、時効処理状態で固溶したCu
は成形性を向上させる効果もある。Cu含有量が0.001%未
満ではこの効果がない。一方、1.0%を越えると、耐応力
腐食割れ性や、塗装後の耐蝕性の内の耐糸さび性、また
溶接性を著しく劣化させる。このため、耐食性が重視さ
れる構造材用途などの場合には0.8%以下、自動車外板用
などのパネル用途などの場合には、耐糸さび性の発現が
顕著となる0.1%以下の量とすることが好ましい。
Cu: 0.001 to 1.0% Cu has the effect of promoting GPII and β "phase precipitation in the crystal grains of the Al alloy material structure under the conditions of artificial aging treatment at a relatively low temperature and a short time according to the present invention. In addition, Cu solid-solved in the aged condition
Also has the effect of improving moldability. This effect does not occur when the Cu content is less than 0.001%. On the other hand, if it exceeds 1.0%, the stress corrosion cracking resistance, the thread rust resistance of the corrosion resistance after coating, and the weldability are significantly deteriorated. Therefore, 0.8% or less in the case of structural material applications where corrosion resistance is important, and 0.1% or less in which the development of thread rust resistance becomes remarkable in the case of panel applications such as automotive exterior panels. Preferably.

【0052】Mn:0.01 〜0.65% Mnには、均質化熱処理時に分散粒子 (分散相) を生成
し、これらの分散粒子には再結晶後の粒界移動を妨げる
効果があるため、微細な結晶粒を得ることができる効果
がある。前記した通り、本発明Al合金板のプレス成形性
やヘム加工性はAl合金組織の結晶粒が微細なほど向上す
る。この点、Mn含有量が0.01% 未満ではこれらの効果が
無い。
Mn: 0.01 to 0.65% Mn produces dispersed particles (dispersed phase) during homogenization heat treatment, and these dispersed particles have an effect of hindering grain boundary migration after recrystallization. It has the effect of obtaining grains. As described above, the press formability and hemmability of the Al alloy sheet of the present invention are improved as the crystal grains of the Al alloy structure are finer. In this respect, if the Mn content is less than 0.01%, these effects are not obtained.

【0053】一方、Mn含有量が多くなった場合、溶解、
鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合
物や晶析出物を生成しやすく、Al合金板の機械的性質を
低下させる原因となる。また、特に、前記複雑形状や薄
肉化、あるいはインナパネル端部とアウタパネル縁曲部
内面との間の隙間の存在などによって、加工条件が厳し
くなったフラットヘム加工では、Mn含有量が0.15% を越
えた場合、ヘム加工性が低下する。このため、Mnは0.01
〜0.65% の範囲とし、特に前記加工条件が厳しくなった
フラットヘム加工では、より好ましくは0.01〜0.15% の
範囲とする。
On the other hand, when the Mn content increases, dissolution,
Coarse Al-Fe-Si- (Mn, Cr, Zr) 3 -based intermetallic compounds and crystalline precipitates are likely to be formed during casting, which causes deterioration of the mechanical properties of the Al alloy sheet. In addition, especially in flat hem processing where the processing conditions became strict due to the complicated shape and thinning, or the presence of a gap between the inner panel edge and the outer panel edge curved part, the Mn content was 0.15%. If it exceeds the limit, the processability of the hem decreases. Therefore, Mn is 0.01
To 0.65%, and more preferably 0.01 to 0.15% in the flat hem processing where the above-mentioned processing conditions are severe.

【0054】Cr 、Zr。 これらCr、Zrの遷移元素には、Mnと同様、均質化熱処理
時に分散粒子 (分散相) を生成し、微細な結晶粒を得る
ことができる効果がある。しかし、Cr、Zrも、各々0.15
% を越える含有では、特に前記加工条件が厳しくなった
フラットヘム加工ではヘム加工性が低下する。したがっ
て、Cr、Zrの含有量も各々0.15% 以下に規制することが
好ましい。
Cr, Zr. Similar to Mn, these transition elements of Cr and Zr have an effect that dispersed particles (dispersed phase) are generated during homogenization heat treatment, and fine crystal grains can be obtained. However, Cr and Zr are each 0.15
If the content exceeds%, the hem processability is deteriorated particularly in the flat hem process in which the above processing conditions are severe. Therefore, it is preferable to regulate the Cr and Zr contents to 0.15% or less.

【0055】Ti 、B 。 Ti、B は、Ti:0.1% 、B:300ppmを各々越えて含有する
と、粗大な晶出物を形成し、成形性を低下させる。但
し、Ti、B には微量の含有で、鋳塊の結晶粒を微細化
し、プレス成形性を向上させる効果もある。したがっ
て、Ti:0.1% 以下、B:300ppm以下までの含有は許容す
る。
Ti, B. If Ti and B are contained in amounts exceeding Ti: 0.1% and B: 300 ppm, respectively, coarse crystallized substances are formed and formability is deteriorated. However, if Ti and B are contained in a small amount, they also have the effect of refining the crystal grains of the ingot and improving the press formability. Therefore, Ti: 0.1% or less and B: 300ppm or less are allowed.

【0056】Fe。 溶解原料から混入して、不純物として含まれるFeは、Al
7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6などの晶出物を
生成する。これらの晶出物は、Feが0.10% 以上含まれた
場合に、再結晶粒の核となり、結晶粒の粗大化を阻止し
て、結晶粒を50μm 以下の微細粒とする役割を果たす。
しかし、一方で、これらの晶出物は、破壊靱性および疲
労特性、更には、特に前記加工条件が厳しくなったフラ
ットヘム加工性およびプレス成形性を著しく劣化させ
る。これらの劣化特性は、Feの含有量が0.50% を越える
と顕著になるため、Feの含有量 (許容量) は、0.10〜0.
50%とすることが好ましい。
Fe. Fe contained as an impurity by mixing from the melting raw material is Al
Crystallized substances such as 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 and (Fe, Mn) Al 6 are formed. When 0.10% or more of Fe is contained, these crystallized substances serve as nuclei for recrystallized grains, prevent coarsening of the crystal grains, and serve as fine grains of 50 μm or less.
However, on the other hand, these crystallized substances markedly deteriorate the fracture toughness and fatigue properties, and further the flat heme processability and press formability in which the above-mentioned processing conditions are particularly severe. Since these deterioration characteristics become remarkable when the Fe content exceeds 0.50%, the Fe content (allowable amount) is 0.10 to 0.
It is preferably 50%.

【0057】Zn。 Znは0.5%を越えて含有されると、耐蝕性が顕著に低下す
る。したがって、Znの含有量は好ましくは0.5%以下ので
きるだけ少ない量とすることが好ましい。
Zn. If Zn is contained in excess of 0.5%, the corrosion resistance is significantly reduced. Therefore, the Zn content is preferably 0.5% or less, which is as small as possible.

【0058】本発明Al合金板が対象とする曲げ加工は、
特にフラットヘム加工を意図している。しかし、本発明
Al合金板は厳しい条件であるフラットヘム加工性に優れ
るので、それよりも一段緩い条件である前記ロープヘム
などの加工性や他の曲げ加工性にも当然優れる。このた
め、フラットヘムだけでなく、他のロープヘムなどのヘ
ム加工も対象とする。また、他の曲げ加工は、V 曲げ、
U 曲げ、90度曲げなどの通常汎用される板の曲げ加工を
対象とする。
The bending process intended for the Al alloy sheet of the present invention is as follows.
Especially intended for flat hem processing. However, the present invention
Since the Al alloy plate is excellent in flat hem workability, which is a severe condition, naturally it is also excellent in workability of the rope hem and the like and other bending workability, which are more lenient conditions. Therefore, not only flat hem but also hem processing such as other rope hem is targeted. In addition, other bending work is V bending,
The target is bending of commonly used plates such as U-bending and 90-degree bending.

【0059】ヘム加工は、前記した、ダウンフランジ工
程、プリヘム工程、フラットヘム乃至ロープヘム工程に
より行われる通常のヘム加工だけでなく、最終的にヘム
が形成されるものであれば、ローラーヘムなど、工程や
工程条件が異なるものもヘム加工として対象とするし、
適用可能である。
The hem processing is not limited to the normal hem processing performed by the down-flange process, the pre-hem process, the flat hem or the rope hem process described above, and if the hem is finally formed, a roller hem, etc. We also target objects with different processes and process conditions as hemming,
Applicable.

【0060】本発明が対象とするヘム加工は、前記した
通り、アウタパネルとして板厚が0.5mm 以上のもので、
板厚が1.5mm 以下、特に1.0mm 以下の薄いインナパネル
Al合金板に対して加工されるような厳しい、特にフラッ
トヘムなどのヘム加工に適用されて好ましい。Al合金板
のアウタパネルとしての板厚がこれより薄く、Al合金イ
ンナパネルの板厚がこれより厚いものでは、ヘム加工す
ることは比較的容易となる。
As described above, the hem processing to which the present invention is applied is an outer panel having a plate thickness of 0.5 mm or more.
Thin inner panel with a thickness of 1.5 mm or less, especially 1.0 mm or less
It is preferable to be applied to severe hem processing for an Al alloy plate, particularly hem processing such as flat hem. If the thickness of the Al alloy plate as the outer panel is thinner than this and the thickness of the Al alloy inner panel is thicker than this, hemming becomes relatively easy.

【0061】なお、フラットヘムなどのヘム加工が、本
発明Al合金板の4 周囲に対して全て行われるか、選択さ
れる辺 (側縁部) のみに対して行われか、また、ヘム加
工されるアウタパネルの端部形状が直線形状か、円弧形
状やあるいは角部を有するような複雑形状かは、アウタ
パネルなどの部材設計に応じて、適宜選択される。
It is to be noted that the hem processing such as the flat hem is carried out for all four peripheries of the Al alloy sheet of the present invention, or only for the selected side (side edge portion), and the hem processing is carried out. Whether the end shape of the outer panel to be formed is a linear shape, an arc shape, or a complicated shape having a corner is appropriately selected according to the member design of the outer panel and the like.

【0062】本発明では、前記した通り、従来のよう
に、Al合金板の0.2%耐力を140MPa以下の低強度とせずと
も、特にフラットヘムなどのヘム加工性やプレス成形性
が優れる。この結果、Al合金板の0.2%耐力を140MPaを越
える高強度にすることができ、成形後の塗装工程などに
おける170 ℃×20分の低温人工時効硬化処理でも、180M
Paを越えるような高強度のパネルを得ることができる。
ただ、このような高強度が必要ない場合には、ヘム加工
されるAl合金板の耐力を110 〜140MPaの範囲としても良
い。
According to the present invention, as described above, the Al alloy sheet is excellent in hem workability such as flat hem and press formability, even if the 0.2% proof stress of the Al alloy plate is not made as low as 140 MPa or less as in the conventional case. As a result, the 0.2% proof stress of the Al alloy plate can be increased to a high strength exceeding 140 MPa, and even with low temperature artificial age hardening treatment at 170 ℃ × 20 minutes in the coating process after molding, 180 M
It is possible to obtain a high-strength panel that exceeds Pa.
However, when such high strength is not required, the proof stress of the Al alloy plate to be hemmed may be in the range of 110 to 140 MPa.

【0063】(製造方法)以上の本発明Al合金板の製造方
法について説明する。前記した通り、キューブ方位を有
する結晶粒が特定量存在する本発明Al合金板組織を得る
ためには、上記成分組成などの他に下記の冷間圧延条件
と、必要により、冷間圧延後の焼鈍付加など、特別な工
程の付加や工程条件の付加が必要である。この点、常法
で得られる通常のAl合金板は、キューブ方位を有する結
晶粒の割合が小さく、本発明のようなキューブ方位を有
する結晶粒が特定量存在するAl合金板組織は得られな
い。
(Manufacturing Method) A method for manufacturing the above Al alloy sheet of the present invention will be described. As described above, in order to obtain the Al alloy sheet structure of the present invention in which the crystal grains having the cube orientation are present in a specific amount, the following cold rolling conditions in addition to the above-described component composition, and if necessary, after cold rolling, It is necessary to add special processes and process conditions such as annealing. In this respect, a normal Al alloy plate obtained by a conventional method has a small proportion of crystal grains having a cube orientation, and an Al alloy plate structure having a specific amount of crystal grains having a cube orientation cannot be obtained as in the present invention. .

【0064】キューブ方位を有する結晶粒が特定量存在
する本発明Al合金板組織を得るためには、先ず、熱延板
や連続鋳造圧延などで得られた板を、圧下率60% 以上の
より高い圧下率で冷間圧延する。冷間圧延での圧下率を
60% 以上のより高い圧下率とすることで、冷間圧延板に
十分な歪みエネルギーを蓄積できる。この結果、後述す
る焼鈍でキューブ方位を有する結晶粒を特定量成長させ
ることができる。冷間圧延での圧下率が低いと、常法材
と変わりなくなり、後述する焼鈍や溶体化処理で、キュ
ーブ方位を有する結晶粒が特定量成長するに十分な歪み
エネルギーが蓄積できなくなる可能性が高い。一方、冷
間圧延での圧下率が高くなるほど、耳割れが生じるなど
加工自体が困難となるので、圧下率の上限は95% 程度と
するのが好ましい。
In order to obtain the Al alloy sheet structure of the present invention in which a certain amount of crystal grains having a cube orientation are present, first, a sheet obtained by hot rolling or continuous casting rolling is subjected to a rolling reduction of 60% or more. Cold rolling with a high reduction rate. The reduction ratio in cold rolling
By setting the rolling reduction to a higher value of 60% or more, sufficient strain energy can be accumulated in the cold rolled sheet. As a result, it is possible to grow a specific amount of crystal grains having a cube orientation by annealing described later. When the reduction ratio in cold rolling is low, it does not change from the ordinary material, and in the annealing or solution treatment described below, there is a possibility that sufficient strain energy cannot be accumulated to grow a certain amount of crystal grains having a cube orientation. high. On the other hand, the higher the reduction rate in cold rolling, the more difficult the processing itself such as the occurrence of edge cracks. Therefore, the upper limit of the reduction rate is preferably about 95%.

【0065】次いで、冷間圧延板は、キューブ方位を有
する結晶粒を特定量成長させるために、必要に応じて、
350 ℃以下、好ましくは200 〜300 ℃の温度で、例えば
1 〜50時間焼鈍されることが好ましい。この焼鈍によっ
て、キューブ方位を有する微細な再結晶粒もしくは亜結
晶粒が特定量成長し、最終の溶体化処理で、立方体方位
が発達し易くなり、プレス成形性とともに曲げ加工性が
著しく向上する。前記焼鈍温度が200 ℃未満では、この
効果がなく、Al合金パネル表面のキューブ方位を有する
結晶粒の割合を、Al合金板表面における{200 }面の積
分強度の割合を50% 以上とするとともに、{200 }面と
{400 }面との合計積分強度の割合を60% 以上とするこ
とができない。この結果、従来のAl合金板結晶粒組織と
大差がなくなり、前記厳しい条件での、特にフラットヘ
ムなどのヘム加工性の向上効果がない。
Then, the cold-rolled sheet is optionally grown in order to grow a certain amount of crystal grains having a cube orientation.
At a temperature of 350 ° C or lower, preferably 200 to 300 ° C, for example,
It is preferable to anneal for 1 to 50 hours. By this annealing, fine recrystallized grains or sub-crystal grains having a cube orientation grow in a specific amount, the cubic orientation is easily developed in the final solution treatment, and the press formability and bending workability are significantly improved. If the annealing temperature is less than 200 ° C, this effect does not occur, and the ratio of the crystal grains having the cube orientation on the Al alloy panel surface is set to 50% or more for the integrated strength ratio of the {200} plane on the Al alloy plate surface. , The ratio of the total integrated intensity of the {200} plane and the {400} plane cannot be 60% or more. As a result, there is not much difference from the crystal grain structure of the conventional Al alloy plate, and there is no effect of improving the hem processability under the severe conditions, particularly flat hem.

【0066】一方、焼鈍温度が350 ℃を越えた場合、結
晶粒が粗大化しやすく、プレス成形やヘム加工時に肌荒
れが生じ易くなり、Al合金板の張出成形や絞り成形など
のプレス成形性が著しく低下する。この焼鈍はバッチ
炉、連続焼鈍炉を用いて行うことができる。
On the other hand, when the annealing temperature exceeds 350 ° C., the crystal grains are likely to be coarsened, and roughening of the surface is likely to occur during press forming or hemming, and press formability such as bulging and drawing of an Al alloy plate is improved. Markedly reduced. This annealing can be performed using a batch furnace or a continuous annealing furnace.

【0067】その他の工程条件は常法で可であるが、ア
ウタパネルなどとしての、特にフラットヘムなどのヘム
加工性や他の特性を向上させるための好ましい条件もあ
り、以下に説明する。
Other process conditions can be used in a conventional manner, but there are also preferable conditions for improving the hem processability and other characteristics of the outer panel, such as flat hem, and will be described below.

【0068】先ず、溶解、鋳造工程では、本発明成分規
格範囲内に溶解調整された、過剰Al合金溶湯を、連続鋳
造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳
造法を適宜選択して鋳造する。
First, in the melting and casting steps, an excess molten Al alloy melt, which has been melt-adjusted within the component specification range of the present invention, is subjected to a normal melt casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method). Is appropriately selected and cast.

【0069】次いで、このAl合金鋳塊に均質化熱処理を
施した後、熱間圧延、前記高い圧下率での冷間圧延を行
い、コイル状、板状などの板形状に加工する。その際、
必要により、前記焼鈍なども施す。
Then, after subjecting this Al alloy ingot to homogenization heat treatment, hot rolling and cold rolling at the above-mentioned high reduction ratio are carried out to process it into a plate shape such as a coil shape or a plate shape. that time,
If necessary, the above-mentioned annealing is also performed.

【0070】加工後のAl合金板は、調質処理として、先
ず、必須に溶体化および焼入れ処理される。溶体化およ
び焼入れ処理は、後の塗装焼き付け硬化処理などの人工
時効硬化処理によりGPゾーンやβ" 相などの化合物相を
十分粒内に析出させるために重要な工程である。この効
果を出すための溶体化処理条件は、500 〜540 ℃の温度
範囲で行うのが好ましい。
The processed Al alloy plate is first indispensably subjected to solution heat treatment and quenching as a heat treatment. Solution heat treatment and quenching are important steps for precipitating compound phases such as GP zone and β "phase into the grains sufficiently by artificial age hardening such as paint baking and hardening. It is preferable that the solution treatment condition is carried out in the temperature range of 500 to 540 ° C.

【0071】従来、フラットヘム加工性が特に重視され
るパネル用の場合には、あるいは前記厳しいフラットヘ
ム加工条件用の場合には、前記溶体化処理温度を500 〜
530℃のより低温側としていた。しかし、本発明では、
前記した通り、従来のように、Al合金板の0.2%耐力を14
0MPa以下の低強度とせずとも、特にフラットヘムなどの
ヘム加工性やプレス成形性が優れる。
Conventionally, in the case of a panel for which flat heme processability is particularly important or under the severe flat heme process conditions, the solution treatment temperature is 500 to 500.
It was on the lower temperature side of 530 ℃. However, in the present invention,
As mentioned above, the 0.2% proof stress of Al alloy plate was
Even if it does not have a low strength of 0 MPa or less, it is particularly excellent in hem processability such as flat hem and press formability.

【0072】このため、溶体化処理温度を530 〜540 ℃
の範囲の高温側で行い、Al合金板の0.2%耐力を140MPaを
越える高強度にして、後の板成形後のパネルの人工時効
硬化処理によりGPゾーンやβ" 相などの化合物相を十分
粒内に析出させるようにし、成形後の塗装工程などにお
ける170 ℃×20分の低温人工時効硬化処理でも、180MPa
を越えるような高強度のパネルとすることが好ましい。
Therefore, the solution treatment temperature is set to 530 to 540 ° C.
In the high temperature side of the range, the 0.2% proof stress of the Al alloy plate is made to have a high strength exceeding 140 MPa, and the compound zones such as GP zone and β "phase are sufficiently grained by the artificial age hardening treatment of the panel after the subsequent plate forming. 180MPa even in the low temperature artificial age hardening treatment at 170 ℃ × 20 minutes in the painting process after molding.
It is preferable to make a high-strength panel that exceeds the above range.

【0073】溶体化処理後の焼入れの際、冷却速度は50
℃/ 分以上の急冷とすることが好ましい。冷却速度が50
℃/ 分未満の遅い場合には、焼入れ後の強度が低くな
り、時効硬化能が不足し、後の塗装焼き付け硬化処理な
どの、特に170 ℃×20分の低温での人工時効処理によ
り、170MPa以上の高耐力を確保できない。
During quenching after the solution treatment, the cooling rate is 50
It is preferable to perform rapid cooling at ℃ / minute or more. Cooling rate is 50
If the temperature is slower than ℃ / min, the strength after quenching will be low, and the age hardening ability will be insufficient, and the artificial aging treatment at a low temperature of 170 ℃ × 20 minutes, such as the paint bake hardening treatment afterwards, will give 170 MPa. The above high yield strength cannot be secured.

【0074】また、粒界上にSi、MgSiなどが析出しやす
くなり、プレス成形やフラットヘム加工時の割れの起点
となり易く、これら成形性が低下する。この冷却速度を
確保するために、焼入れ処理は、ファンなどの空冷でも
よいが冷却速度が遅くなる可能性が大きく、ミスト、ス
プレー、浸漬等の水冷手段から選択して行うことが好ま
しい。
Further, Si, MgSi, etc. are likely to be deposited on the grain boundaries, which easily becomes a starting point of cracks during press molding and flat hem processing, and these moldability are deteriorated. In order to secure this cooling rate, the quenching treatment may be performed by air cooling using a fan or the like, but the cooling rate is likely to be slow, and it is preferable to perform the quenching treatment by selecting from water cooling means such as mist, spraying and dipping.

【0075】溶体化焼入れ処理後、室温時効の原因とな
るクラスターの生成を抑制するために、予備時効処理を
することが好ましい。即ち、50〜100 ℃、好ましくは60
〜90℃の温度範囲に、1 〜24時間の必要時間保持するこ
とが好ましい。また、予備時効処理後の冷却速度は、1
℃/hr 以下であることが好ましい。
After the solution hardening treatment, it is preferable to carry out a pre-aging treatment in order to suppress the formation of clusters that cause room temperature aging. That is, 50 to 100 ° C, preferably 60
It is preferable to maintain the temperature in the range of to 90 ° C for the required time of 1 to 24 hours. The cooling rate after the preliminary aging treatment is 1
C./hr or less is preferable.

【0076】この予備時効処理として、溶体化処理後の
焼入れ終了温度を50〜100 ℃と高くした後に、直ちに再
加熱乃至そのまま保持して行う。あるいは、溶体化処理
後常温までの焼入れ処理の後に、直ちに50〜100 ℃に再
加熱して行う。
As the preliminary aging treatment, after the quenching completion temperature after the solution treatment is increased to 50 to 100 ° C., it is immediately reheated or kept as it is. Alternatively, after the solution treatment, quenching treatment up to room temperature and immediately reheating to 50 to 100 ° C. are performed.

【0077】また、連続溶体化焼入れ処理の場合には、
前記予備時効の温度範囲で焼入れ処理を終了し、そのま
まの高温でコイルに巻き取るなどして行う。なお、コイ
ルに巻き取る前に再加熱しても、巻き取り後に保温して
も良い。また、常温までの焼入れ処理の後に、前記温度
範囲に再加熱して高温で巻き取るなどしてもよい。
In the case of continuous solution hardening treatment,
The quenching process is completed within the temperature range of the preliminary aging, and the coil is wound around the coil at the high temperature as it is. Note that the coil may be reheated before being wound on the coil, or may be kept warm after being wound. Further, after the quenching treatment up to room temperature, it may be reheated to the above temperature range and wound at a high temperature.

【0078】更に、室温時効抑制のために、GPIを規制
するだけではなく、GPIIを積極的に生成させるために、
前記予備時効処理後に、時間的な遅滞無く、比較的低温
での亜時効処理を行い、より安定なGPIIとβ" 相 (主と
してGPII) を生成させることが好ましい。前記時間的な
遅滞があった場合、予備時効処理後でも、時間の経過と
ともに室温時効 (自然時効) が生じ、この室温時効が生
じた後では、亜時効処理による効果が発揮しにくくな
る。
Furthermore, in order to suppress aging at room temperature, not only GPI is regulated but also GPII is positively generated,
After the pre-aging treatment, it is preferable to perform a sub-aging treatment at a relatively low temperature without a time delay to produce a more stable GPII and β "phase (mainly GPII). In this case, even after the pre-aging treatment, room temperature aging (natural aging) occurs over time, and after the room temperature aging occurs, the effect of the sub-aging treatment becomes difficult to be exerted.

【0079】これらの効果を得るためには、Al合金材の
前記組成範囲において、時効処理温度を80〜120 ℃の亜
時効処理範囲とし、時効処理時間は必要時間、好ましく
は1〜24時間の範囲とし、この範囲の中から、前記組成
に応じて、時効処理効果が得られる温度と時間を選択す
ることが好ましい。また、この亜時効処理後の冷却速度
は、1 ℃/hr 以下であることが好ましい。時効処理温度
が80℃未満では、また、保持時間が短過ぎると、より安
定なGPIIとβ" 相を生成させることができない。このた
め、室温時効抑制効果や低温時効硬化能が得られない。
一方、120 ℃を越える温度では通常の時効処理と大差な
くなり、GPIIが析出して時効が進み過ぎ、強度が高くな
りすぎる。この点は、時効処理の保持時間が長過ぎても
同じである。なお、前記予備時効処理温度を、後述する
時効処理並に高めとし、時効処理と合わせた乃至連続し
た熱処理としても良い。
In order to obtain these effects, in the above composition range of the Al alloy material, the aging treatment temperature is set to a sub-aging treatment range of 80 to 120 ° C., and the aging treatment time is required time, preferably 1 to 24 hours. It is preferable to set the range and to select the temperature and time from which the aging treatment effect can be obtained, depending on the composition. The cooling rate after the sub-aging treatment is preferably 1 ° C / hr or less. If the aging temperature is lower than 80 ° C and the holding time is too short, more stable GPII and β "phases cannot be generated. Therefore, the room temperature aging suppressing effect and the low temperature age hardening ability cannot be obtained.
On the other hand, at temperatures above 120 ° C, there is not much difference from normal aging treatment, GPII precipitates and aging proceeds too much, and strength becomes too high. This point is the same even if the holding time of the aging treatment is too long. The preliminary aging treatment temperature may be set to be as high as the aging treatment described later, and the heat treatment may be combined with or continuous with the aging treatment.

【0080】溶体化および焼入れ処理後に、前記予備時
効処理と亜時効処理などを併用することで、Al合金材の
組織を、GPIIが無い乃至少ない、主として、安定なGPI
I、β" 相と過飽和固溶体からなるミクロ組織とするこ
とが出来る。このミクロ組織は、前記した通り、室温で
の時効硬化が起きにくいという優れた特性を有する。そ
の一方で、このミクロ組織は、170 ℃×20分の低温時効
硬化処理条件など、その後の焼き付け塗装などの加熱
(時効処理) 温度が低くても、β" 相の核生成サイトと
なり、低温時効処理能が高いという優れた特性も有す
る。
After the solution heat treatment and the quenching treatment, by using the pre-aging treatment and the sub-aging treatment in combination, the structure of the Al alloy material is made to have a GPII of little or no, that is, a stable GPI.
A microstructure composed of an I, β "phase and a supersaturated solid solution can be obtained. As described above, this microstructure has the excellent property that age hardening does not easily occur at room temperature. On the other hand, this microstructure is , 170 ℃ × 20 minutes low temperature age hardening treatment conditions, such as subsequent baking and heating
(Aging treatment) Even if the temperature is low, it also has an excellent property that it becomes a β "phase nucleation site and has a high low-temperature aging treatment ability.

【0081】この他、用途や必要特性に応じて、更に高
温の時効処理や安定化処理を行い、より高強度化などを
図ることなども勿論可能である。
In addition, it is of course possible to further increase the strength by performing an aging treatment or a stabilization treatment at a higher temperature depending on the use and the required characteristics.

【0082】[0082]

【実施例】次に、本発明の実施例を説明する。表1 に示
す、本発明組成範囲の発明例1 〜5 および本発明組成範
囲から外れた各成分組成の比較例6 、7 の、各6000系Al
合金板について、結晶方位を制御するため、表2 に示す
ように冷間圧延の圧下率と冷間圧延後の焼鈍条件や温度
を変えて、Al合金板表面における{200 }面の積分強度
の割合と、{200 }面と{400 }面との合計積分強度の
割合を種々変えた、厚さ1.0mm のAl合金板を作成した。
更には、調質条件なども変えて、導電率と結晶粒径も種
々変えた。
EXAMPLES Next, examples of the present invention will be described. Inventive Examples 1 to 5 in the composition range of the present invention and Comparative Examples 6 and 7 of each component composition deviating from the composition range of the present invention shown in Table 1, each 6000 series Al
In order to control the crystal orientation of the alloy sheet, as shown in Table 2, the reduction ratio of cold rolling and the annealing conditions and temperatures after cold rolling were changed to determine the integrated strength of the {200} plane on the Al alloy sheet surface. Various ratios and ratios of the total integrated strengths of the {200} surface and the {400} surface were changed to prepare Al alloy plates with a thickness of 1.0 mm.
Furthermore, the electrical conductivity and the crystal grain size were variously changed by changing the refining conditions.

【0083】冷間圧延条件と冷間圧延後の焼鈍条件、更
には溶体化処理温度以外のAl合金板の作製は、下記冷間
圧延の圧下率を変化させるための熱間圧延板の板厚を除
き、ほぼ同じ条件で行った。即ち、表1 に示す各組成範
囲の400mm 厚の鋳塊を、DC鋳造法により溶製後、540 ℃
×4 時間の均質化熱処理を施し、終了温度300 ℃で厚さ
2.3 〜8mmtまで熱間圧延した。この熱間圧延板を、更
に、厚さ1.0mm まで、圧下率を55〜80% まで変えて冷間
圧延した。
The cold rolling conditions, the annealing conditions after the cold rolling, and the production of the Al alloy plate other than the solution heat treatment temperature were carried out by changing the thickness of the hot rolled plate for changing the reduction ratio of the cold rolling described below. Except that the same conditions were used. That is, 400 mm thick ingots in each composition range shown in Table 1 were melted by the DC casting method and then heated at 540 ° C.
× 4 hours of homogenization heat treatment, thickness at the end temperature 300 ℃
It was hot rolled to 2.3 to 8 mmt. This hot-rolled sheet was further cold-rolled with a thickness of 1.0 mm and a reduction rate of 55-80%.

【0084】これら冷延板を以下の同一条件で調質処理
した。先ず、各試験片サイズに切断後、570 ℃に保持し
た空気炉に投入し、各試験片が550 ℃の溶体化処理温度
に到達した時点で (保持時間 0秒) 、70℃の温水に焼き
入れする処理を行った。前記焼入れ処理の際の冷却速度
は200 ℃/ 秒とし、焼入れ終了温度 (焼入れ温度) は共
通して70℃とし、焼入れ後にこの温度で2 時間保持する
予備時効処理 (保持後は冷却速度0.6 ℃/hr で徐冷) を
行った。これらの条件を表2 に示す。なお、表2 の発明
例13のみは焼き入れを常温の水に焼き入れ、その後予備
時効処理しなかった。また、表2 の比較例17のみは空気
炉の保持温度を570 ℃にして565 ℃で溶体化処理した。
但し、その他の条件は上記と同じ条件とした。
These cold-rolled sheets were heat-treated under the same conditions as described below. First, after cutting each test piece size, it was put into an air furnace maintained at 570 ° C, and when each test piece reached the solution treatment temperature of 550 ° C (holding time 0 seconds), baked in 70 ° C hot water. It was put in. The cooling rate during the quenching treatment was 200 ° C / sec, the quenching end temperature (quenching temperature) was 70 ° C in common, and the pre-aging treatment was held at this temperature for 2 hours after quenching (cooling rate after holding 0.6 ° C. / hr). Table 2 shows these conditions. Note that only Invention Example 13 in Table 2 was quenched in water at room temperature and then not subjected to pre-aging treatment. Further, only Comparative Example 17 in Table 2 was subjected to solution treatment at 565 ° C with the holding temperature of the air furnace set to 570 ° C.
However, the other conditions were the same as above.

【0085】これらのAl合金板から試験用の幅50mm×長
さ50mmの供試板 (ブランク) を複数枚切り出し、Al合金
板表面における{200 }面の積分強度の割合と、{200
}面と{400 }面との合計積分強度の割合を前記したX
線回折測定方法により測定した。また、調質処理後の
引張強さ (σB ) 、耐力 (σ0.2)、伸び(%)を測定し
た。これらの結果を表2 に示す。更に、Al合金板の室温
時効を考慮して、前記調質処理後 4カ月間 (120 日間)
の室温時効後の、各供試板の導電率(IACS%) 、結晶粒
径、更に、後述する測定条件で、圧延方向に平行な、引
張強さ (σB ) 、耐力(σ0.2)、伸び、を測定した。こ
れらの結果を表3 に示す。
A plurality of test plates (blank) having a width of 50 mm and a length of 50 mm were cut out from these Al alloy plates, and the ratio of the integrated strength of the {200} plane on the surface of the Al alloy plate and the {200}
X is the ratio of the total integrated intensity of the {} plane and the {400} plane.
It was measured by a line diffraction measuring method. Further, the tensile strength (σ B ), yield strength (σ 0.2 ) and elongation (%) after the heat treatment were measured. The results are shown in Table 2. Furthermore, taking into account the room temperature aging of the Al alloy plate, 4 months (120 days) after the above-mentioned heat treatment.
After room temperature aging, the electrical conductivity (IACS%) of each test plate, the crystal grain size, further, in the measurement conditions described below, parallel to the rolling direction, tensile strength (σ B ), proof stress (σ 0.2 ), Elongation was measured. The results are shown in Table 3.

【0086】更に、低温時効処理能を調査するため、前
記調質処理後 4カ月間室温時効後の供試板を、2%の歪み
を予め与えて170 ℃×20分の低温人工時効硬化処理し、
各供試板の引張強さ (σB ) 、耐力 (σ0.2)、伸びを測
定した。これらの結果も表3に示す。
Further, in order to investigate the low-temperature aging treatment capacity, the test plate after room-temperature aging for 4 months after the above-mentioned tempering treatment was given a strain of 2% in advance and subjected to low-temperature artificial aging hardening treatment at 170 ° C. for 20 minutes. Then
The tensile strength (σ B ), proof stress (σ 0.2 ) and elongation of each test plate were measured. These results are also shown in Table 3.

【0087】なお、引張試験はJIS Z 2201にしたがって
行うとともに、試験片形状はJIS 5号試験片で行い、試
験片長手方向が圧延方向と一致するように作製した。し
たがって、各供試板の引張強さ (σB ) 、耐力
0.2)、伸びは圧延方向に平行なL方向の測定とした。
また、クロスヘッド速度は5mm/分で、試験片が破断する
まで一定の速度で行った。
The tensile test was carried out according to JIS Z 2201, and the shape of the test piece was a JIS No. 5 test piece, so that the longitudinal direction of the test piece coincided with the rolling direction. Therefore, the tensile strength (σ B ) and proof stress of each test plate
0.2 ) and elongation were measured in the L direction parallel to the rolling direction.
The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.

【0088】また、室温時効したAl合金板を自動車パネ
ルとしてプレス成形やヘム加工されることを模擬して、
前記室温時効後の供試板を成形試験した。より具体的に
は、フラットヘム加工試験、平面ひずみ張出高さ(LDH0)
試験を行い、成形性を評価した。これらの結果を表3 に
示す。
Simulating that the aluminum alloy plate aged at room temperature is pressed or hem processed as an automobile panel,
The test plate after the room temperature aging was subjected to a molding test. More specifically, flat hem processing test, plane strain overhang height (LDH 0 )
A test was conducted to evaluate the moldability. The results are shown in Table 3.

【0089】フラットヘム加工試験は以下の通りとし
た。前記ブランク (前記室温時効後の供試板) に対し、
まず、自動車のアウタパネルの成形加工を模擬して、15
% の歪みを予め与えた。そして、ブランクのフラットヘ
ム加工代 (ヘム加工後のアウタパネルブランクの、内側
に折り曲げられた端部から折り曲げ部の端部までの距
離) を12mmとして、一方の長手方向端部の幅方向全面を
ダウンフランジ工程によって、90度の角度となるまで折
り曲げた。この際、ダイスの肩半径Rdは0.8t(tは板厚)
とした。次に、プリヘム工程によって、ブランクの縁を
更に135 °の角度まで内側に折り曲げた。
The flat hem processing test was as follows. For the blank (test plate after aging at room temperature),
First, we simulated the molding process of the outer panel of the car,
% Distortion is given in advance. Then, the flat hem processing allowance of the blank (the distance from the end of the outer panel blank after the hem processing that is bent inward to the end of the bent portion) is set to 12 mm, and the entire width direction of one longitudinal end is reduced. By the flange process, it was bent to an angle of 90 degrees. At this time, the shoulder radius Rd of the die is 0.8t (t is the plate thickness)
And Next, the edges of the blank were further folded inward by a prehem step to an angle of 135 °.

【0090】その後、フラットヘム加工条件を模擬し
て、板厚1mm のインナパネル用Al合金板を前記ブランク
(アウタパネル) の折り曲げ部に挿入し、前記ブランク
折り曲げ部を内側に180 度折り曲げるフラットヘム加工
を行った。なお、これらのフラットヘム加工において、
ブランクは、そのキューブ方位がフラットヘムの曲げ方
向と平行になるように、その長手方向が板の圧延方向と
一致するようにした。
Then, simulating the flat hem processing conditions, an Al alloy plate for an inner panel having a plate thickness of 1 mm was blanked as described above.
It was inserted into the bent portion of the (outer panel), and flat hem processing was performed by bending the blank bent portion inward by 180 degrees. In addition, in these flat hem processing,
The blank was oriented such that its cube orientation was parallel to the bending direction of the flat hem and its longitudinal direction was coincident with the rolling direction of the plate.

【0091】そして、このフラットヘムの縁曲部の、肌
荒れ、微小な割れ、大きな割れの発生などの表面状態を
目視観察した。評価は、1;肌荒れや微小な割れも無く良
好、2;肌荒れが発生しているものの、微小なものを含め
た割れはない、3;微小な割れが発生、4;大きな割れが発
生、5;大きな割れが複数乃至多数発生、の5 段階の評価
をした。この評価として、ヘム加工性が良好 (使用可)
と判断されるのは1 〜2 段階までで、3 段階以上はヘム
加工性が劣る (使用不可) と判断される。
Then, the surface condition such as rough skin, minute cracks, and large cracks was visually observed at the edge of the flat hem. The evaluation is 1; good with no rough skin or fine cracks, 2; no rough cracks, including small ones, 3; fine cracks, 4; large cracks, 5 ; Evaluated in 5 levels, from multiple to multiple large cracks. Good hem processability for this evaluation (usable)
It is judged to be 1 to 2 stages, and heme processability is inferior (unusable) for 3 or more stages.

【0092】また、平面ひずみ張出高さ(LDH0)試験の条
件は、幅100mm ×長さ180mm の前記室温時効後の供試板
試験片を用い、試験片長手方向が圧延方向と直角方向に
一致するように作製した。そして、パンチ (玉頭、100m
m φ) とダイス (ビード付き) を用い、しわ押さえ力20
0kN 、潤滑油R-303 、成形速度20mm/ 分、の条件で3回
行い、最も低い張出高さをLDH0値とした。このLDH0値が
30mm以上のものを〇、25mm以上30mm未満のものを△、25
mm未満のものを×として評価した。
Further, the conditions of the plane strain overhang height (LDH 0 ) test are as follows: the test plate test piece having a width of 100 mm and a length of 180 mm after room temperature aging is used, and the longitudinal direction of the test piece is the direction perpendicular to the rolling direction. It was manufactured so as to agree with. And punch (ball head, 100m
m φ) and die (with beads)
The LDH 0 value was defined as the lowest overhang height, which was performed three times under the conditions of 0 kN, lubricating oil R-303, and molding speed of 20 mm / min. This LDH 0 value is
30 mm or more for ○, 25 mm or more and less than 30 mm for △, 25
Those less than mm were evaluated as x.

【0093】オレンジピールの評価は、前記限界絞り比
試験後の成形材表面を観察し、肌荒れが生じていないも
のを〇、生じているものを×と評価した。
The orange peel was evaluated by observing the surface of the molding material after the limiting drawing ratio test, and ◯ means that the skin did not become rough, and x means that the skin did.

【0094】また、前記室温時効後の供試板から塗装後
耐蝕性試験片を採取し、洗浄後、同一条件でリン酸亜鉛
処理、塗装処理を行った。リン酸亜鉛処理は、リン酸チ
タンのコロイド分散液による処理を行い、次いでフッ素
を50ppm の低濃度含むリン酸亜鉛浴に浸漬してリン酸亜
鉛皮膜を成形材表面に形成した。塗装処理は、カチオン
電着塗装を行った後に、現状汎用されている条件である
170 ℃×20分の焼き付けを行う塗装を施した。
Corrosion resistance test pieces after coating were sampled from the test plate after aging at room temperature, washed, and then subjected to zinc phosphate treatment and coating treatment under the same conditions. The zinc phosphate treatment was performed with a titanium phosphate colloidal dispersion, and then immersed in a zinc phosphate bath containing fluorine at a low concentration of 50 ppm to form a zinc phosphate film on the surface of the molding material. The coating process is a condition that is currently widely used after performing cationic electrodeposition coating.
It was painted at 170 ° C for 20 minutes.

【0095】そして、これら塗装試験片の耐糸さび評価
試験を行った。これらの評価結果も表2 に示す。耐糸さ
び評価試験は、前記塗装試験片の表面に一片が7cm のク
ロスカットを施した後、35℃の1.7%塩酸水溶液に2 分間
浸漬した後、次いで40℃、85%R.H. の恒温恒湿の雰囲気
に1500時間放置し、その後発生した糸さびの最大長さL
(クロスカットより垂直方向の距離、mm) を測定した。
そして、この糸さびの最大長さが2.0mm 以下のものを
〇、2.0 〜4.0mm のものを△、4.0mm を越えるものを×
として評価した。これらの結果を表4 に示す。
Then, a thread rust resistance evaluation test was conducted on these coated test pieces. The results of these evaluations are also shown in Table 2. In the thread rust resistance evaluation test, a piece of 7 cm was cross-cut on the surface of the above-mentioned coated test piece, immersed in a 1.7% hydrochloric acid aqueous solution at 35 ° C for 2 minutes, and then at 40 ° C and 85% RH constant temperature and humidity. Left for 1500 hours in the atmosphere of
(Distance in the vertical direction from the cross cut, mm) was measured.
If the maximum length of this thread rust is 2.0 mm or less, it is ○, if it is 2.0 to 4.0 mm, it is △, and if it exceeds 4.0 mm, it is ×.
Evaluated as. The results are shown in Table 4.

【0096】表1 〜4 から明らかな通り、本発明合金組
成範囲内であって、かつAl合金板表面における{200 }
面の積分強度の割合が50〜80% の範囲であるとともに、
{200 }面と{400 }面との合計積分強度の割合が60%
〜90% の範囲にある発明例1〜13は、フラットヘム加工
性に優れている。この実施例の結果は、アウタパネルの
ヘム加工部位形状の複雑化やインナーパネルの薄板化な
ど、前記した厳しい条件でのフラットヘム加工でも、十
分加工できることを示している。
As is apparent from Tables 1 to 4, {200} within the alloy composition range of the present invention and on the surface of the Al alloy plate
The ratio of the integrated intensity of the surface is in the range of 50-80%, and
The ratio of the total integrated intensity of the {200} plane and the {400} plane is 60%
Inventive Examples 1 to 13 in the range of up to 90% have excellent flat heme processability. The results of this example show that the flat hem processing under the severe conditions described above, such as the complicated shape of the hem processed portion of the outer panel and the thinning of the inner panel, can be sufficiently processed.

【0097】なお、本実施例において、ブランクは、そ
のキューブ方位がフラットヘムの曲げ方向と平行になる
ように (その長手方向を板の圧延方向と平行にして) 曲
げ加工したが、発明例1 〜13を、そのキューブ方位がフ
ラットヘムの曲げ方向と直角になるように (その長手方
向が板の圧延方向と直角になるように) 曲げ加工した場
合にも、同様に、良好なフラットヘム加工性が得られ
た。
In this Example, the blank was bent so that its cube orientation was parallel to the bending direction of the flat hem (the longitudinal direction thereof was parallel to the rolling direction of the plate). Similarly, when bending ~ 13 so that its cube orientation is perpendicular to the bending direction of the flat hem (its longitudinal direction is perpendicular to the rolling direction of the plate), good flat hem processing is also performed. Sex was obtained.

【0098】一方、本発明合金組成範囲内であっても、
表3 に示す、前記{200 }面の積分強度の割合および/
または{200 }面と{400 }面との合計積分強度の割合
が、本発明範囲から外れる比較例16、17は、表4 に示す
通り、前記厳しい条件でのフラットヘム加工性が、発明
例に比して著しく低い。
On the other hand, even within the alloy composition range of the present invention,
Table 3 shows the ratio of the integrated intensity of the {200} plane and /
Alternatively, as shown in Table 4, in Comparative Examples 16 and 17 in which the ratio of the total integrated intensity of the {200} plane and the {400} plane is out of the range of the present invention, the flat hem machinability under the severe conditions is Remarkably lower than.

【0099】また、発明例の中でも、表3 に示す、前記
{200 }面の積分強度の割合および/ または{200 }面
と{400 }面との合計積分強度の割合が比較的低い発明
例6、9 のフラットヘム加工性は、表4 に示す通り、積
分強度の割合が比較的高い発明例1 、2 などに比して比
較的低い。したがって、以上の結果から、本発明の{20
0 }面の積分強度の割合および/ または{200 }面と
{400 }面との合計積分強度の割合の臨界的な意義が裏
付けられる。
Among the invention examples, the invention examples in which the ratio of the integrated intensity of the {200} face and / or the ratio of the total integrated intensity of the {200} face and the {400} face shown in Table 3 are relatively low. As shown in Table 4, the flat hem processability of Nos. 6 and 9 is relatively low as compared with Invention Examples 1 and 2 having a relatively high ratio of integrated strength. Therefore, from the above results, the {20
The critical significance of the ratio of the integrated intensity of the 0} plane and / or the ratio of the total integrated intensity of the {200} plane and the {400} plane is supported.

【0100】更に、前記{200 }面の積分強度の割合お
よび/ または{200 }面と{400 }面との合計積分強度
の割合が比較的低い発明例6 、9 は、表2 のように、冷
間圧延の圧下率が比較的低い。また、これら積分強度の
割合が低めに外れる比較例16も、表2 のように、冷間圧
延の圧下率が低めに外れる。したがって、以上の結果か
ら、本発明の{200 }面の積分強度の割合および/ また
は{200 }面と{400}面との合計積分強度の割合を得
るための、冷間圧延の圧下率条件の臨界的な意義が裏付
けられる。言い換えると、本発明のような、キューブ方
位を有する結晶粒が特定量存在するAl合金板組織を得る
ためには、冷間圧延の特別な条件の付加が必要であるこ
とが分かる。
Furthermore, invention examples 6 and 9 in which the ratio of the integrated intensity of the {200} plane and / or the ratio of the total integrated intensity of the {200} plane and the {400} plane are relatively low are as shown in Table 2. The cold rolling reduction is relatively low. Further, in Comparative Example 16 in which the ratio of these integrated strengths deviates relatively low, as shown in Table 2, the reduction ratio of cold rolling deviates relatively low. Therefore, from the above results, the cold rolling reduction condition for obtaining the ratio of the integrated strength of the {200} plane and / or the ratio of the total integrated strength of the {200} plane and the {400} plane of the present invention. Supports the critical significance of. In other words, it is necessary to add special conditions for cold rolling in order to obtain an Al alloy sheet structure in which a certain amount of crystal grains having a cube orientation are present as in the present invention.

【0101】また、表1 〜4 から明らかな通り、発明例
は、張出成形において、積分強度の割合が最も高い発明
例2 を除きLDH0が高く、結晶粒径が大きい発明例12を除
きオレンジピールも生じておらず、プレス成形性が優れ
ている。更に、170 ℃×20分の低温人工時効硬化処理で
あっても、自動車などのアウタパネルに最低必要なAB耐
力が170MPa以上あり、また耐糸さび性にも優れている。
Further, as is clear from Tables 1 to 4, except for Invention Example 12 in which the LDH 0 is high and the crystal grain size is large, except for Invention Example 2 in which the ratio of the integrated strength is the highest in bulging. No orange peel is produced, and press moldability is excellent. Further, even with a low temperature artificial age hardening treatment of 170 ° C. × 20 minutes, the minimum required AB proof stress for outer panels of automobiles is 170 MPa or more, and it is also excellent in thread rust resistance.

【0102】ただ、発明例の中でも、表3 のように、50
μm を越えて結晶粒径が大きい発明例12は、張出成形に
おいてオレンジピールが若干生じている。また、50μm
を越えて結晶粒径が大きい比較例17は、張出成形におい
て、LDH0がが低く、オレンジピールも生じている。した
がって、結晶粒径規定の好ましい意義が分かる。
However, among the invention examples, as shown in Table 3, 50
Inventive Example 12 having a crystal grain size exceeding μm and having a large crystal grain size, some orange peel occurs in the stretch forming. Also, 50 μm
In Comparative Example 17 in which the crystal grain size was larger than the above, LDH 0 was low and orange peel was generated in the stretch forming. Therefore, the preferable significance of defining the crystal grain size is understood.

【0103】なお、前記した通り、発明例は低温人工時
効硬化処理であっても、AB耐力が170MPa以上あるが、表
3 のように、導電率が40IACS% と小さい発明例13は低温
時効硬化処理後のAB耐力が比較的低い。したがって、導
電率規定の好ましい意義が分かる。
As described above, in the invention examples, the AB proof stress is 170 MPa or more even with the low temperature artificial age hardening treatment.
Inventive Example 13 having a conductivity as low as 40 IACS% as shown in Example 3 has a relatively low AB proof stress after the low temperature age hardening treatment. Therefore, the preferable meaning of the conductivity regulation can be understood.

【0104】更に、Si乃至Mgが低めに本発明範囲から外
れる表1 の比較例6 、7 合金を用いた比較例14、15は、
Al合金板表面における{200 }面の積分強度の割合、
{200}面と{400 }面との合計積分強度の割合が本発
明範囲内であるが、170 ℃×20分の低温人工時効硬化処
理で、AB耐力が170MPa未満である。
Further, Comparative Examples 14 and 15 using the alloys of Comparative Examples 6 and 7 of Table 1 in which Si to Mg are out of the range of the present invention are relatively low,
Ratio of integrated intensity of {200} plane on Al alloy plate surface,
The ratio of the total integrated strength of the {200} plane and the {400} plane is within the range of the present invention, but the AB proof stress is less than 170 MPa by the low temperature artificial age hardening treatment at 170 ° C. for 20 minutes.

【0105】以上の結果から、フラットヘム加工性やプ
レス加工性などの、アウタパネルとしての諸特性を兼備
するための、本発明積分強度範囲、これらのキューブ方
位を得るための冷間圧延率などの、本発明要件の臨界的
な意義が分かる。
From the above results, the integrated strength range of the present invention for combining various properties as an outer panel such as flat hem workability and press workability, the cold rolling rate for obtaining these cube orientations, etc. , The critical significance of the requirements of the present invention is understood.

【0106】[0106]

【表1】 [Table 1]

【0107】[0107]

【表2】 [Table 2]

【0108】[0108]

【表3】 [Table 3]

【0109】[0109]

【表4】 [Table 4]

【0110】[0110]

【発明の効果】本発明によれば、フラットヘム加工など
の曲げ加工性に優れ、プレス成形性、低温での人工時効
硬化能、耐食性など他の要求特性も兼備したAl-Mg-Si系
Al合金板とその製造方法を提供することができる。した
がって、Al合金板のパネル用途への拡大を図ることがで
きる点で、多大な工業的な価値を有するものである。
EFFECTS OF THE INVENTION According to the present invention, the Al-Mg-Si system is excellent in bending workability such as flat hemming, and has other required properties such as press formability, artificial age hardening ability at low temperature, and corrosion resistance.
An Al alloy plate and a method for manufacturing the same can be provided. Therefore, it has a great industrial value in that the Al alloy plate can be expanded to panel applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】フラットヘム加工におけるアウタパネルの縁曲
部を示す斜視図である。
FIG. 1 is a perspective view showing a curved edge portion of an outer panel in flat hem processing.

【図2】アウタパネルのフラットヘム加工部の形状を模
式的に示す説明図である。
FIG. 2 is an explanatory view schematically showing the shape of a flat hem processed portion of the outer panel.

【符号の説明】[Explanation of symbols]

1:アウタパネル、2:インナパネル、A:折り曲げ部 1: Outer panel, 2: Inner panel, A: Bent part

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 630K 640 640A 685 685Z 686 686B 691 691B 691C 692 692A 692B 694 694A (72)発明者 増田 哲也 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内 (72)発明者 中井 学 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 630 C22F 1/00 630A 630K 640 640A 685 685Z 686 686B 691 691B 691C 692 692A 692B 694A 694 Tetsuya Masuda 15 Kinugaoka, Moka City, Tochigi Prefecture Kamido Steel Works Co., Ltd. Moka Works (72) Inventor Manabu Nakai 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Works, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01
〜0.65% 、Cu:0.001〜1.0%を含み、残部がAlおよび不可
避的不純物であるAl-Mg-Si系アルミニウム合金板であっ
て、アルミニウム合金板表面における{200 }面の積分
強度の割合が50% 以上であるとともに、{200 }面と
{400 }面との合計積分強度の割合が60% 以上であるこ
とを特徴とする曲げ加工性に優れたアルミニウム合金
板。
1. Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01
~ 0.65%, Cu: 0.001 ~ 1.0%, the balance is Al and Al-Mg-Si based aluminum alloy plate which is an unavoidable impurity, the ratio of the integrated strength of the {200} plane on the aluminum alloy plate surface is An aluminum alloy plate excellent in bending workability, which is 50% or more and the ratio of the total integrated strength of the {200} plane and the {400} plane is 60% or more.
【請求項2】 前記アルミニウム合金板表面における
{200 }面の積分強度の割合が50〜80% であるととも
に、{200 }面と{400 }面との合計積分強度の割合が
60% 〜90% である請求項1に記載の曲げ加工性に優れた
アルミニウム合金板。
2. The ratio of the integrated strength of the {200} plane on the surface of the aluminum alloy plate is 50 to 80%, and the ratio of the total integrated strength of the {200} plane and the {400} plane is
It is 60% -90%, The aluminum alloy plate excellent in bending workability of Claim 1.
【請求項3】 前記SiとMgとの質量比Si/Mg が1 以上で
ある請求項1または2に記載の曲げ加工性に優れたアル
ミニウム合金板。
3. The aluminum alloy plate excellent in bending workability according to claim 1, wherein the mass ratio Si / Mg of Si and Mg is 1 or more.
【請求項4】 前記アルミニウム合金板の導電率が43〜
47IACS% の範囲であるとともに、結晶粒径が50μm 以下
である請求項1乃至3のいずれか1項に記載の曲げ加工
性に優れたアルミニウム合金板。
4. The electrical conductivity of the aluminum alloy plate is 43 to
The aluminum alloy plate excellent in bending workability according to any one of claims 1 to 3, which has a crystal grain size of 50 µm or less in addition to the range of 47IACS%.
【請求項5】 前記Si含有量を0.6 〜1.2%とした請求項
1乃至4のいずれか1項に記載の曲げ加工性に優れたア
ルミニウム合金板。
5. The aluminum alloy plate having excellent bending workability according to claim 1, wherein the Si content is 0.6 to 1.2%.
【請求項6】 前記Cu含有量を0.1%以下に規制した請求
項1乃至5のいずれか1項に記載の曲げ加工性に優れた
アルミニウム合金板。
6. The aluminum alloy plate excellent in bending workability according to claim 1, wherein the Cu content is regulated to 0.1% or less.
【請求項7】 前記アルミニウム合金板の0.2%耐力が14
0MPa以上である請求項1乃至6のいずれか1項に記載の
曲げ加工性に優れたアルミニウム合金板。
7. The 0.2% proof stress of the aluminum alloy plate is 14
The aluminum alloy plate having excellent bending workability according to any one of claims 1 to 6, which has a pressure of 0 MPa or more.
【請求項8】 前記アルミニウム合金板のアウタパネル
としての板厚が0.5mm 以上であり、板厚が1.3mm 以下の
インナパネルアルミニウム合金板に対し、ヘム加工され
る請求項1乃至7のいずれか1項に記載の曲げ加工性に
優れたアルミニウム合金板。
8. The inner panel aluminum alloy sheet having a thickness of 0.5 mm or more as an outer panel of the aluminum alloy sheet and having a sheet thickness of 1.3 mm or less is hem-processed. An aluminum alloy plate excellent in bending workability according to the item.
【請求項9】 前記曲げ加工がフラットヘム加工である
請求項1乃至8のいずれか1項に記載の曲げ加工性に優
れたアルミニウム合金板。
9. The aluminum alloy plate excellent in bending workability according to claim 1, wherein the bending work is flat hemming.
【請求項10】 前記アルミニウム合金板が自動車外板
用である請求項1乃至9のいずれか1項に記載の曲げ加
工性に優れたアルミニウム合金板。
10. The aluminum alloy plate excellent in bending workability according to claim 1, wherein the aluminum alloy plate is for an automobile outer plate.
【請求項11】 Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.0
1 〜0.65% 、Cu:0.001〜1.0%を含むAl-Mg-Si系アルミニ
ウム合金板を、圧下率を60% 以上で冷間圧延後、必要に
より350 ℃以下の温度で焼鈍し、溶体化および焼き入れ
処理を含む調質処理し、アルミニウム合金板表面におけ
る{200 }面の積分強度の割合を50%以上、{200 }面
と{400 }面との合計積分強度の割合を60% 以上とし、
かつ導電率を43〜47IACS% の範囲とするとともに、結晶
粒径を50μm 以下とすることを特徴とする曲げ加工性に
優れたアルミニウム合金板の製造方法。
11. Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.0
1-0.65%, Cu: 0.001-1.0% Al-Mg-Si based aluminum alloy sheet is cold-rolled at a reduction rate of 60% or more, and then annealed at a temperature of 350 ° C or less, if necessary, to form a solution and After heat treatment including quenching, the ratio of the integrated strength of the {200} plane on the aluminum alloy plate surface is 50% or more, and the ratio of the total integrated strength of the {200} and {400} planes is 60% or more ,
A method for producing an aluminum alloy sheet having excellent bending workability, which has an electric conductivity of 43 to 47 IACS% and a crystal grain size of 50 μm or less.
JP2002345733A 2001-11-30 2002-11-28 Method for producing aluminum alloy sheet with excellent bending workability Expired - Fee Related JP4383039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345733A JP4383039B2 (en) 2001-11-30 2002-11-28 Method for producing aluminum alloy sheet with excellent bending workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-366700 2001-11-30
JP2001366700 2001-11-30
JP2002345733A JP4383039B2 (en) 2001-11-30 2002-11-28 Method for producing aluminum alloy sheet with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2003226926A true JP2003226926A (en) 2003-08-15
JP4383039B2 JP4383039B2 (en) 2009-12-16

Family

ID=27759551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345733A Expired - Fee Related JP4383039B2 (en) 2001-11-30 2002-11-28 Method for producing aluminum alloy sheet with excellent bending workability

Country Status (1)

Country Link
JP (1) JP4383039B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256053A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2006257506A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP2006299342A (en) * 2005-04-20 2006-11-02 Sumitomo Light Metal Ind Ltd Method for manufacturing aluminum alloy material for press forming and pressed material
WO2009041149A1 (en) * 2007-09-27 2009-04-02 Caterpillar Japan Ltd. Door panel
EP2110235A1 (en) * 2008-10-22 2009-10-21 Aleris Aluminum Duffel BVBA Al-Mg-Si alloy rolled sheet product with good hemming
WO2013118734A1 (en) * 2012-02-10 2013-08-15 株式会社神戸製鋼所 Aluminum alloy sheet for connecting components and manufacturing process therefor
JP2013177675A (en) * 2012-02-10 2013-09-09 Kobe Steel Ltd Aluminum alloy sheet for connecting components and manufacturing process therefor
JP5330590B1 (en) * 2012-12-19 2013-10-30 株式会社神戸製鋼所 Aluminum alloy plate for bus bar and manufacturing method thereof
WO2015020054A1 (en) * 2013-08-09 2015-02-12 株式会社神戸製鋼所 Electrically conductive aluminum alloy plate and method for manufacturing same
JP2017061709A (en) * 2015-09-23 2017-03-30 株式会社Uacj Aluminum alloy sheet excellent in ridging resistance and hem bendability and manufacturing method therefor
JP2017179457A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
WO2018012597A1 (en) 2016-07-14 2018-01-18 株式会社Uacj Aluminum alloy rolled material for molding processing having superior press formability, bending workability, and ridging resistance
WO2019141693A1 (en) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets with high surface quality
WO2019189517A1 (en) * 2018-03-30 2019-10-03 株式会社神戸製鋼所 Aluminum alloy sheet for automotive structural member, automotive structural member, and method for manufacturing aluminum alloy sheet for automotive structural member
DE102021106985A1 (en) 2020-09-28 2022-03-31 Ag Motors Spólka Z Ograniczona Odpowiedzialnoscia Process for the production of an Al-Mg-Si aluminum alloy with an increased titanium content

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256053A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP4588338B2 (en) * 2004-03-10 2010-12-01 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bending workability and press formability
JP2006257506A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP4495623B2 (en) * 2005-03-17 2010-07-07 株式会社神戸製鋼所 Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP2006299342A (en) * 2005-04-20 2006-11-02 Sumitomo Light Metal Ind Ltd Method for manufacturing aluminum alloy material for press forming and pressed material
WO2009041149A1 (en) * 2007-09-27 2009-04-02 Caterpillar Japan Ltd. Door panel
JPWO2009041149A1 (en) * 2007-09-27 2011-01-20 キャタピラージャパン株式会社 Door panel
US7934354B2 (en) 2007-09-27 2011-05-03 Caterpillar S.A.R.L. Door panel
EP2110235A1 (en) * 2008-10-22 2009-10-21 Aleris Aluminum Duffel BVBA Al-Mg-Si alloy rolled sheet product with good hemming
WO2013118734A1 (en) * 2012-02-10 2013-08-15 株式会社神戸製鋼所 Aluminum alloy sheet for connecting components and manufacturing process therefor
JP2013177675A (en) * 2012-02-10 2013-09-09 Kobe Steel Ltd Aluminum alloy sheet for connecting components and manufacturing process therefor
JP5330590B1 (en) * 2012-12-19 2013-10-30 株式会社神戸製鋼所 Aluminum alloy plate for bus bar and manufacturing method thereof
WO2015020054A1 (en) * 2013-08-09 2015-02-12 株式会社神戸製鋼所 Electrically conductive aluminum alloy plate and method for manufacturing same
JP2015057513A (en) * 2013-08-09 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for bus bar and manufacturing method thereof
JP2017061709A (en) * 2015-09-23 2017-03-30 株式会社Uacj Aluminum alloy sheet excellent in ridging resistance and hem bendability and manufacturing method therefor
JP2017179457A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
WO2018012597A1 (en) 2016-07-14 2018-01-18 株式会社Uacj Aluminum alloy rolled material for molding processing having superior press formability, bending workability, and ridging resistance
WO2018011245A1 (en) 2016-07-14 2018-01-18 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets
WO2018012532A1 (en) 2016-07-14 2018-01-18 株式会社Uacj Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
KR101868309B1 (en) 2016-07-14 2018-06-15 가부시키가이샤 유에이씨제이 Process for producing an aluminum alloy rolled material for forming process comprising an aluminum alloy excellent in bending workability and anti-ridging property
US11053576B2 (en) 2016-07-14 2021-07-06 Uacj Corporation Method for producing aluminum alloy rolled material for molding having excellent bending workability and ridging resistance
WO2019141693A1 (en) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets with high surface quality
WO2019189517A1 (en) * 2018-03-30 2019-10-03 株式会社神戸製鋼所 Aluminum alloy sheet for automotive structural member, automotive structural member, and method for manufacturing aluminum alloy sheet for automotive structural member
JP2019178420A (en) * 2018-03-30 2019-10-17 株式会社神戸製鋼所 Aluminum alloy sheet for automobile structure member, automobile structure member and manufacturing method of aluminum alloy sheet for automobile structure member
DE102021106985A1 (en) 2020-09-28 2022-03-31 Ag Motors Spólka Z Ograniczona Odpowiedzialnoscia Process for the production of an Al-Mg-Si aluminum alloy with an increased titanium content

Also Published As

Publication number Publication date
JP4383039B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
WO2013121876A1 (en) Aluminum alloy sheet with excellent baking-paint curability
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
CN100429330C (en) Shaping method of aluminium alloy section
JP4383039B2 (en) Method for producing aluminum alloy sheet with excellent bending workability
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2000129382A (en) Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance
JP2000144294A (en) Aluminum alloy sheet excellent in press formability and hem workability
JP6625530B2 (en) Aluminum alloy sheet for automobile body structure
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP3754624B2 (en) Method for producing automotive aluminum alloy panel material excellent in room temperature aging suppression and low temperature age hardening ability, and automotive aluminum alloy panel material
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JP4238019B2 (en) Aluminum alloy panel for flat hem processing
JP4386393B2 (en) Aluminum alloy sheet for transport aircraft with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees