JPH10306338A - Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture - Google Patents

Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture

Info

Publication number
JPH10306338A
JPH10306338A JP12495697A JP12495697A JPH10306338A JP H10306338 A JPH10306338 A JP H10306338A JP 12495697 A JP12495697 A JP 12495697A JP 12495697 A JP12495697 A JP 12495697A JP H10306338 A JPH10306338 A JP H10306338A
Authority
JP
Japan
Prior art keywords
extrusion
alloy
strength
corrosion resistance
extruded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12495697A
Other languages
Japanese (ja)
Other versions
JP3853021B2 (en
Inventor
Hideo Sano
秀男 佐野
Shinichi Tani
真一 谷
Hideo Yoshida
英雄 吉田
Tadashi Minoda
正 箕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP12495697A priority Critical patent/JP3853021B2/en
Publication of JPH10306338A publication Critical patent/JPH10306338A/en
Application granted granted Critical
Publication of JP3853021B2 publication Critical patent/JP3853021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hollow extruded material of Al-Cu-Mg-Si type aluminum alloy useful as a structural body for transport equipment, such as automobile, excellent in strength and corrosion resistance, and capable of manufacture on an actual machine base. SOLUTION: This extruded material has a composition which consists of, by weight, 0.5-1.5% Si, 0.9-1.6% Mg, 1.2-2.5% Cu, further 0.02-0.4% Cr, and the balance Al with inevitable impurities and in which conditional inequalities 3<=Si%+Mg%+Cu%<=4, Mg%<=1.7×Si%, Mg%+Si%<=2.7, 2<=Si%+Cu%<=3.5, and Cu%/2<=Mg%<=(Cu%/2)+0.6 are satisfied and the content of Mn as an impurity is limited to <=0.05%. Moreover, when a tensile test is carried out, in a direction perpendicular to the direction of extrusion, with respect to the deposit of a hollow cross section formed by mean of extrusion in which hot extrusion is performed to form a hollow cross section by using a porthole die or a spider die, breakage occurs in the part other than the deposit and the strength of the deposit is higher than that of the material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強度と耐食性に優れた
Al−Cu−Mg−Si系合金中空押出材、とくに輸送
機器の構造体として好適に使用されるAl−Cu−Mg
−Si系合金中空押出材、およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Cu-Mg-Si alloy hollow extruded material having excellent strength and corrosion resistance, and particularly to Al-Cu-Mg which is suitably used as a structure of transportation equipment.
TECHNICAL FIELD The present invention relates to a -Si alloy hollow extruded material and a method for producing the same.

【0002】[0002]

【従来の技術】自動車その他の輸送機器の構造体に要求
される性能としては、1)強度、2)耐食性、3)破壊力学特
性( 耐疲労亀裂伝播、破壊靭性など) などが挙げられ、
最近の材料の開発動向としては、強度だけでなく、材料
の製造から部材の組立、運用も含めた総合的な評価が行
われている。
2. Description of the Related Art Performances required for structures of automobiles and other transportation equipment include 1) strength, 2) corrosion resistance, and 3) fracture mechanics (e.g., fatigue crack propagation, fracture toughness, etc.).
Recent development trends of materials include not only strength, but also comprehensive evaluations from material production to assembly and operation of members.

【0003】高強度アルミニウム合金としては、従来か
らAl−Cu−Mg系(2000系) あるいはAl−Zn−
Mg−Cu系(7000系) のアルミニウム合金が知られて
いるが、これらの合金は強度面では優れているものの加
工性、耐食性が必ずしも十分ではない。また、押出性が
劣り、押出時に熱間割れが生じるため押出速度を、例え
ば1m/min以下のしなければならず、製造原価を増大させ
る原因となっている。また、ポートホールダイスやスパ
イダダイスを用いて中空形状に押し出す場合には、さら
に押出性がわるく、押出圧力の低い実機押出機による押
出成形は困難であり、そのためソリッド形状のものを組
合わせて中空状の構造材とするなど、適用範囲が限定さ
れている。
As a high-strength aluminum alloy, Al-Cu-Mg (2000) or Al-Zn-
Mg-Cu-based (7000-based) aluminum alloys are known, but these alloys are excellent in strength but not necessarily sufficient in workability and corrosion resistance. In addition, extrudability is poor, and hot cracking occurs during extrusion, so that the extrusion speed must be set to, for example, 1 m / min or less, which causes an increase in manufacturing cost. Also, when extruding into a hollow shape using a porthole die or a spider die, the extrudability is further deteriorated, and it is difficult to extrude with a real extruder having a low extrusion pressure, and therefore a combination of solid shapes is used to form a hollow shape. The range of application is limited, for example, in the form of a structural material.

【0004】一方、Al−Mg−Si系(6000系) のア
ルミニウム合金は、一般的に、強度面では上記高強度ア
ルミニウム合金に劣るが、耐食性や押出加工性の面で優
れており、速い速度での押出加工が可能で、製造原価も
低減でき、ポートホールダイスやスパイダダイスを用い
て中空形状に押出加工することも一般的に行われてい
る。このことから6000系合金と同等の押出加工性をそな
えた高強度アルミニウム合金を得るために、6000系アル
ミニウム合金の強度特性を改良して2000系、7000系合金
と同等の強度を得ようとする試みが行われており、従来
の6061合金より高強度が得られる6013合金、6056合金、
6082合金などが開発されている。
[0004] On the other hand, Al-Mg-Si (6000) aluminum alloys are generally inferior in strength to the above-mentioned high-strength aluminum alloys, but are superior in corrosion resistance and extrudability, and have a high speed. It is possible to reduce the production cost, and it is also common to extrude into a hollow shape using a porthole die or a spider die. From this, in order to obtain a high-strength aluminum alloy with the same extrudability as the 6000 series alloy, we will improve the strength characteristics of the 6000 series aluminum alloy to obtain the same strength as the 2000 series and 7000 series alloys Attempts have been made to obtain higher strength than the conventional 6061 alloy 6013 alloy, 6056 alloy,
Alloys such as 6082 have been developed.

【0005】自動車、車両、航空機などの輸送機器の構
造体は、優れた強度特性を要求されることは勿論である
が、使用中に厳しい腐食環境に曝されることがあるため
耐食性に優れ腐食環境下で疲労破壊などを生じないもの
でなければならない。従って構造体用材料は、これらの
特性をバランス良く具備していることが必要である。ま
た、これらの特性については、技術の高度化により僅か
の差異でも無視できない重要性を持つ場合もあり、いず
れかの特性が少しでも劣ると材料としての総合的な評価
が得られない。このような観点から上記の6000系アルミ
ニウム合金をみた場合、とくに輸送機器用構造体の材料
として適用する場合、必ずしも満足すべき性能をそなえ
ているとはいえない。
[0005] The structures of transportation equipment such as automobiles, vehicles, and aircrafts are required to have excellent strength properties, but they are exposed to severe corrosive environments during use, and therefore have excellent corrosion resistance. It must not cause fatigue failure in the environment. Therefore, it is necessary that the structural body material has these characteristics in a well-balanced manner. In addition, with respect to these characteristics, even a slight difference may have considerable importance due to the advancement of technology, and if any of the characteristics is slightly inferior, a comprehensive evaluation as a material cannot be obtained. From such a viewpoint, when the above-mentioned 6000 series aluminum alloy is viewed, particularly when it is applied as a material for a structure for transportation equipment, it cannot be said that it has necessarily satisfactory performance.

【0006】発明者の1人は、本発明の発明者以外の発
明者と共同で、先に、6000系アルミニウム合金の特性の
改良を目的として、Si:0.5〜1.5 %、Mg:0.9〜1.5
%、Cu:1.2〜2.4 %で、条件式、3 ≦Si%+Mg%
+Cu%≦4 、Mg%≦1.7×Si%、Cu%/2≦Mg
%≦(Cu%/2)+0.6 を満足するSi、MgおよびC
uを含有し、さらにCr:0.02 〜0.4 %を含み、且つ不
純物としてのMnを0.05%以下の制限し、残部アルミニ
ウムと不可避的不純物からなる組成を有し、輸送機器の
外板や構造材として好適な耐食性に優れた高強度アルミ
ニウム合金を提案した。( 特開平8-269608号公報)
One of the inventors, in cooperation with the inventor other than the inventor of the present invention, firstly, in order to improve the properties of the 6000 series aluminum alloy, Si: 0.5-1.5%, Mg: 0.9-1.5%.
%, Cu: 1.2 to 2.4%, conditional expression, 3 ≦ Si% + Mg%
+ Cu% ≦ 4, Mg% ≦ 1.7 × Si%, Cu% / 2 ≦ Mg
%, (Cu% / 2) +0.6 Si, Mg and C
u, further contains Cr: 0.02 to 0.4%, and Mn as an impurity is limited to 0.05% or less, and has a composition consisting of aluminum and unavoidable impurities. A high-strength aluminum alloy with good corrosion resistance was proposed. (Japanese Unexamined Patent Publication No. 8-269608)

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記提案さ
れた高強度アルミニウム合金の押出特性について実験、
検討を加えた結果、当該アルミニウム合金の成分組成を
さらに特定し、好ましくは特定の押出条件を適用するこ
とにより、2000系合金、7000系合金では困難であった中
空押出材の製造を容易に行うことができることを見出し
たことに基づいてなされたものであり、その目的は、20
00系合金、7000系合金と同等の強度をそなえ、6000系合
金と同等の耐食性を有し、実機ベース、実生産ベースの
速度での製造を安定して行うことができる強度と耐食性
に優れたAl−Cu−Mg−Si系合金中空押出材およ
びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to an experiment on the extrusion characteristics of the high strength aluminum alloy proposed above.
As a result of the examination, by further specifying the component composition of the aluminum alloy, and preferably by applying specific extrusion conditions, it is possible to easily manufacture a hollow extruded material that was difficult with the 2000 series alloy and the 7000 series alloy. It has been made based on the finding that
It has the same strength as the 00 series alloy and the 7000 series alloy, has the same corrosion resistance as the 6000 series alloy, and has excellent strength and corrosion resistance that enables stable production at actual machine base and actual production base speeds. An object of the present invention is to provide an Al-Cu-Mg-Si alloy hollow extruded material and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による強度と耐食性に優れたAl−Cu−M
g−Si系合金中空材は、Si:0.5〜1.5 %、Mg:0.9
〜1.6 %、Cu:1.2〜2.5 %で、条件式、3 ≦Si%+
Mg%+Cu%≦4 、Mg%≦1.7 ×Si%、Mg%+
Si%≦2.7 、2 ≦Si%+Cu%≦3.5 、Cu%/2≦
Mg%≦(Cu%/2)+0.6 を満足するSi、Mgおよ
びCuを含有し、さらにCr:0.02 〜0.4 %を含み、且
つ不純物としてのMnを0.05%以下の制限し、残部アル
ミニウムと不可避的不純物からなる組成を有する中空断
面の押出材であって、押出により形成される中空断面内
の溶着部について押出方向と直角方向に引張試験を行っ
た場合に溶着部以外の部分で破断することを第1の特徴
とし、上記のアルミニウム合金が、さらにZn:0.03 〜
2.0 %を含有することを第2の特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an Al-Cu-M having excellent strength and corrosion resistance.
The g-Si alloy hollow material has a Si content of 0.5 to 1.5% and a Mg content of 0.9.
-1.6%, Cu: 1.2-2.5%, conditional expression, 3 ≦ Si% +
Mg% + Cu% ≦ 4, Mg% ≦ 1.7 × Si%, Mg% +
Si% ≦ 2.7, 2 ≦ Si% + Cu% ≦ 3.5, Cu% / 2 ≦
It contains Si, Mg, and Cu satisfying Mg% ≦ (Cu% / 2) +0.6, further contains Cr: 0.02 to 0.4%, and Mn as an impurity is limited to 0.05% or less. An extruded material having a hollow cross-section having an unavoidable impurity composition, which breaks at a portion other than the welded portion when a tensile test is performed on a welded portion in the hollow cross-section formed by extrusion in a direction perpendicular to the extrusion direction. The first feature is that the above aluminum alloy further comprises Zn: 0.03
A second feature is that it contains 2.0%.

【0009】本発明による強度と耐食性に優れたAl−
Cu−Mg−Si系合金中空押出材の製造方法は、上記
の組成を有するアルミニウム合金のビレットを、500 ℃
以上融点未満の温度で均質化処理した後、押出時のビレ
ット温度をT( ℃) 、押出速度をV(m/min) とした場
合、押出時のビレット温度Tが350 〜550 ℃の範囲にお
いて、V≦(1/12)×T−31およびV≦-(1/9)×T+60の
条件を満足する押出速度で、ポートホールダイスまたは
スパイダダイスを用いて中空断面に熱間押出成形を行う
ことを第1の特徴とし、熱間押出成形後、5 ℃/s以上の
昇温速度で500 〜580 ℃の温度域に加熱、保持する溶体
化処理を行い、ついで10℃/s以上の冷却速度で100 ℃以
下の温度まで冷却する焼入処理を行った後、170 〜200
℃で2 〜24h の熱処理を施すことを第2の特徴とする。
According to the present invention, Al- is excellent in strength and corrosion resistance.
The method for producing a hollow extruded material of a Cu—Mg—Si alloy is as follows.
After homogenizing at a temperature lower than the melting point, if the billet temperature during extrusion is T (° C.) and the extrusion speed is V (m / min), the billet temperature T during extrusion is in the range of 350 to 550 ° C. Hot extrusion is performed on a hollow section using a porthole die or a spider die at an extrusion speed satisfying the conditions of V ≦ (1/12) × T−31 and V ≦ − (1/9) × T + 60. The first feature is that after hot extrusion, a solution treatment is performed by heating and holding at a temperature rising rate of 5 ° C / s or more to a temperature range of 500 to 580 ° C, and then cooling at 10 ° C / s or more. After quenching to cool to a temperature of 100 ° C or less at a speed, 170-200
A second feature is that a heat treatment is performed at 2 ° C. for 2 to 24 hours.

【0010】また、上記の組成を有するアルミニウム合
金のビレットを500 ℃以上融点未満の温度で均質化処理
した後、押出時のビレット温度をT( ℃) 、押出速度を
V(m/min) とした場合、押出時のビレット温度Tを350
〜550 ℃の温度範囲として、V≦(1/12)×T−31および
V≦-(1/9)×T+60の条件を満足する押出速度で、ポー
トホールダイスまたはスパイダダイスを用いて中空断面
に熱間押出成形し、押出し直後の押出材を10℃/s以上の
冷却速度で100 ℃以下の温度まで冷却する焼入処理を行
った後、170 〜200 ℃で2 〜24h の熱処理を施すことを
第3の特徴とする。
After the billet of the aluminum alloy having the above composition is homogenized at a temperature of 500 ° C. or more and less than the melting point, the billet temperature during extrusion is T (° C.), and the extrusion speed is V (m / min). The billet temperature T at the time of extrusion was 350
Hollow cross section using a porthole die or a spider die at an extrusion speed satisfying the conditions of V ≦ (1/12) × T−31 and V ≦ − (1/9) × T + 60 in a temperature range of up to 550 ° C. After hot-extrusion molding, the extruded material immediately after extrusion is quenched at a cooling rate of 10 ° C / s or more to a temperature of 100 ° C or less, and then heat-treated at 170 to 200 ° C for 2 to 24 hours. This is the third feature.

【0011】本発明のアルミニウム合金における各成分
添加の意義および限定理由について説明すると、Siは
Mgと共存して微細な金属間化合物Mg2 Siを形成し
て合金の強度を高める。Siの含有量が0.5 %未満では
十分な強度が得られず、1.5%を越えて含有すると合金
の耐食性が低下する。従ってSiの含有範囲は0.5 〜1.
5 %が好ましい。より好ましくは0.7 〜1.2 %の範囲と
する。
The significance of the addition of each component in the aluminum alloy of the present invention and the reason for the limitation will be described. Si coexists with Mg to form a fine intermetallic compound Mg 2 Si to increase the strength of the alloy. If the content of Si is less than 0.5%, sufficient strength cannot be obtained, and if the content exceeds 1.5%, the corrosion resistance of the alloy decreases. Therefore, the content range of Si is 0.5 to 1.
5% is preferred. More preferably, it is in the range of 0.7 to 1.2%.

【0012】MgはSiと共存してMg2 Siを析出さ
せ、またCuと共存して化合物CuMgAl2 を微細析
出させることにより合金の強度を向上させる。Mgの含
有量が0.9 %未満では十分な効果が得られず、1.6 %を
越えると耐食性が低下する。従ってMgの含有範囲は0.
9 〜1.6 %が好ましい。より好ましくは1.0 〜1.2 %の
範囲とする。
Mg coexists with Si to precipitate Mg 2 Si, and coexists with Cu to finely precipitate the compound CuMgAl 2 to improve the strength of the alloy. If the content of Mg is less than 0.9%, a sufficient effect cannot be obtained, and if it exceeds 1.6%, the corrosion resistance decreases. Therefore, the content range of Mg is 0.
9-1.6% is preferred. More preferably, it is in the range of 1.0 to 1.2%.

【0013】CuはSi、Mgと同様、合金の強度向上
に寄与する元素である。含有量が1.2 %未満では効果が
十分でなく、2.5 %を越えて含有すると合金の耐食性が
低下し、押出時の変形抵抗が高くなり中空押出において
押し詰まりが生じ易い。従ってCuの含有範囲は1.2 〜
2.5 %が好ましい。より好ましくは1.5 〜2.0 %の範囲
とする。Crは、合金の組織を微細化して成形性を向上
させるとともに、耐食性向上に寄与する。好ましい含有
範囲は0.02〜0.4 %で、0.02%未満ではその効果が十分
でなく、0.4 %を越えると粗大な金属間化合物が形成し
易くなり成形性が低下する。
Cu, like Si and Mg, is an element that contributes to improving the strength of the alloy. If the content is less than 1.2%, the effect is not sufficient. If the content exceeds 2.5%, the corrosion resistance of the alloy is reduced, the deformation resistance at the time of extrusion is increased, and compaction tends to occur in hollow extrusion. Therefore, the content range of Cu is 1.2 to
2.5% is preferred. More preferably, it is in the range of 1.5 to 2.0%. Cr contributes to improving the formability by making the structure of the alloy finer and improving the corrosion resistance. A preferable content range is 0.02 to 0.4%. If the content is less than 0.02%, the effect is not sufficient. If the content exceeds 0.4%, a coarse intermetallic compound is easily formed and the moldability is reduced.

【0014】Mnは、結晶粒を微細にして合金強度を向
上させるが、Mn系の金属間化合物が生成し、このMn
系化合物が孔食の起点となって腐食を促進するから、本
発明においては、Mnを0.05%以下、好ましくは0.02%
以下、さらに好ましくは0.01%以下に制限することが重
要である。
Mn refines the crystal grains to improve the alloy strength, but forms an Mn-based intermetallic compound.
In the present invention, Mn is 0.05% or less, preferably 0.02%
It is important to limit the content to 0.01% or less, more preferably.

【0015】本発明は、上記のように、Si、Mg、C
uを必須成分として含有するものであるが、これらの成
分については、条件式、3 ≦Si%+Mg%+Cu%≦
4 、Mg%≦1.7 ×Si%、Mg%+Si%≦2.7 、2
≦Si%+Cu%≦3.5 、Cu%/2≦Mg%≦(Cu%
/2)+0.6 を満足することが必須の要件となり、この条
件で合金材料の耐食性を低下させることなく、合金に強
度、中空押出材の製造を可能とする押出成形性を与える
金属間化合物の好ましい分散状態が得られる。Si、M
g、Cuの合計含有量が3 %未満では化合物の好ましい
分散が得難く、4 %を越えると合金の耐食性を劣化させ
る。また、MgとSiの量的関係をMg%≦1.7 ×Si
%、Mg%+Si%≦2.7 、SiとCuの量的関係を2
≦Si%+Cu%≦3.5 、MgとCuの量的関係をCu
%/2≦Mg≦(Cu%/2) +0.6とすることによって、
金属間化合物の生成量、分布状態が制御され、合金にバ
ランスの良い強度特性、押出加工性、耐食性を与えるこ
とができる。
According to the present invention, as described above, Si, Mg, C
u as an essential component, and for these components, a conditional expression, 3 ≦ Si% + Mg% + Cu% ≦
4, Mg% ≦ 1.7 × Si%, Mg% + Si% ≦ 2.7, 2
≦ Si% + Cu% ≦ 3.5, Cu% / 2 ≦ Mg% ≦ (Cu%
/ 2) +0.6 is an essential requirement. Under these conditions, an intermetallic compound that gives the alloy strength and extrudability that enables the production of hollow extruded materials without lowering the corrosion resistance of the alloy material. Is obtained. Si, M
If the total content of g and Cu is less than 3%, it is difficult to obtain a desirable dispersion of the compound, and if it exceeds 4%, the corrosion resistance of the alloy is deteriorated. Further, the quantitative relationship between Mg and Si is expressed as Mg% ≦ 1.7 × Si
%, Mg% + Si% ≦ 2.7, the quantitative relationship between Si and Cu is 2
≦ Si% + Cu% ≦ 3.5, the quantitative relationship between Mg and Cu is Cu
% / 2 ≦ Mg ≦ (Cu% / 2) +0.6,
The production amount and distribution state of the intermetallic compound are controlled, so that the alloy can be provided with well-balanced strength characteristics, extrudability, and corrosion resistance.

【0016】選択成分として添加するZnは、金属間化
合物を形成して、合金の結晶粒度を微細にするとともに
合金の強度を向上させる。好ましい添加量は0.03〜2.0
%である。Znの添加量が下限未満ではその効果が小さ
く、上限をこえて添加されると、粗大な金属間化合物の
生成が増加し、成形性、耐食性が劣化する。なお、本発
明においては、通常のアルミニウム合金と同様、鋳造組
織を微細化して鋳塊割れを防ぎ、成形性を向上させるた
めに、0.005 〜0.1 %のTi、1 〜50ppm のBを添加し
ても、本発明の特性に影響することはない。
[0016] Zn added as a selective component forms an intermetallic compound, which refines the crystal grain size of the alloy and improves the strength of the alloy. Preferred addition amount is 0.03 to 2.0
%. If the amount of Zn is less than the lower limit, the effect is small, and if the amount exceeds the upper limit, the formation of coarse intermetallic compounds increases, and the moldability and corrosion resistance deteriorate. In the present invention, 0.005 to 0.1% of Ti and 1 to 50ppm of B are added to refine the casting structure to prevent ingot cracking and improve the formability, similarly to a normal aluminum alloy. Does not affect the properties of the present invention.

【0017】[0017]

【発明の実施の形態】本発明のアルミニウム合金中空押
出材の好ましい製造方法について説明すると、上記組成
のアルミニウム合金の溶湯を、例えば半連続鋳造により
造塊し、得られた押出用ビレットを500 ℃以上融点未満
の温度で均質化処理する。均質化処理温度が500 ℃未満
では、鋳塊偏析の除去が十分でなく、強度に寄与するM
2 Si化合物やCuの固溶が不十分となり、強度およ
び伸びが低くなる。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred method for producing an aluminum alloy hollow extruded material of the present invention will be described. A molten aluminum alloy having the above composition is formed by, for example, semi-continuous casting, and the obtained extruded billet is heated to 500 ° C. Homogenize at a temperature not less than the melting point. If the homogenization treatment temperature is lower than 500 ° C., ingot segregation is not sufficiently removed, and M
The solid solution of the g 2 Si compound and Cu becomes insufficient, and the strength and elongation decrease.

【0018】ついで、押出時のビレット温度T( ℃) を
350 〜550 ℃として、V≦(1/12)×T−31およびV≦-
(1/9)×T+60(但し、V:押出速度(m/min)) の条件
を満足する押出速度で、ポートホールダイスまたはスパ
イダダイスを用いて中空断面に熱間押出成形を行う。押
出速度が上記の条件を満足しない場合は、押出機の圧力
限界に達して押し詰まりが生じたり、押出材に割れが生
じ易くなる。
Next, the billet temperature T (° C.) at the time of extrusion is
At 350 to 550 ° C, V ≦ (1/12) × T−31 and V ≦ −
Hot extrusion molding is performed on a hollow section using a porthole die or a spider die at an extrusion speed that satisfies the condition of (1/9) × T + 60 (V: extrusion speed (m / min)). If the extrusion speed does not satisfy the above conditions, the extruder reaches the pressure limit and is likely to be clogged or the extruded material is easily cracked.

【0019】熱間押出成形後、5 ℃/s以上の昇温速度で
500 〜580 ℃の温度域に加熱、保持する溶体化処理を行
い、ついで10℃/s以上の冷却速度で100 ℃以下の温度ま
で冷却する焼入処理を行った後、170 〜200 ℃で2 〜24
h の熱処理を施す。溶体化処理における昇温速度が5 ℃
/s未満では結晶粒が粗大化し易くT6処理後の伸びが低
下する。保持温度が500 ℃未満では、析出物の固溶が不
十分となり強度および伸びが低くなる。580 ℃を越える
と、局部的な共晶融解により伸びが低下する。焼入れ処
理時の冷却速度が10℃/s未満では、化合物が望ましくな
い分布状態に析出して延性が低下し、耐食性、強度、伸
びを害する。
After hot extrusion, at a heating rate of 5 ° C./s or more
A solution treatment is carried out by heating and holding in a temperature range of 500 to 580 ° C, followed by a quenching process of cooling at a cooling rate of 10 ° C / s or more to a temperature of 100 ° C or less, ~twenty four
heat treatment of h. 5 ° C heating rate during solution treatment
If it is less than / s, the crystal grains are likely to be coarse and the elongation after T6 treatment is reduced. If the holding temperature is less than 500 ° C., the solid solution of the precipitate is insufficient, and the strength and elongation are reduced. If the temperature exceeds 580 ° C, elongation decreases due to local eutectic melting. If the cooling rate during the quenching treatment is less than 10 ° C./s, the compound precipitates in an undesired distribution state and the ductility is reduced, thereby impairing the corrosion resistance, strength and elongation.

【0020】本発明のアルミニウム合金材料は、焼入れ
後室温時効した状態(T4調質)でも優れた伸びをそな
えているが、好ましくは、焼入れ後に引張矯正を行い、
170〜200 ℃で2 〜24h の熱処理を施す。熱処理温度が1
70 ℃未満では、所望の性能を得るために長時間の熱処
理が必要となるから工業生産上好ましくなく、200 ℃を
越える温度での熱処理は強度を低下させる。熱処理時間
が2h未満では十分な強度が得られず、24hを越えると強
度が低下し始める。
Although the aluminum alloy material of the present invention has excellent elongation even after quenching and aging at room temperature (T4 tempering), it is preferable to perform tensile straightening after quenching,
Heat treatment at 170-200 ° C for 2-24h. Heat treatment temperature is 1
If the temperature is lower than 70 ° C., heat treatment for a long time is required to obtain the desired performance, which is not preferable for industrial production. Heat treatment at a temperature exceeding 200 ° C. lowers the strength. If the heat treatment time is less than 2 hours, sufficient strength cannot be obtained, and if it exceeds 24 hours, the strength starts to decrease.

【0021】本発明においては、また、上記の組成を有
するアルミニウム合金のビレットを500 ℃以上融点未満
の温度で均質化処理した後、押出時のビレット温度T
(℃)を350 〜550 ℃の範囲の温度とし、V≦(1/12)×
T−31およびV≦-(1/9)×T+60の条件を満足する押出
速度(m/min)で、ポートホールダイスまたはスパイダダ
イスを用いて中空断面に熱間押出成形し、ダイクエンチ
と適用して押出し直後の中空押出材を10℃/s以上の冷却
速度で100 ℃以下の温度まで冷却する焼入処理を行った
後、170 〜200 ℃で2 〜24h の熱処理を施すことによっ
ても本発明所期の特性を有する中空押出材を得ることが
できる。
In the present invention, after the billet of the aluminum alloy having the above composition is homogenized at a temperature of 500 ° C. or more and less than the melting point, the billet temperature T at the time of extrusion is determined.
(° C) is a temperature in the range of 350 to 550 ° C, and V ≦ (1/12) ×
At a extrusion speed (m / min) that satisfies the condition of T-31 and V ≦-(1/9) × T + 60, it is hot-extruded into a hollow section using a porthole die or a spider die, and applied with a die quench. The present invention can also be carried out by performing a quenching treatment of cooling the hollow extruded material immediately after extrusion to a temperature of 100 ° C. or less at a cooling rate of 10 ° C./s or more and then performing a heat treatment at 170 to 200 ° C. for 2 to 24 hours. A hollow extruded material having the desired properties can be obtained.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 半連続鋳造により表1に示すアルミニウム合金のビレッ
ト( 径:254mm) を製造し、このビレットを525 ℃の温度
で8hの均質化処理した後、ビレットの加熱温度を480
℃、押出速度を3m/minとして、ポートホールダイスを用
いて中空断面形状に熱間押出成形( 押出時の最高荷重26
MN、押出比55) を行った。押出断面の形状は、断面
「日」字形とし、幅140mm 、高さ75mm、肉厚2mm 、2つ
の中空部の内側寸法はそれぞれ幅67mm×高さ71mm、コー
ナー部のRは2mm のものとした。この中空押出材には、
上記2つの角筒状中空部の各壁部の中央部(それぞれ4
か所)に形成される。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A billet (diameter: 254 mm) of an aluminum alloy shown in Table 1 was produced by semi-continuous casting, and the billet was homogenized at 525 ° C. for 8 hours.
° C, extrusion speed of 3m / min, hot extrusion molding into a hollow cross-sectional shape using a porthole die (maximum load during extrusion is 26
MN, extrusion ratio 55). The shape of the extruded cross section was a “Japanese” cross section, width 140 mm, height 75 mm, wall thickness 2 mm, the inside dimensions of the two hollows were 67 mm wide × 71 mm high, and the R of the corner was 2 mm. . In this hollow extruded material,
The central portion of each wall of the two rectangular tubular hollow portions (4
Places).

【0023】ついで、中空押出材を530 ℃の温度で10分
の溶体化処理後、水冷により焼入処理し、さらに180 ℃
で6hの焼戻しのための熱処理を行いT6調質材とした。
得られた中空押出材について、引張試験を行って引張性
能( 引張強さ( σB ) 、耐力( σ0. 2)、伸び( δ) )を
測定し、粒界腐食試験を行った。粒界腐食試験はJISW 1
103に従い、中空押出材を洗浄後、NaCl57g と30%
2 2 を水で1lに調整した30℃の試験液に6 時間浸
漬した後、腐食減量を測定した。試験結果を表2に示
す。
Next, the hollow extruded material was subjected to a solution treatment at a temperature of 530 ° C. for 10 minutes, followed by a quenching treatment by water cooling, and a further 180 ° C.
For 6 hours to obtain a T6 tempered material.
The resulting hollow extrusions, tensile test performed Tensile Properties (Tensile Strength (sigma B), yield strength (sigma 0. 2), elongation ([delta])) was measured and subjected to intergranular corrosion testing. JISW 1 for intergranular corrosion test
After washing the hollow extruded material according to 103, 57 g of NaCl and 30%
After immersion for 6 hours in a test solution at 30 ° C. adjusted to 1 liter with H 2 O 2 with water, the corrosion loss was measured. Table 2 shows the test results.

【0024】表2にみられるように、本発明に従う試験
材はいずれも、優れた引張性能および耐食性を示す。中
空断面内の溶着部(前記角筒状中空部の各壁部)には溶
着線が観察されず良好な溶着状態を示していた。溶着部
について押出方向と直角方向の引張試験を行ったが、溶
着部で破断することがなく、溶着部は材料の強度より高
い優れた強度を有していた。
As shown in Table 2, all the test materials according to the present invention show excellent tensile performance and corrosion resistance. No welding line was observed at the welded portion (each wall of the rectangular tubular hollow portion) in the hollow cross section, indicating a good welded state. A tensile test was performed on the welded portion in a direction perpendicular to the extrusion direction, but no breakage occurred at the welded portion, and the welded portion had excellent strength higher than the strength of the material.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】比較例1 実施例1と同一の工程、条件に従い、均質化処理後、ポ
ートホールダイスを用い、2024合金、2014合金および70
75合金について中空断面形状への熱間押出を行ったが、
押し詰まりが生じ、中空押出材を得ることができなかっ
た。
Comparative Example 1 According to the same steps and conditions as in Example 1, after homogenization treatment, a 2024 alloy, a 2014 alloy and 70
Hot extrusion into a hollow cross-sectional shape was performed for 75 alloy,
Clogging occurred and a hollow extruded material could not be obtained.

【0028】比較例2 実施例1と同一の工程、条件に従い、表3に示す組成の
アルミニウム合金について中空押出材を製造し、実施例
1と同様にして引張試験および粒界腐食試験を行った。
結果を表4に示す。なお、表3において、本発明の条件
を外れるものには下線を付した。
Comparative Example 2 A hollow extruded material was manufactured from an aluminum alloy having the composition shown in Table 3 according to the same process and conditions as in Example 1, and a tensile test and an intergranular corrosion test were performed in the same manner as in Example 1. .
Table 4 shows the results. In Table 3, those outside the conditions of the present invention are underlined.

【0029】[0029]

【表3】 《表注》合金No.5はSi+Mg+Cu>4 、合金No.6はSi+Mg+Cu
<3 合金No.7はMg>1.7 ×Si、合金No.8はCu/2<Mg、合金N
o.9はMg>(Cu/2)+0.6
[Table 3] << Table Note >> Alloy No.5 is Si + Mg + Cu> 4, Alloy No.6 is Si + Mg + Cu
<3 Alloy No.7 is Mg> 1.7 × Si, Alloy No.8 is Cu / 2 <Mg, Alloy N
o.9 is Mg> (Cu / 2) +0.6

【0030】[0030]

【表4】 [Table 4]

【0031】表4にみられるように、本発明の合金組成
の限界および条件式を外れるものは、強度、成形性、あ
るいは耐食性が劣っている。合金材No.5は、Si、M
g、Cuの合計量が4 を越えるため、耐食性がわるい。
合金材No.6はSi、Mg、Cuの合計量が3 未満のため
強度が低い。合金材No.7は、MgとSiの関係式を満足
しないため、また合金材No.8〜9 はMgとCuとの関係
式を満足しないため耐食性が劣る。試験材No.10 はCu
量が少なく、合金材No.11 はMn量が限界値を越え、試
験材No.12 はZnを多く含有するため、いずれも耐食性
が劣っている。
As can be seen from Table 4, those which deviate from the limits and the conditional expressions of the alloy composition of the present invention are inferior in strength, formability or corrosion resistance. Alloy No.5 is Si, M
Since the total amount of g and Cu exceeds 4, the corrosion resistance is poor.
Alloy material No. 6 has low strength because the total amount of Si, Mg and Cu is less than 3. Alloy material No. 7 does not satisfy the relational expression between Mg and Si, and alloy materials Nos. 8 and 9 do not satisfy the relational expression between Mg and Cu, so that the corrosion resistance is poor. Test material No.10 is Cu
Since the alloy material No. 11 has a small amount and the Mn amount exceeds the limit value, and the test material No. 12 contains a large amount of Zn, all of them have poor corrosion resistance.

【0032】[0032]

【発明の効果】以上のとおり、本発明によれば、強度、
耐食性に優れ、実機ベースでの製造が可能なAl−Cu
−Mg−Si系のアルミニウム合金中空押出材およびそ
の製造方法が提供される。この中空押出材は、自動車な
ど輸送機器の構造体として有用である。
As described above, according to the present invention, the strength,
Al-Cu which has excellent corrosion resistance and can be manufactured on a real machine basis
Abstract: Provided is a hollow extruded material of an Mg-Si-based aluminum alloy and a method for producing the same. This hollow extruded material is useful as a structure of a transportation device such as an automobile.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 640 C22F 1/00 640A 683 683 691 691B 691C 691A 692 692A 692B 694 694B (72)発明者 箕田 正 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 640 C22F 1/00 640A 683 683 691 691B 691C 691A 692 692A 692B 694 694B (72) Inventor Tadashi Minoda Minato-ku, Tokyo 5-11-3 Shimbashi Sumitomo Light Metal Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%(以下同じ)で、Si:0.5〜1.5
%、Mg:0.9〜1.6%、Cu:1.2〜2.5 %で、条件式、3
≦Si%+Mg%+Cu%≦4 、Mg%≦1.7 ×Si
%、Mg%+Si%≦2.7 、2 ≦Si%+Cu%≦3.5
、Cu%/2≦Mg%≦(Cu%/2)+0.6 を満足する
Si、MgおよびCuを含有し、さらにCr:0.02 〜0.
4 %を含み、且つ不純物としてのMnを0.05%以下の制
限し、残部アルミニウムと不可避的不純物からなる組成
を有する中空断面の押出材であって、押出により形成さ
れる中空断面内の溶着部について押出方向と直角方向に
引張試験を行った場合に溶着部以外の部分で破断するこ
とを特徴とする強度と耐食性に優れたAl−Cu−Mg
−Si系合金中空押出材。
(1) Si: 0.5 to 1.5% by weight (the same applies hereinafter)
%, Mg: 0.9 to 1.6%, Cu: 1.2 to 2.5%,
≦ Si% + Mg% + Cu% ≦ 4, Mg% ≦ 1.7 × Si
%, Mg% + Si% ≦ 2.7, 2 ≦ Si% + Cu% ≦ 3.5
, Cu% / 2 ≦ Mg% ≦ (Cu% / 2) +0.6, and further contains Cr: 0.02 to 0.2%.
Extruded material with a hollow cross-section containing 4% and having an Mn content as an impurity of 0.05% or less, and having a balance of aluminum and unavoidable impurities. Al-Cu-Mg excellent in strength and corrosion resistance characterized in that when subjected to a tensile test in the direction perpendicular to the extrusion direction, it breaks at parts other than the welded part
-Si-based alloy hollow extruded material.
【請求項2】 アルミニウム合金が、さらにZn:0.03
〜2.0 %を含有することを特徴とする請求項1記載の強
度と耐食性に優れたAl−Cu−Mg−Si系合金中空
押出材。
2. An aluminum alloy further comprising Zn: 0.03
The Al-Cu-Mg-Si alloy hollow extruded material according to claim 1, wherein the Al-Cu-Mg-Si alloy is excellent in strength and corrosion resistance.
【請求項3】 請求項1または請求項2記載の組成を有
するアルミニウム合金のビレットを500 ℃以上融点未満
の温度で均質化処理した後、押出時のビレット温度をT
( ℃) 、押出速度をV(m/min) とした場合、押出時のビ
レット温度Tが350 〜550 ℃の範囲において、V≦(1/1
2)×T−31およびV≦-(1/9)×T+60の条件を満足する
押出速度で、ポートホールダイスまたはスパイダダイス
を用いて中空断面に熱間押出成形を行うことを特徴とす
る強度と耐食性に優れたAl−Cu−Mg−Si系合金
中空押出材の製造方法。
3. A billet of an aluminum alloy having a composition according to claim 1 or 2 is homogenized at a temperature of 500 ° C. or more and less than a melting point, and then the billet temperature during extrusion is set to T.
(° C.), when the extrusion speed is V (m / min), V ≦ (1/1) when the billet temperature T during the extrusion is in the range of 350 to 550 ° C.
2) Strength characterized by performing hot extrusion molding on a hollow section using a porthole die or spider die at an extrusion speed satisfying the conditions of × T-31 and V ≦-(1/9) × T + 60. And a method for producing an Al-Cu-Mg-Si alloy hollow extruded material having excellent corrosion resistance.
【請求項4】 熱間押出成形後、5 ℃/s以上の昇温速度
で500 〜580 ℃の温度域に加熱、保持する溶体化処理を
行い、ついで10℃/s以上の冷却速度で100 ℃以下の温度
まで冷却する焼入処理を行った後、170 〜200 ℃で2 〜
24h の熱処理を施すことを特徴とする請求項3記載の強
度と耐食性に優れたAl−Cu−Mg−Si系合金中空
押出材の製造方法。
4. After the hot extrusion, a solution treatment is performed in which the solution is heated and held in a temperature range of 500 to 580 ° C. at a rate of 5 ° C./s or more, and then cooled at a rate of 10 ° C./s or more. After quenching to cool down to below
The method for producing an Al-Cu-Mg-Si alloy hollow extruded material having excellent strength and corrosion resistance according to claim 3, wherein the heat treatment is performed for 24 hours.
【請求項5】 請求項1または請求項2記載の組成を有
するアルミニウム合金のビレットを500 ℃以上融点未満
の温度で均質化処理した後、押出時のビレット温度をT
( ℃) 、押出速度をV(m/min) とした場合、押出時のビ
レット温度Tが350 〜550 ℃の範囲において、V≦(1/1
2)×T−31およびV≦-(1/9)×T+60の条件を満足する
押出速度で、ポートホールダイスまたはスパイダダイス
を用いて中空断面に熱間押出成形し、押出し直後の押出
材を10℃/s以上の冷却速度で100 ℃以下の温度まで冷却
する焼入処理を行った後、170 〜200 ℃で2 〜24h の熱
処理を施すことを特徴とする強度と耐食性に優れたAl
−Cu−Mg−Si系合金中空押出材の製造方法。
5. A billet of an aluminum alloy having the composition described in claim 1 or 2 is homogenized at a temperature of 500 ° C. or more and less than a melting point, and then the billet temperature during extrusion is set to T.
(° C.), when the extrusion speed is V (m / min), V ≦ (1/1) when the billet temperature T during the extrusion is in the range of 350 to 550 ° C.
2) Hot extrusion molding into a hollow section using a porthole die or a spider die at an extrusion speed that satisfies the conditions of × T-31 and V ≦ − (1/9) × T + 60. Al with excellent strength and corrosion resistance characterized by performing a quenching treatment at a cooling rate of 10 ° C / s or more to a temperature of 100 ° C or less, and then performing a heat treatment at 170 to 200 ° C for 2 to 24 hours.
-A method for producing a Cu-Mg-Si alloy hollow extruded material.
JP12495697A 1997-04-28 1997-04-28 Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance Expired - Lifetime JP3853021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12495697A JP3853021B2 (en) 1997-04-28 1997-04-28 Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12495697A JP3853021B2 (en) 1997-04-28 1997-04-28 Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance

Publications (2)

Publication Number Publication Date
JPH10306338A true JPH10306338A (en) 1998-11-17
JP3853021B2 JP3853021B2 (en) 2006-12-06

Family

ID=14898387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12495697A Expired - Lifetime JP3853021B2 (en) 1997-04-28 1997-04-28 Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3853021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
EP2098604A1 (en) * 2006-12-13 2009-09-09 Sumitomo Light Metal Industries, Ltd. High-strength aluminum-base alloy products and process for production thereof
EP3489055A1 (en) 2017-11-22 2019-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Door beam
US10562087B2 (en) 2018-04-24 2020-02-18 Kobe Steel, Ltd. Door beam
EP3702059A1 (en) 2019-03-01 2020-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy component
US11318899B2 (en) 2018-05-08 2022-05-03 Kobe Steel, Ltd. Bumper reinforcement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353689B (en) * 2014-10-31 2017-01-18 江西雄鹰铝业股份有限公司 Method for achieving rapid low-temperature extrusion formation of 6063 aluminum alloy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
EP1630241A1 (en) * 2003-04-07 2006-03-01 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
EP1630241A4 (en) * 2003-04-07 2007-08-22 Of Japanese Aerospace Companie High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
CN100425719C (en) * 2003-04-07 2008-10-15 社团法人日本航空宇宙工业会 High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
NO338363B1 (en) * 2003-04-07 2016-08-15 The Soc Of Japanese Aerospace Companies Process for producing high-strength extruded aluminum alloy material with excellent corrosion resistance.
US7927436B2 (en) * 2003-04-07 2011-04-19 The Society Of Japanese Aerospace Companies High-strength aluminum alloy extruded product exhibiting excellent corrosion resistance and method of manufacturing same
US8298357B2 (en) 2003-04-07 2012-10-30 The Society Of Japanese Aerospace Companies High-strength aluminum alloy extruded product exhibiting excellent corrosion resistance and method of manufacturing same
JP5561846B2 (en) * 2006-12-13 2014-07-30 株式会社Uacj押出加工 High strength aluminum alloy material and manufacturing method thereof
EP2098604A4 (en) * 2006-12-13 2014-07-23 Sumitomo Light Metal Ind High-strength aluminum-base alloy products and process for production thereof
EP2878692A1 (en) * 2006-12-13 2015-06-03 UACJ Corporation High-strength aluminum-base alloy products and process for production thereof
EP2098604A1 (en) * 2006-12-13 2009-09-09 Sumitomo Light Metal Industries, Ltd. High-strength aluminum-base alloy products and process for production thereof
EP3489055A1 (en) 2017-11-22 2019-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Door beam
US10843537B2 (en) 2017-11-22 2020-11-24 Kobe Steel, Ltd. Door beam
US10562087B2 (en) 2018-04-24 2020-02-18 Kobe Steel, Ltd. Door beam
US10814368B2 (en) 2018-04-24 2020-10-27 Kobe Steel, Ltd. Door beam
US11318899B2 (en) 2018-05-08 2022-05-03 Kobe Steel, Ltd. Bumper reinforcement
EP3702059A1 (en) 2019-03-01 2020-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy component
US11491525B2 (en) 2019-03-01 2022-11-08 Kobe Steel, Ltd. Aluminum alloy component

Also Published As

Publication number Publication date
JP3853021B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP4398428B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same
JPH0860285A (en) Bumper reinforcement made of aluminum alloy and its production
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
EP2072628A1 (en) High strength crash resistant aluminium alloy
US20230175103A1 (en) New 6xxx aluminum alloys and methods for producing the same
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
US20040131495A1 (en) Aluminum alloy piping material for automotive tubes having excellent corrosion resistance and formability, and method of manufacturing same
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH116044A (en) High strength/high toughness aluminum alloy
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JPH09268342A (en) High strength aluminum alloy
JPH10298691A (en) Aluminum extruded shape, and manufacture of the extruded shape and structural member
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP2908993B2 (en) High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP2002285272A (en) Aluminum alloy extrusion material having excellent axial collapse characteristic and production method therefor
JP3450209B2 (en) Method of manufacturing frame material for vehicle body
US8313590B2 (en) High strength aluminium alloy extrusion
JP2004068076A (en) Aluminum alloy forging material for structure having excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term