JP2004068076A - Aluminum alloy forging material for structure having excellent corrosion resistance and method for producing the same - Google Patents

Aluminum alloy forging material for structure having excellent corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP2004068076A
JP2004068076A JP2002228279A JP2002228279A JP2004068076A JP 2004068076 A JP2004068076 A JP 2004068076A JP 2002228279 A JP2002228279 A JP 2002228279A JP 2002228279 A JP2002228279 A JP 2002228279A JP 2004068076 A JP2004068076 A JP 2004068076A
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion resistance
alloy
forging material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228279A
Other languages
Japanese (ja)
Other versions
JP3929850B2 (en
Inventor
Tomoyuki Kanda
神田 知之
Shinichi Matsuda
松田 眞一
Hideo Yoshida
吉田 英雄
Koichi Fujita
藤田 浩一
Takeshi Seguchi
瀬口 剛
Motohide Mori
森 元秀
Hitoshi Sakuma
佐久間 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Toyota Motor Corp
Somic Ishikawa KK
Original Assignee
Sumitomo Light Metal Industries Ltd
Toyota Motor Corp
Somic Ishikawa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Toyota Motor Corp, Somic Ishikawa KK filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2002228279A priority Critical patent/JP3929850B2/en
Publication of JP2004068076A publication Critical patent/JP2004068076A/en
Application granted granted Critical
Publication of JP3929850B2 publication Critical patent/JP3929850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy forging material for structure which is excellent in a balance of strength, toughness and corrosion resistance, and to provide a method for producing the same. <P>SOLUTION: The aluminum alloy forging material comprises 0.40 to 0.8% Si, 0.8 to 1.2% Mg, ≤0.40% Cu, 0.08 to 0.15% Mn and 0.10 to 0.35% Cr, and the balance Al with impurities. In the vertical cross-section of the forging material, the surface layer part has a recrystallized structure, and in the part other than the surface layer part, a Hypo-crystal structure with a mean crystal grain size of ≤10 μm occupying the region of 50 to 95% in the vertical cross-section is present. The aluminum alloy has the composition within the componential standards of a JIS 6061 alloy, thus is also excellent in productivity and recycling properties, and can expand the applying range to automobile structural members. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れた構造用アルミニウム合金鍛造材、とくに車両用の構造部材として好適に使用される耐食性に優れた構造用アルミニウム合金鍛造材およびその製造方法に関する。
【0002】
【従来の技術】
近年、自動車など車両分野においては、地球環境保全の観点から排ガス規制が厳しくなりつつあり、燃費向上が重要な課題となっている。この課題を解決する手段として車両重量の軽量化が急速に進行しており、車両用構造部材についても、従来の鉄系材料に替えてアルミニウム系材料が実用化されている。
【0003】
車両用構造部材のうち足回り部品や複雑形状の部品にはアルミニウム合金の鍛造部材が採用され、材質としてはAl−Mg−Si系(6000系)アルミニウム合金が一般的に使用されている。とくに、足回り部品は、使用環境が過酷であるため、強度、靱性とともに耐食性が要求されているため、これらの特性に優れ生産性も良いJIS6061合金が適用されている。
【0004】
JIS6061合金の構造部材、鋳塊を熱間鍛造し、あるいは鋳塊を押出加工したのち熱間鍛造し、その後T6調質を行うことにより製造されるが、その強度特性は引張強さで270〜320MPa程度であるため、車両構造の十分な軽量化が得られず、さらに改善された強度をそなえたアルミニウム合金材が要請されている。
【0005】
強度を向上させた6000系のアルミニウム合金として、Mn、Cr、Zrを添加し、主要成分のMg、Si量を調整して結晶粒の粗大化を抑制し、焼入れ感受性に優れた押出鍛造用Al−Mg−Si系合金(特公平5−47613号公報)、Mg、Si、Cuを増量し、Mn、Crを併用添加した鍛造用アルミニウム合金(特開平5−59477号公報)が提案されている。
【0006】
しかしながら、これらのアルミニウム合金においては、強度は優れているが、靱性、耐食性に対する配慮がなされておらず、添加元素の増加は熱間変形抵抗を増大させる傾向があるため、押出性や鍛造性を低下させ、押出速度の低下や鍛造回数増により製造コストを増大させるという問題があり、とくにCu量の増加は耐食性を低下させるという難点がある。
【0007】
鋳塊を直接熱間鍛造するAl−Mg−Si系合金で、晶析出物の粒径、間隔を規定し、靱性、耐食性の向上を図ったアルミニウム合金鍛造材も提案されているが(特開2001−107168号公報)、このものにおいてもシャルピー衝撃値は11〜13J/cm2 で、自動車の足回り部品として使用するためにはなお十分なものではない。また、押出工程を経ることなく鋳造材を直接熱間鍛造した場合、鍛造比が小さい部位には鋳塊組織が残存して靱性の低下が生じ易く、鍛造品内部の機械的特性のばらつきも大きくなる可能性が高い。
【0008】
Mg0.8〜1.2%、Si0.4〜1.0%、Cu0.2〜0.4%、Mn0.15〜0.40%、Cr0.1〜0.20%、Zr0.1〜0.2%を含有し、残部Alおよび不純物からなり、粗大結晶粒の発生を抑え強度を高めた押出鍛造用Al−Mg−Si系合金も提案されているが(特開平1−283337号公報)、この合金を当該公報に開示されている通常の450℃の鍛造温度で鍛造加工したものは自動車用構造部材として十分な強度が得られていない。
【0009】
Mg0.4〜0.8%、Si0.4〜1.0%、Cu0.15〜0.5%、Ti0.005〜0.2%を含有し、さらにMn0.05〜0.6%、Cr0.05〜0.3%、Zr0.05〜0.3%のうちの1種以上を合計で0.9%以下の範囲で含み、残部Alおよび不純物からなる熱間鍛造用アルミニウム合金も提案されているが(特開平11−12675号公報)、この合金においても、溶体化処理、時効処理後の引張強さは335MPa以下で、自動車部品として強度的に必ずしも十分なものではなく、また、押出工程を経ることなく鋳造材を直接熱間鍛造するものであるため、前記のように、鋳塊組織の残存による靱性の低下、機械的特性のばらつきなどの問題もある。
【0010】
さらに、車両用構造部材にアルミニウム合金材料を適用する場合、コスト低減の観点からリサイクル性が重要な課題であり、既存の規格合金成分範囲を大きく外れた材料を使用した場合、使用成分範囲によっては他の規格合金と識別する必要性が生じ、一般的に、添加元素の種類や量を多くすることはリサイクルの点で好ましくない。
【0011】
【発明が解決しようとする課題】
本発明は、車両構造用Al−Mg−Si系合金における上記従来の問題点を解消するとともに、リサイクル性も考慮した6000系の押出鍛造アルミニウム合金材を得るために、合金材の諸特性と合金成分の組合わせ、組織の関係についてさらに試験、検討を重ねた結果としてなされたものであり、その目的は、強度、靱性および耐食性のバランスに優れ、生産性、リサイクル性にも優れた構造用アルミニウム合金鍛造材およびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するための本発明による耐食性に優れた構造用アルミニウム合金鍛造材は、Si:0.40〜0.8%、Mg:0.8〜1.2%、Cu:0.40%以下、Mn:0.08〜0.15%、Cr:0.10〜0.35%を含有し、残部Alおよび不可避不純物からなる組成を有するアルミニウム合金の鍛造材であって、該鍛造材の直角断面において表層部は再結晶組織で、表層部以外の部分に前記直角断面の50〜95%の領域を占める平均結晶粒径10μm以下の亜結晶粒組織が存在することを特徴とする。
【0013】
また、本発明による耐食性に優れた構造用アルミニウム合金鍛造材の製造方法は、上記請求項1記載のアルミニウム合金の鋳塊を、400〜490℃で均質化処理した後、480〜540℃で熱間押出および480〜540℃で熱間鍛造を行い、500〜540℃で溶体化処理し、ついで150〜200℃で時効処理することを特徴とする。
【0014】
【発明の実施の形態】
本発明のアルミニウム合金鍛造材における合金成分の意義および限定理由につて説明すると、Siは、Mgと共存して合金マトリックス中にMg2 Si粒子を析出させ、合金の強度を向上するよう機能する。好ましい含有量は0.40〜0.8%の範囲であり、0.40%未満では十分な強度が得難く、0.8%を越えて含有されると加工性が低下するとともに、伸びの低下も生じる。とくに過剰Siが多くなるため耐食性も低下する。
【0015】
Mgは、Siと共存して合金マトリックス中にMg2 Si粒子を析出させ、合金の強度を高めるよう機能する。Mgの好ましい含有量は0.8〜1.2%の範囲であり、0.8%未満ではその効果が小さく、1.2%を越えると、加工性、焼入れ性が低下する。
【0016】
Cuは、合金マトリックス中に固溶して強度を向上させるよう機能する。好ましい含有量は0.40%以下範囲であり、0.40%を越えて含有すると、耐食性が顕著に低下し、加工性の低下も生じる。Cuのさらに好ましい含有範囲は0.20〜0.40%である。
【0017】
MnおよびCrは、合金マトリックス中に、それぞれAl−Mn(−Si)系およびAl−Cr系の化合物を析出させ、亜結晶粒の形成と形成された亜結晶粒組織を維持する役割を果たし、さらに両者を複合して添加することによりその効果がさらに向上する。好ましい含有量は、Mn:0.08〜0.15%、Cr:0.10〜0.35%の範囲であり、それぞれ下限未満では、亜結晶粒の形成、維持効果が十分でなく、それぞれ上限を越えて含有すると、巨大な金属間化合物が生成して靱性、延性が低下する。MnおよびCrのさらに好ましい含有範囲は、Mn:0.10〜0.15%、Cr:0.20〜0.30%である。
【0018】
なお、本発明のアルミニウム合金鍛造材には、1%以下のFe、0.3%以下のZn、0.2%以下のTi、0.1%以下のBが含有されていても本発明の効果が害されることはない。
【0019】
本発明においては、溶体化処理および時効処理(T6処理)後のアルミニウム合金鍛造材の直角断面において表層部は再結晶組織で、表層部以外の部分に該直角断面の50〜95%の領域を占める平均結晶粒径10μm以下の亜結晶粒組織が存在することが重要である。この組織とすることにより高強度、高靱性を達成することができる。
【0020】
本発明のアルミニウム合金鍛造材において、強度および靱性の向上は、前記Mg2 Siなどの析出硬化、Cuなどの固溶強化による以外に、微細な亜結晶粒組織を形成することが重要な要素となる。好ましい組織性状は、亜結晶粒組織が鍛造材の直角断面において、該断面の50〜95%を占めるようにし、亜結晶粒の平均粒径を10μm以下とする。
【0021】
亜結晶粒組織が鍛造材の直角断面において、該断面の50%未満では鍛造材全体の強度が不十分となり、95%を越えると鍛造材全体の靱性が不足する。亜結晶粒の平均粒径が10μmを越えると、強度向上の効果が十分でなくなる。
【0022】
亜結晶粒組織は繊維状に発達するため、材料中に異方性が生じ、繊維状長手方向と比較して垂直方向の靱性が低くなる傾向がある。従って、鍛造材全体の靱性を向上させるために、鍛造材の表層部は再結晶組織として、表層部を延性および耐衝撃性に優れたものとするのが好ましく、内部の亜結晶粒組織との組合わせによって改善された強度、靱性が達成される。
【0023】
亜結晶粒の粒径の測定は、鍛造材の直角断面の組織を、透過型電子顕微鏡で倍率5000倍で写真撮影し、切断法(既知の長さの線分によって完全に切断される結晶粒の数を数え、その切断長さの平均値をもって表示するもので、JIS G0522に規定される鋼のフェライト結晶粒度試験方法に準拠する)により測定する。また、亜結晶粒組織の直角断面の面積率は、鍛造材サンプルの直角断面を10%NaOH水溶液でエッチング処理(液温:20℃、浸漬時間:45分)し、サンプルの大きさに応じて1〜10倍で写真撮影し、画像解析装置を使用して測定する。
【0024】
つぎに、本発明のアルミニウム合金鍛造材の製造について説明すると、前記のように、本発明においては、微細な亜結晶粒組織の形成を特徴とするものであるが、鍛造材の組織が粗大な再結晶組織となるのは、熱間押出または熱間鍛造時に蓄積された加工歪みが最終溶体化処理時に回復、再結晶することに起因することが多く、溶体化処理温度が高いほど再結晶粒が粗大化する傾向がある。所定の強度が得られる溶体化処理温度は合金組成で決まっており、本発明による合金組成の場合、十分な固溶状態を得るためには500℃以上の溶体化処理を行う必要があるため、粗大再結晶粒の形成を抑制するために、溶体化処理温度を下げることはできない。これを解消する手段として、本発明においては、熱間加工温度を溶体化処理温度域あるいはその近傍として、溶体化処理時に再結晶しない熱的に安定した亜結晶粒組織を形成するとともに、Mn系化合物、Cr系化合物を微細、均一に析出させて亜結晶粒の形成を促進し、形成された亜結晶粒組織の維持を図る。
【0025】
Mn系化合物、Cr系化合物を微細、均一に析出させるために、前記の組成を有するアルミニウム合金の鋳塊について、400〜490℃の温度で均質化処理を行う。通常、6000系アルミニウム合金の均質化処理は490℃を越える温度(且つ固相線未満の温度)で行われることが多いが、490℃を越える温度で均質化処理を行った場合、鋳造時に過飽和に固溶していたMn、Cr原子が均質化処理中に析出、粗大化してピンニング効果が小さくなり、熱間加工時に安定した亜結晶粒組織が形成し難くなる。400℃未満ではMn、Crがほとんど析出しないため、熱間加工時に導入される歪みの回復サイトが不足し、安定した亜結晶粒組織の形成が困難となる。さらに好ましい均質化処理温度は450〜490℃である。
【0026】
ついで、480〜540℃で熱間押出および480〜540℃で熱間鍛造を行う。熱間押出および熱間鍛造を480℃未満の温度で行った場合には、Mg2 Siの固溶が不十分となり、熱間加工中にMg2 Siが凝集化し易くなり、その結果、最終溶体化処理時に凝集化したMg2 Siが再固溶し難くなって十分な強度が得られなくなる。また、熱間加工時に蓄積される歪み量が多くなり、溶体化処理時に粗大な再結晶粒が発生し易くなる。540℃を越える温度で熱間押出、熱間鍛造を行うと、亜結晶粒組織の形成、維持が困難となり、熱間加工時に粗大な再結晶組織が形成し易くなる。さらに好ましい熱間押出および熱間鍛造の温度は500〜540℃である。
【0027】
上記の熱間加工後、溶体化処理を行い。好ましい溶体化処理温度は500〜540℃であり、500℃未満ではMg2 Siの固溶が不十分となり、所望の強度が得難い。540℃を越えると、粗大再結晶が生じ易くなり強度低下を招く。さらに好ましい溶体化処理温度は510〜530℃である。
【0028】
溶体化処理に続いて時効処理(焼戻し処理)を行う。好ましい焼戻し処理温度は150〜200℃の範囲であり、150℃未満ではMg2 Siによる析出硬化が十分でなく、200℃を越えると、Mg2 Siが粗大析出して十分な析出硬化が得難くなる。さらに好ましい焼戻し処理温度は170〜190℃である。
【0029】
【実施例】
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらに実施例は、本発明の一実施態様であり、本発明はこれに限定されるものではない。
【0030】
実施例1
表1に示す組成のアルミニウム合金を溶解し、半連続鋳造により直径90mmの押出用ビレットに造塊した。このビレットを表2に示す条件で、均質化処理、熱間押出(押出寸法:直径20mm、丸棒材)、熱間鍛造(鍛造材:図1に示すようにノッチ部Nを有する形状、寸法)し、その後、表2に示す温度で溶体化処理を行い、170℃で10hの焼戻し処理を施した。
【0031】
得られた鍛造品(T6調質材)を試験材として、図1のA−A断面中心部の平均結晶粒径、断面に占める亜結晶粒組織の面積率を前記の方法で調査し、機械的性質を評価し、また、鍛造品全体の靱性を評価するために、ノッチ部Nを含むJIS3号衝撃試験片を採取し、室温でシャルピー衝撃試験を実施した。なお、試験片において、ノッチ部Nは鍛造バリのみを機械加工で除去した状態とした。さらに、耐食性の評価として、JIS Z2371に準拠する塩水噴霧試験を1000時間行い、最大孔食深さを測定した。結果を表3に示す。
【0032】
表3にみられるように、本発明に従う試験材No.1〜4はいずれも、耐力が340MPa以上の優れた強度、30J/cm2 を越える衝撃特性をそなえ、耐食性も最大孔食深さが200μm以下であった。
【0033】
【表1】

Figure 2004068076
【0034】
【表2】
Figure 2004068076
【0035】
【表3】
Figure 2004068076
【0036】
比較例1
表1に示す組成のアルミニウム合金を溶解し、半連続鋳造により直径90mmの押出用ビレットに造塊した。このビレットを表4に示す条件で、均質化処理、熱間押出(押出寸法:直径20mm、丸棒材)、熱間鍛造(鍛造材:図1に示すようにノッチ部Nを有する形状、寸法)し、その後、表4に示す温度で溶体化処理を行い、170℃で10hの焼戻し処理を施した。
【0037】
得られた鍛造品(T6調質材)を試験材として、実施例1と同様、図1のA−A断面中心部の平均結晶粒径、断面に占める亜結晶粒組織の面積率を前記の方法で調査し、機械的性質を評価し、また、実施例1と同様にして、衝撃特性、耐食性を評価した。結果を表5に示す。なお、表4〜5において、本発明の条件を外れたものには下線を付した。
【0038】
表5に示すように、試験材No.5は均質化処理温度が高く熱間押出温度が低く、試験材No.6は熱間鍛造温度が低く、試験材No.7は溶体化処理温度が高く、また試験材No.8は熱間鍛造温度が低いため、いずれも粗大な再結晶組織となり十分な強度が得られなかった。
【0039】
【表4】
Figure 2004068076
【0040】
【表5】
Figure 2004068076
【0041】
比較例2
表6に示す組成のアルミニウム合金を溶解し、半連続鋳造により直径90mmの押出用ビレットに造塊した。このビレットを表7に示す条件で、均質化処理、熱間押出(押出寸法:直径20mm、丸棒材)、熱間鍛造(鍛造材:図1に示すようにノッチ部Nを有する形状、寸法)し、その後、表7に示す温度で溶体化処理を行い、170℃で10hの焼戻し処理を施した。
【0042】
得られた鍛造品(T6調質材)を試験材として、実施例1と同様、図1のA−A断面中心部の平均結晶粒径、断面に占める亜結晶粒組織の面積率を前記の方法で調査し、機械的性質を評価し、また、実施例1と同様にして、衝撃特性、耐食性を評価した。結果を表8に示す。なお、表6〜8において、本発明の条件を外れたものには下線を付した。
【0043】
表8に示すように、試験材No.9はMn量、Cr量が多いため、亜結晶粒組織の面積率が大きく、衝撃特性が劣る。試験材No.10はSi量、Mg量が多いため、衝撃特性が劣るとともに耐食性も低下している。試験材No.11〜13はMn量、Cr量が少ないため、鍛造材の組織が粗大化した再結晶組織となり強度が低い。試験材No.14はCu量が多いため、耐食性が顕著に低下した。
【0044】
【表6】
Figure 2004068076
【0045】
【表7】
Figure 2004068076
【0046】
【表8】
Figure 2004068076
【0047】
【発明の効果】
本発明によれば、強度、靱性および耐食性のバランスに優れた構造用アルミニウム合金鍛造材およびその製造方法が提供される。本発明のアルミニウム合金はJIS6061合金の成分規格内の組成を有することから、生産性、リサイクル性に優れ、自動車用構造部材への適用範囲を拡大することが可能であり、工業上の価値が大きい。
【図面の簡単な説明】
【図1】本発明の実施例、比較例の試験材として使用する鍛造材の形状、寸法を示す正面、A−A断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structural aluminum alloy forging having excellent corrosion resistance, and more particularly to a structural aluminum alloy forging having excellent corrosion resistance suitably used as a structural member for a vehicle and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in the field of vehicles such as automobiles, exhaust gas regulations have been becoming stricter from the viewpoint of global environmental protection, and improving fuel efficiency has become an important issue. As means for solving this problem, the weight of vehicles has been rapidly reduced, and aluminum-based materials have been put into practical use also for structural members for vehicles in place of conventional iron-based materials.
[0003]
Among the structural members for vehicles, forged members of aluminum alloy are used for underbody parts and parts of complicated shapes, and Al-Mg-Si (6000-based) aluminum alloy is generally used as the material. In particular, since the undercarriage parts are required to have corrosion resistance as well as strength and toughness due to severe use environment, JIS6061 alloy which is excellent in these characteristics and has good productivity is applied.
[0004]
It is manufactured by hot forging a JIS6061 alloy structural member or ingot or extruding an ingot and then hot forging, and then performing T6 tempering. Its strength characteristics are 270 to 270 in tensile strength. Since the pressure is about 320 MPa, sufficient weight reduction of the vehicle structure cannot be obtained, and an aluminum alloy material having further improved strength has been demanded.
[0005]
As a 6000 series aluminum alloy with improved strength, Mn, Cr, and Zr are added, and the amounts of main components Mg and Si are adjusted to suppress coarsening of crystal grains, and Al for extrusion forging is excellent in quenching sensitivity. -Mg-Si based alloy (Japanese Patent Publication No. 5-47613), and an aluminum alloy for forging in which Mg, Si, and Cu are increased and Mn and Cr are added in combination (Japanese Patent Application Laid-Open No. 5-59477) have been proposed. .
[0006]
However, these aluminum alloys have excellent strength, but no consideration is given to toughness and corrosion resistance, and an increase in added elements tends to increase hot deformation resistance. However, there is a problem that the production cost is increased due to a decrease in the extrusion rate or an increase in the number of times of forging. Particularly, an increase in the amount of Cu has a problem in that the corrosion resistance is reduced.
[0007]
There has been proposed an aluminum-alloy forging material which is an Al-Mg-Si-based alloy for directly hot forging an ingot, which regulates the grain size and interval of crystal precipitates and improves toughness and corrosion resistance (Japanese Patent Application Laid-Open (JP-A) No. 2002-287, 1988). 2001-107168), which has a Charpy impact value of 11 to 13 J / cm 2 , which is still insufficient for use as a vehicle underbody part. In addition, when the cast material is directly hot forged without going through the extrusion process, the ingot structure remains in a portion where the forging ratio is small, and the toughness is likely to decrease, and the variation in the mechanical properties inside the forged product is large. Likely to be.
[0008]
Mg 0.8-1.2%, Si 0.4-1.0%, Cu 0.2-0.4%, Mn 0.15-0.40%, Cr 0.1-0.20%, Zr 0.1-0 An Al-Mg-Si alloy for extrusion forging has been proposed which contains 0.2%, the balance being Al and impurities, suppressing the generation of coarse crystal grains and increasing the strength (Japanese Patent Application Laid-Open No. 1-283337). When this alloy is forged at a normal forging temperature of 450 ° C. disclosed in this publication, sufficient strength as a structural member for automobiles is not obtained.
[0009]
Mg 0.4-0.8%, Si 0.4-1.0%, Cu 0.15-0.5%, Ti 0.005-0.2%, Mn 0.05-0.6%, Cr0 Also, an aluminum alloy for hot forging containing at least one of 0.05 to 0.3% and Zr of 0.05 to 0.3% in a range of 0.9% or less in total and the balance of Al and impurities has been proposed. However, even in this alloy, the tensile strength after solution treatment and aging treatment is 335 MPa or less, which is not always sufficient in terms of strength as an automobile part. Since the cast material is directly hot-forged without going through a process, there are problems such as a decrease in toughness due to the residual ingot structure and a variation in mechanical properties as described above.
[0010]
Furthermore, when aluminum alloy material is applied to structural members for vehicles, recyclability is an important issue from the viewpoint of cost reduction.If a material that greatly deviates from the existing standard alloy component range is used, depending on the used component range, There is a need to distinguish the alloy from other standard alloys, and it is generally not preferable to increase the types and amounts of the added elements from the viewpoint of recycling.
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems in Al-Mg-Si alloys for vehicle structures and obtains 6000 series extruded and forged aluminum alloy materials in consideration of recyclability, by using various properties of alloy materials and alloys. This was the result of further testing and examination of the combination of components and the relationship between the structures, and the purpose was to achieve a structural aluminum with an excellent balance of strength, toughness and corrosion resistance, as well as excellent productivity and recyclability. An object of the present invention is to provide an alloy forging and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a structural aluminum alloy forging having excellent corrosion resistance according to the present invention comprises Si: 0.40 to 0.8%, Mg: 0.8 to 1.2%, and Cu: 0.40. % Or less, Mn: 0.08 to 0.15%, Cr: 0.10 to 0.35%, forged aluminum alloy having a composition consisting of the balance of Al and inevitable impurities, Is characterized in that the surface layer portion has a recrystallized structure, and a sub-crystal structure having an average crystal grain size of 10 μm or less occupying a region of 50 to 95% of the rectangular cross section exists in a portion other than the surface layer portion.
[0013]
The method for producing a structural aluminum alloy forged material having excellent corrosion resistance according to the present invention is characterized in that the ingot of the aluminum alloy according to claim 1 is homogenized at 400 to 490 ° C and then heated at 480 to 540 ° C. Hot extrusion at 480-540 ° C, solution treatment at 500-540 ° C, and aging at 150-200 ° C.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Explaining the significance of alloy components in the aluminum alloy forged material of the present invention and the reasons for limitation, Si functions to coexist with Mg to precipitate Mg 2 Si particles in an alloy matrix, thereby improving the strength of the alloy. The preferred content is in the range of 0.40 to 0.8%. If the content is less than 0.40%, it is difficult to obtain sufficient strength. If the content is more than 0.8%, the processability is reduced and the elongation is low. Degradation also occurs. In particular, the excess Si increases, so that the corrosion resistance also decreases.
[0015]
Mg coexists with Si to precipitate Mg 2 Si particles in the alloy matrix and functions to increase the strength of the alloy. The preferred content of Mg is in the range of 0.8 to 1.2%. If the content is less than 0.8%, the effect is small, and if it exceeds 1.2%, workability and hardenability are reduced.
[0016]
Cu functions as a solid solution in the alloy matrix to improve the strength. The preferred content is in the range of 0.40% or less. When the content exceeds 0.40%, the corrosion resistance is significantly reduced and the workability is also reduced. A more preferable content range of Cu is 0.20 to 0.40%.
[0017]
Mn and Cr precipitate Al-Mn (-Si) -based and Al-Cr-based compounds, respectively, in the alloy matrix, and play a role of forming sub-crystal grains and maintaining the formed sub-crystal grain structure, The effect is further improved by adding both in combination. The preferred content is in the range of Mn: 0.08 to 0.15% and Cr: 0.10 to 0.35%. If the content is less than the lower limit, the effect of forming and maintaining subcrystal grains is not sufficient. If the content exceeds the upper limit, a huge intermetallic compound is formed, and the toughness and ductility decrease. More preferred ranges of Mn and Cr are Mn: 0.10 to 0.15% and Cr: 0.20 to 0.30%.
[0018]
In addition, even if the forged aluminum alloy of the present invention contains 1% or less of Fe, 0.3% or less of Zn, 0.2% or less of Ti, and 0.1% or less of B, The effect is not impaired.
[0019]
In the present invention, in the right-angled cross section of the aluminum alloy forged material after the solution treatment and the aging treatment (T6 treatment), the surface layer portion has a recrystallized structure, and a region other than the surface layer portion has a region of 50 to 95% of the right-angled cross section. It is important that a sub-crystalline structure having an average crystal grain size of 10 μm or less is present. With this structure, high strength and high toughness can be achieved.
[0020]
In the aluminum alloy forged material of the present invention, the improvement in strength and toughness is not only due to the precipitation hardening of Mg 2 Si or the like, but also the solid solution strengthening of Cu or the like, and it is important to form a fine sub-crystal grain structure. Become. The preferred texture is such that the sub-crystal grain structure occupies 50 to 95% of the cross section of the forged material in a right-angled cross section, and the average grain size of the sub-crystal grains is 10 μm or less.
[0021]
If the subgrain structure is a perpendicular cross section of the forged material, if the cross section is less than 50%, the strength of the whole forged material is insufficient, and if it exceeds 95%, the toughness of the whole forged material is insufficient. If the average grain size of the sub-crystal grains exceeds 10 μm, the effect of improving the strength becomes insufficient.
[0022]
Since the subcrystalline structure develops in a fibrous form, anisotropy occurs in the material, and the toughness in the vertical direction tends to be lower than that in the longitudinal direction of the fibrous form. Therefore, in order to improve the toughness of the forged material as a whole, it is preferable that the surface layer portion of the forged material has a recrystallized structure, and that the surface layer portion has excellent ductility and impact resistance. Improved strength and toughness are achieved by the combination.
[0023]
The grain size of the sub-crystal grains is measured by taking a photograph of the structure of a right-angled cross section of the forged material with a transmission electron microscope at a magnification of 5000 times, and cutting it (a crystal grain completely cut by a line segment of a known length). And the average value of the cut lengths is used, and it is measured according to the ferrite grain size test method for steel specified in JIS G0522). The area ratio of the right-angle cross section of the sub-crystal grain structure is determined by etching the right-angle cross section of the forged material sample with a 10% NaOH aqueous solution (liquid temperature: 20 ° C., immersion time: 45 minutes), and according to the size of the sample. Photograph at 1-10x and measure using image analyzer.
[0024]
Next, the production of the aluminum alloy forged material of the present invention will be described. As described above, the present invention is characterized by the formation of a fine subcrystalline structure, but the structure of the forged material is coarse. The recrystallized structure often results from the processing strain accumulated during hot extrusion or hot forging being recovered and recrystallized during the final solution treatment, and the higher the solution treatment temperature, the higher the recrystallized grains. Tends to be coarse. The solution treatment temperature at which a predetermined strength is obtained is determined by the alloy composition, and in the case of the alloy composition according to the present invention, it is necessary to perform a solution treatment at 500 ° C. or more to obtain a sufficient solid solution state. In order to suppress the formation of coarse recrystallized grains, the solution treatment temperature cannot be lowered. As means for solving this, in the present invention, the hot working temperature is set at or near the solution treatment temperature range to form a thermally stable subcrystal grain structure that does not recrystallize during the solution treatment, A compound and a Cr-based compound are finely and uniformly precipitated to promote the formation of sub-crystal grains and to maintain the formed sub-crystal grain structure.
[0025]
In order to precipitate the Mn-based compound and the Cr-based compound finely and uniformly, the ingot of the aluminum alloy having the above composition is subjected to a homogenization treatment at a temperature of 400 to 490 ° C. Usually, the homogenization treatment of a 6000 series aluminum alloy is often performed at a temperature exceeding 490 ° C. (and below the solidus), but when the homogenization treatment is performed at a temperature exceeding 490 ° C., supersaturation occurs during casting. The Mn and Cr atoms that were dissolved as a solid solution precipitate and coarsen during the homogenization treatment, so that the pinning effect is reduced, and it is difficult to form a stable sub-crystal grain structure during hot working. If the temperature is lower than 400 ° C., since Mn and Cr hardly precipitate, the recovery site of the strain introduced during hot working is insufficient, and it is difficult to form a stable subcrystalline structure. A more preferred homogenization treatment temperature is 450 to 490 ° C.
[0026]
Next, hot extrusion is performed at 480 to 540 ° C and hot forging is performed at 480 to 540 ° C. When hot extrusion and hot forging are performed at a temperature lower than 480 ° C., the solid solution of Mg 2 Si becomes insufficient, and Mg 2 Si is easily aggregated during hot working, and as a result, the final solution Mg 2 Si that is agglomerated during the crystallization treatment is difficult to solid-dissolve again, and sufficient strength cannot be obtained. Further, the amount of strain accumulated during hot working increases, and coarse recrystallized grains are likely to be generated during solution treatment. When hot extrusion or hot forging is performed at a temperature exceeding 540 ° C., formation and maintenance of a sub-crystalline structure becomes difficult, and a coarse recrystallized structure is easily formed during hot working. More preferred hot extrusion and hot forging temperatures are 500-540 ° C.
[0027]
After the above hot working, a solution treatment is performed. A preferable solution treatment temperature is 500 to 540 ° C. If the temperature is less than 500 ° C, the solid solution of Mg 2 Si becomes insufficient, and it is difficult to obtain a desired strength. If it exceeds 540 ° C., coarse recrystallization is likely to occur, resulting in a decrease in strength. A more preferred solution treatment temperature is 510-530 ° C.
[0028]
After the solution treatment, an aging treatment (tempering treatment) is performed. The preferred tempering temperature is in the range of 150 to 200 ° C. If it is lower than 150 ° C, precipitation hardening by Mg 2 Si is not sufficient, and if it exceeds 200 ° C, Mg 2 Si coarsely precipitates and it is difficult to obtain sufficient precipitation hardening. Become. A more preferred tempering temperature is 170 to 190 ° C.
[0029]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples to demonstrate the effects of the present invention. These examples are one embodiment of the present invention, and the present invention is not limited thereto.
[0030]
Example 1
An aluminum alloy having the composition shown in Table 1 was melted and formed into a 90 mm diameter extrusion billet by semi-continuous casting. Under the conditions shown in Table 2, the billet was homogenized, hot extruded (extrusion size: diameter 20 mm, round bar), and hot forged (forged material: shape and size having a notch N as shown in FIG. 1). Then, a solution treatment was performed at the temperature shown in Table 2, and a tempering treatment was performed at 170 ° C. for 10 hours.
[0031]
Using the obtained forged product (T6 tempered material) as a test material, the average crystal grain size at the center of the AA cross section in FIG. 1 and the area ratio of the sub-crystal grain structure occupying the cross section were investigated by the method described above. In order to evaluate the mechanical properties and to evaluate the toughness of the whole forged product, a JIS No. 3 impact test piece including the notch portion N was collected and subjected to a Charpy impact test at room temperature. In the test piece, the notch portion N was in a state where only forged burrs were removed by machining. Furthermore, as an evaluation of corrosion resistance, a salt spray test based on JIS Z2371 was performed for 1000 hours to measure the maximum pit depth. Table 3 shows the results.
[0032]
As can be seen in Table 3, the test material No. All of Nos. 1 to 4 had excellent strength with a proof stress of 340 MPa or more, impact characteristics exceeding 30 J / cm 2, and had a maximum pit depth of 200 μm or less in corrosion resistance.
[0033]
[Table 1]
Figure 2004068076
[0034]
[Table 2]
Figure 2004068076
[0035]
[Table 3]
Figure 2004068076
[0036]
Comparative Example 1
An aluminum alloy having the composition shown in Table 1 was melted and formed into a 90 mm diameter extrusion billet by semi-continuous casting. Under the conditions shown in Table 4, the billet was homogenized, hot extruded (extrusion size: diameter 20 mm, round bar), and hot forged (forged material: shape and size having a notch N as shown in FIG. 1). Then, a solution treatment was performed at the temperature shown in Table 4 and a tempering treatment was performed at 170 ° C. for 10 hours.
[0037]
Using the obtained forged product (T6 tempered material) as a test material, the average crystal grain size at the center of the AA cross section in FIG. Investigation was carried out by a method, mechanical properties were evaluated, and impact characteristics and corrosion resistance were evaluated in the same manner as in Example 1. Table 5 shows the results. In Tables 4 and 5, those outside the conditions of the present invention are underlined.
[0038]
As shown in Table 5, the test material No. Test material No. 5 has a high homogenization treatment temperature and a low hot extrusion temperature. No. 6 has a low hot forging temperature, and No. 7 has a high solution treatment temperature, and test material No. Sample No. 8 had a low hot forging temperature, and each had a coarse recrystallized structure and could not obtain sufficient strength.
[0039]
[Table 4]
Figure 2004068076
[0040]
[Table 5]
Figure 2004068076
[0041]
Comparative Example 2
An aluminum alloy having the composition shown in Table 6 was melted and ingot into a billet for extrusion having a diameter of 90 mm by semi-continuous casting. Under the conditions shown in Table 7, the billet was homogenized, hot extruded (extrusion size: diameter 20 mm, round bar material), and hot forged (forged material: shape and size having a notch N as shown in FIG. 1). Then, a solution treatment was performed at the temperature shown in Table 7 and a tempering treatment was performed at 170 ° C. for 10 hours.
[0042]
Using the obtained forged product (T6 tempered material) as a test material, the average crystal grain size at the center of the AA cross section in FIG. Investigation was carried out by a method, mechanical properties were evaluated, and impact characteristics and corrosion resistance were evaluated in the same manner as in Example 1. Table 8 shows the results. In Tables 6 to 8, the values out of the conditions of the present invention are underlined.
[0043]
As shown in Table 8, the test material No. 9 has a large Mn content and a large Cr content, so that the area ratio of the sub-crystal grain structure is large and the impact characteristics are poor. Test material No. Sample No. 10 has a large amount of Si and a large amount of Mg, so that the impact characteristics are poor and the corrosion resistance is low. Test material No. Since Nos. 11 to 13 have small amounts of Mn and Cr, the forged material has a coarse recrystallized structure and low strength. Test material No. 14 had a large amount of Cu, so that the corrosion resistance was significantly reduced.
[0044]
[Table 6]
Figure 2004068076
[0045]
[Table 7]
Figure 2004068076
[0046]
[Table 8]
Figure 2004068076
[0047]
【The invention's effect】
According to the present invention, there is provided a structural aluminum alloy forging having an excellent balance of strength, toughness and corrosion resistance, and a method for producing the same. Since the aluminum alloy of the present invention has a composition within the component standard of JIS6061 alloy, it has excellent productivity and recyclability, can be applied to structural members for automobiles, and has great industrial value. .
[Brief description of the drawings]
FIG. 1 is a front view and a cross-sectional view taken along the line AA showing the shape and dimensions of a forged material used as a test material in Examples and Comparative Examples of the present invention.

Claims (2)

Si:0.40〜0.8%(質量%、以下同じ)、Mg:0.8〜1.2%、Cu:0.40%以下(0%を含まず、以下同じ)、Mn:0.08〜0.15%、Cr:0.10〜0.35%を含有し、残部Alおよび不可避不純物からなる組成を有するアルミニウム合金の鍛造材であって、該鍛造材の直角断面において表層部は再結晶組織で、表層部以外の部分に前記直角断面の50〜95%の領域を占める平均結晶粒径10μm以下の亜結晶粒組織が存在することを特徴とする耐食性に優れた構造用アルミニウム合金鍛造材。Si: 0.40 to 0.8% (mass%, the same applies hereinafter), Mg: 0.8 to 1.2%, Cu: 0.40% or less (excluding 0%, the same applies hereinafter), Mn: 0 An aluminum alloy forging material containing 0.08 to 0.15% and Cr: 0.10 to 0.35% and having a balance of Al and unavoidable impurities, wherein a surface layer portion is formed at a right angle cross section of the forging material. Is a structural aluminum having excellent corrosion resistance, characterized by having a subcrystal structure having an average crystal grain size of 10 μm or less occupying a region of 50 to 95% of the right-angled cross section in a portion other than the surface layer portion. Alloy forgings. 請求項1記載のアルミニウム合金の鋳塊を、400〜490℃で均質化処理した後、480〜540℃で熱間押出および480〜540℃で熱間鍛造を行い、500〜540℃で溶体化処理し、ついで150〜200℃で時効処理することを特徴とする耐食性に優れた構造用アルミニウム合金鍛造材の製造方法。After the aluminum alloy ingot according to claim 1 is homogenized at 400 to 490 ° C, hot extrusion is performed at 480 to 540 ° C and hot forging is performed at 480 to 540 ° C, and solution is performed at 500 to 540 ° C. A method for producing a structural aluminum alloy forged material having excellent corrosion resistance, which is followed by aging at 150 to 200 ° C.
JP2002228279A 2002-08-06 2002-08-06 Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same Expired - Fee Related JP3929850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228279A JP3929850B2 (en) 2002-08-06 2002-08-06 Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228279A JP3929850B2 (en) 2002-08-06 2002-08-06 Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004068076A true JP2004068076A (en) 2004-03-04
JP3929850B2 JP3929850B2 (en) 2007-06-13

Family

ID=32015010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228279A Expired - Fee Related JP3929850B2 (en) 2002-08-06 2002-08-06 Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3929850B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP2008297632A (en) * 2003-11-10 2008-12-11 Showa Denko Kk Molding production method
JP2013076167A (en) * 2012-11-27 2013-04-25 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, production method therefor, and suspension component
CN106319305A (en) * 2016-10-31 2017-01-11 辽宁忠相铝业有限公司 Liquid forging technology method for 6061 material commercial vehicle aluminum alloy shaft head
CN115976377A (en) * 2022-12-19 2023-04-18 广东中色研达新材料科技股份有限公司 6061 aluminum alloy for electronic cigarette shell and processing technology thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705230A (en) * 2020-04-17 2020-09-25 湖北万佳宏铝业股份有限公司 Manufacturing process of corrosion-resistant aluminum alloy template profile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297632A (en) * 2003-11-10 2008-12-11 Showa Denko Kk Molding production method
JP4553323B2 (en) * 2003-11-10 2010-09-29 昭和電工株式会社 Manufacturing method of molded products
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP2013076167A (en) * 2012-11-27 2013-04-25 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, production method therefor, and suspension component
CN106319305A (en) * 2016-10-31 2017-01-11 辽宁忠相铝业有限公司 Liquid forging technology method for 6061 material commercial vehicle aluminum alloy shaft head
CN106319305B (en) * 2016-10-31 2017-11-10 辽宁忠相铝业有限公司 6061 material commercial car aluminium alloy spindle nose liquid forging process methods
CN115976377A (en) * 2022-12-19 2023-04-18 广东中色研达新材料科技股份有限公司 6061 aluminum alloy for electronic cigarette shell and processing technology thereof
CN115976377B (en) * 2022-12-19 2024-03-22 广东中色研达新材料科技股份有限公司 6061 aluminum alloy for electronic cigarette shell and processing technology thereof

Also Published As

Publication number Publication date
JP3929850B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4757022B2 (en) High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
EP2811043B1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP3324093B2 (en) Aluminum alloy material for forging for automotive parts and forged automotive parts
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same
EP1260600B1 (en) Aluminum alloy sheet material and method for producing the same
JPH09268342A (en) High strength aluminum alloy
JPH07145440A (en) Aluminum alloy forging stock
JPH116044A (en) High strength/high toughness aluminum alloy
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JP2873165B2 (en) Extruded Al-Mg-Si alloy with excellent bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Ref document number: 3929850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees