JP3691254B2 - Al-Mg-Si alloy extruded profile for side member and method for producing the same - Google Patents

Al-Mg-Si alloy extruded profile for side member and method for producing the same Download PDF

Info

Publication number
JP3691254B2
JP3691254B2 JP22502098A JP22502098A JP3691254B2 JP 3691254 B2 JP3691254 B2 JP 3691254B2 JP 22502098 A JP22502098 A JP 22502098A JP 22502098 A JP22502098 A JP 22502098A JP 3691254 B2 JP3691254 B2 JP 3691254B2
Authority
JP
Japan
Prior art keywords
alloy
extruded
side member
alloy extruded
extruded profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22502098A
Other languages
Japanese (ja)
Other versions
JP2000054051A (en
Inventor
紘一 大堀
久男 谷川
晃司 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP22502098A priority Critical patent/JP3691254B2/en
Publication of JP2000054051A publication Critical patent/JP2000054051A/en
Application granted granted Critical
Publication of JP3691254B2 publication Critical patent/JP3691254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の構造用のアルミニウム合金押出形材に関するもので、特に圧潰特性に優れたサイドメンバ−用アルミニウム合金押出形材に関するものである。
【0002】
【従来の技術】
自動車のサイドメンバ−は、自動車の前方のエンジン部分と、後方のトランク部において、衝突時にアコ−ディオン状に座屈変形し、これにより衝突時の衝撃エネルギ−を吸収することにより、乗員の安全性を確保する機能を持つ部材である。この部材としては、従来、冷延鋼板をプレス成形し、スポット溶接により組み立てたものが用いられている。
【0003】
しかし、近年、地球の温暖化などの環境問題から、排ガス低減や燃費向上などを目的として自動車の軽量化が強く要請されており、この軽量化の一環として、鋼板の代わりに、軽量で、かつ複雑形状の構造物を一体で製造できるアルミニウム合金押出形材の使用が検討されている。
このような用途に対しては、現在は主として押出性、機械的性質、および耐食性などのバランスの良いJIS6063合金などのAl−Mg−Si系合金の押出材が使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のAl−Mg−Si系合金、例えば代表的な6063合金は耐力が215MPa程度と低いため、軸方向に圧縮荷重を受けた際に変形が進む平均荷重が低く、したがってエネルギ−吸収効率が低いので板厚を厚くする必要があるという問題がある。
また、JIS6061合金などの強度の高いAl−Mg−Si系合金の押出形材は衝突時の変形で割れが発生しやすく、一旦割れが発生するとそれ以降の衝撃は吸収されないので、エネルギ−吸収効率はきわめて低いものとなるという問題がある。
【0005】
本発明はかかる問題点に鑑みなされたもので、衝突時の圧縮変形を受けた際に割れが発生することがなく、エネルギ−吸収効率が高い自動車サイドメンバ−材として好適なAl−Mg−Si系合金押出形材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため鋭意検討の結果、従来のアルミニウム合金押出形材は一般に結晶粒の大きい再結晶組織を有し、このため衝突時の変形で結晶粒界に沿って割れが発生するようになるが、本発明にかかる組成を有するAl−Mg−Si系合金で構成し、特にMnとCrおよび/またはZrの量を適切な範囲に制御し、さらに押出加工直後に押出形材表面を急速に冷却することにより、押出形材の内部に繊維状組織を強く発達させて押出加工による形材表面への再結晶組織の生成を抑制し、衝突時の圧縮変形による割れが極めて発生しにくく、エネルギ−吸収効率の高い、すなわち優れた圧潰特性を有するAl−Mg−Si系合金押出形材が得られることを見い出した。
【0007】
したがって、本発明は、重量%で、Si0.8〜1.2%、Mg0.6〜0.9%、だたし、Si/Mg>1.2、Fe0.1〜0.4%、Mn0.2〜0.5%、Cr0.05〜0.25%および/またはZr0.05〜0.25%、ただし、Mn+Cr+Zr=0.35〜0.7%、Ti0.001〜0.1%、B0.0001〜0.004%を含有し、残部がAlと不可避不純物からなる組成を有する押出形材であって、該押出形材の内部組織が主として繊維状組織であるサイドメンバ−用Al−Mg−Si系合金押出形材である。また、本発明において、サイドメンバ−用Al−Mg−Si系合金押出形材の耐力を250〜290MPa、耐力と引張強さの比を0.85以上とすることが望ましい。
【0008】
本発明において、押出形材の組織は、内部組織が主として繊維状組織であることを特徴とし、押出形材の全体に亘って繊維状組織が形成されることが最も望ましいが、押出形材の表層部に再結晶組織層を有している場合であっても、その厚さが100μm以下であれば、割れが極めて発生しにくくなり、優れた圧潰特性が得られる。
本発明において、繊維状組織を強く発達させ、押出形材表面に不可避的に生成される再結晶組織層の厚さを抑制するためには、押出加工直後に押出材の表面に低温液体、例えば液体窒素を吹き付けて急速冷却すればよい。
【0009】
次に、本発明にかかるAl−Mg−Si系合金の組成限定理由について説明する。
本発明にかかるAl−Mg−Si系合金押出形材は、重量%で、Si0.8〜1.2%、Mg0.6〜0.9%、だたし、Si/Mg>1.2、Fe0.1〜0.4%、Mn0.2〜0.5%、Cr0.05〜0.25%および/またはZr0.05〜0.25%、ただし、Mn+Cr+Zr=0.35〜0.7%、Ti0.001〜0.1%、B0.0001〜0.004%を含有し、残部がAlと不可避不純物からなる組成を有する。
【0010】
SiおよびMgには、微細なMg2Si化合物として析出して強度を向上させる作用があり、SiおよびMgのいずれかの含有量がSi:0.8%未満およびMg:0.6%未満になると、Mg2Si化合物の析出量が少なくなって所望の強度を確保することができなくなる。一方、その含有量が、Si:1.2%およびMg:0.9%を超えると押出加工性および曲げ加工性が低下するとともに、衝突時の変形による割れが発生しやすくなる。したがって、Si:0.8〜1.2%、Mg:0.5〜0.9%とした。SiおよびMgの望ましい範囲は、Si:0.9 〜1.1 %、Mg:0.6 〜0.8 %である。
また、Si/Mgが1.2以下となると、曲げ加工性が低下するとともに、衝突時の変形による割れが発生しやすくなるので、Si/Mg<1.2とした。
【0011】
Fe、Mn、Cr、Zrには、Feと、Mnと、Crおよび/またはZrとが共存した状態で、均質化処理後に微細な金属間化合物が素地中に分散して押出加工時の再結晶を著しく抑制することにより繊維状組織の発達を促進し、この結果衝突時の変形による割れを発生しにくくする作用がある。しかし、その含有量がFe:0.1%未満、Mn:0.2%未満、Cr:0.05%未満、Zr:0.05%未満、およびMn+Cr+Zrが0.35%未満ではその効果が不十分であり、一方その含有量が、それぞれFe:0.4%、Mn:0.6%、Cr:0.3%、Zr:0.25%、およびMn+Cr+Zrが0.7%を超えると、粗大な金属間化合物が生成するようになり衝突時の変形による割れが発生しやすくなる。したがって、Mn:0.2〜0.6%、Cr:0.05〜0.3%および/またはZr:0.05〜0.25%、Mn+Cr+Zr=0.35〜0.7%とした。Mn、Cr、Zrの望ましい範囲は、Mn:0.25〜0.45%、Cr:0.07〜0.2 %、Zr:0.07〜0.15%、Mn+Cr+Zr=0.4〜0.6%である。なお、CrとZrは、複合添加することが望ましい。
【0012】
TiおよびBは鋳造組織を微細化し、鋳造割れを防止する作用があるが、TiおよびBのいずれかの含有量でもTi:0.001%未満およびB:0.0001%未満になると、所望の効果が得られず、一方TiおよびBのいずれかの含有量でも、Ti:0.1%およびB:0.004%を超えると、粗大な金属間化合物を生成するようになり衝突時の変形による割れが発生しやすくなる。したがって、Ti0.001〜0.1%、B0.0001〜0.004%とした。TiおよびBの望ましい範囲は、Ti:0.005〜0.05%、B:0.0005〜0.001%である。
【0013】
また本発明においては、合金成分および熱処理を制御することにより耐力を250〜290MPa、耐力と引張強さの比を0.85以上とすることが望ましい。耐力が250MPa以上で十分なエネルギ−吸収効率が得られるが、290MPaを超えると衝突時の変形による割れが発生しやすくなる傾向にあるからである。また、耐力と引張強さの比が0.85未満であると、割れが発生しやすいからである。なお、Mg,Si,Cu量の少ない合金組成の場合には、高温で、長時間の時効処理条件とし、一方、Mg,Si,Cu量の多い合金組成の場合には、低温で、短時間の時効処理条件とすることで規定の耐力を得ることが出来る。また、ピーク時効の手前の亜時効ないしはピーク時効を過ぎた過時効の処理を施すことにより、耐力と引張強さの比を規定の範囲とすることが出来る。
更に本発明のサイドメンバ−用Al−Mg−Si系合金押出形材においては、圧縮変形時の吸収エネルギーが4000J以上であることが好ましい。
【0014】
本発明にかかるAl−Mg−Si系合金押出形材は、前記の化学組成を有するアルミニウム合金ビレットを510 〜580℃で、1〜24時間均質化処理し、次いで450〜520℃に加熱した後に押出加工するが、押出しダイス通過直後に形材表面に液体窒素等の低温液体を吹き付けて急速冷却する。この急速冷却により、型材表面の再結晶を抑制する。
こうして得られた押出形材は曲げ加工後時効処理を行うか、時効処理後曲げ加工を行うか、いずれの方法を取っても良い。時効処理は150〜210℃の温度範囲で1〜24時間行えばよい。
【0015】
【発明の実施の形態】
次に、本発明を実施の形態に基づき説明する。
表1に示す試料1〜7の組成を有する204mm径の合金ビレットを常法により溶製し、これらのビレットに545℃で4時間保持する均質化処理を施した後、1650tonの押出し機を用い、押出加工を行った。押出加工は、押出温度:500℃、押出速度:5m/minで実施し、ダイス通過直後に、液体窒素吹き付け後水冷の条件で急速冷却した。引き続いてこれに温度:175℃または205℃に8時間保持の条件で時効処理を施すことにより肉厚2mm、断面54mm×70mmの寸法を持った角パイプ形状の押出形材をそれぞれ製造した。なお、表1において、試料1〜2は本発明例であり、試料3〜7は比較例である。
【0016】
得られた本発明例の押出形材および比較例の押出形材について、ミクロ組織観察、引張試験による耐力測定、および静的圧縮試験による圧潰特性評価を行った。これらの結果を表2に示す。
【0017】
【表1】

Figure 0003691254
【0018】
【表2】
Figure 0003691254
【0019】
表2に示した本発明例の押出形材である試料1〜3は、割れが発生することなくアコ−デオン状に圧縮変形し、吸収エネルギ−も4000J以上と圧潰特性に優れていた。
これに対し、比較例の押出形材である試料4〜9は十分な圧潰特性を得ることができなかった。具体的には、合金組成および耐力値が本発明の範囲外の試料3および4、ならびに175℃×8hの時効処理を施した耐力と引張強さの比が本発明範囲外の試料5は、圧縮試験で割れが発生した。試料6、7は、本用途に従来から用いられている6063合金、6061合金であるが、試料6(6063合金)は圧縮試験で割れは発生しないものの吸収エネルギ−が約3500Jと低く、圧潰特性が劣り、試料7(6061合金)には割れが発生した。
【0020】
【発明の効果】
本発明によれば、重量%で、Si0.8〜1.2%、Mg0.6〜0.9%、だたし、Si/Mg>1.2、Fe0.1〜0.4%、Mn0.2〜0.5%、Cr0.05〜0.25%および/またはZr0.05〜0.25%、ただし、Mn+Cr+Zr=0.35〜0.7%、Ti0.001〜0.1%、B0.0001〜0.004%を含有し、残部がAlと不可避不純物からなる組成を有し、その内部組織を主として繊維状組織としたので、衝突時の圧縮変形を受けた際に割れが発生することがなく、エネルギ−吸収効率が高い圧潰特性に優れたサイドメンバ−用Al−Mg−Si系合金押出形材が得られた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy extruded shape for automobile structures, and more particularly to an aluminum alloy extruded shape for side members having excellent crushing characteristics.
[0002]
[Prior art]
A side member of a car buckles and deforms in an accordion shape at the time of a collision in an engine part and a rear trunk part of the car, thereby absorbing impact energy at the time of a collision, thereby It is a member with the function to ensure the property. As this member, conventionally, a cold-rolled steel sheet is press-formed and assembled by spot welding.
[0003]
However, in recent years, due to environmental problems such as global warming, there has been a strong demand for reducing the weight of automobiles for the purpose of reducing exhaust gas and improving fuel efficiency. As part of this weight reduction, The use of an aluminum alloy extruded shape that can integrally manufacture a complex-shaped structure has been studied.
For such applications, extruded materials of Al—Mg—Si based alloys such as JIS6063 alloy having a good balance of extrudability, mechanical properties, and corrosion resistance are currently used.
[0004]
[Problems to be solved by the invention]
However, since the conventional Al—Mg—Si alloy, for example, a typical 6063 alloy has a low yield strength of about 215 MPa, the average load that causes deformation when subjected to a compressive load in the axial direction is low, and thus energy absorption efficiency. Is low, there is a problem that it is necessary to increase the plate thickness.
Also, high strength Al-Mg-Si alloy extruded profiles such as JIS6061 alloy are prone to cracking due to deformation at the time of collision, and once a crack occurs, the subsequent impact is not absorbed, so energy absorption efficiency Has the problem of becoming extremely low.
[0005]
The present invention has been made in view of such a problem, and Al-Mg-Si suitable as an automobile side member having high energy absorption efficiency without cracking when subjected to compression deformation at the time of collision. It is an object of the present invention to provide an alloy-based extruded shape.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention generally have a recrystallized structure with large crystal grains, and therefore, along the grain boundaries due to deformation at the time of collision. Although cracking will occur, it is composed of an Al-Mg-Si alloy having the composition according to the present invention, and in particular, the amount of Mn and Cr and / or Zr is controlled to an appropriate range, and immediately after extrusion processing. By rapidly cooling the surface of the extruded profile, a fibrous structure is strongly developed inside the extruded profile to suppress the formation of recrystallized structure on the profile surface due to extrusion, and cracking due to compression deformation at the time of collision It has been found that an Al-Mg-Si alloy extruded profile with extremely high energy absorption efficiency, that is, excellent crushing properties can be obtained.
[0007]
Therefore, in the present invention, Si 0.8-1.2%, Mg 0.6-0.9%, but Si / Mg> 1.2, Fe 0.1-0.4%, Mn 0.2-0.5%, Cr 0. 05 to 0.25% and / or Zr 0.05 to 0.25%, provided that Mn + Cr + Zr = 0.35 to 0.7%, Ti 0.001 to 0.1%, B0.0001 to 0.004%, with the balance being Al and inevitable impurities It is an Al-Mg-Si based alloy extruded shape for side members in which the internal structure of the extruded shape is mainly a fibrous structure. In the present invention, it is desirable that the proof stress of the Al-Mg-Si alloy extruded profile for the side member is 250 to 290 MPa, and the ratio of the proof stress and the tensile strength is 0.85 or more.
[0008]
In the present invention, the structure of the extruded profile is characterized in that the internal structure is mainly a fibrous structure, and it is most desirable that the fibrous structure is formed over the entire extruded profile. Even in the case where the surface layer portion has a recrystallized structure layer, if the thickness is 100 μm or less, cracks hardly occur, and excellent crushing characteristics can be obtained.
In the present invention, in order to strongly develop a fibrous structure and suppress the thickness of the recrystallized structure layer inevitably generated on the surface of the extruded shape material, a low-temperature liquid, for example, on the surface of the extruded material immediately after extrusion processing, What is necessary is just to cool rapidly by spraying liquid nitrogen.
[0009]
Next, the reason for limiting the composition of the Al—Mg—Si based alloy according to the present invention will be described.
The Al-Mg-Si alloy extruded profile according to the present invention is, by weight percent, Si 0.8-1.2%, Mg 0.6-0.9%, but Si / Mg> 1.2, Fe 0.1-0.4%. Mn 0.2-0.5%, Cr 0.05-0.25% and / or Zr 0.05-0.25%, provided that Mn + Cr + Zr = 0.35-0.7%, Ti 0.001-0.1%, B0.0001-0.004%, The balance has a composition composed of Al and inevitable impurities.
[0010]
Si and Mg have the action of precipitating as a fine Mg 2 Si compound to improve the strength. When the content of either Si or Mg is less than 0.8% and Mg is less than 0.6%, Mg 2 The precipitation amount of the Si compound is reduced and the desired strength cannot be ensured. On the other hand, when the content exceeds Si: 1.2% and Mg: 0.9%, extrusion workability and bending workability are lowered, and cracks due to deformation at the time of collision are likely to occur. Therefore, Si: 0.8 to 1.2%, Mg: 0.5 to 0.9%. Desirable ranges of Si and Mg are Si: 0.9 to 1.1% and Mg: 0.6 to 0.8%.
Further, when Si / Mg is 1.2 or less, bending workability is deteriorated and cracking due to deformation at the time of collision is likely to occur, so Si / Mg <1.2.
[0011]
In Fe, Mn, Cr, and Zr, Fe, Mn, and Cr and / or Zr coexist, and after the homogenization, fine intermetallic compounds are dispersed in the substrate and recrystallized during extrusion. By significantly suppressing the above, the development of the fibrous structure is promoted, and as a result, there is an effect of making it difficult to generate cracks due to deformation at the time of collision. However, if its content is less than Fe: 0.1%, Mn: less than 0.2%, Cr: less than 0.05%, Zr: less than 0.05%, and Mn + Cr + Zr is less than 0.35%, the effect is insufficient, while the content is When Fe: 0.4%, Mn: 0.6%, Cr: 0.3%, Zr: 0.25%, and Mn + Cr + Zr exceeds 0.7%, coarse intermetallic compounds are formed and cracks are generated due to deformation at the time of collision. It becomes easy to do. Therefore, Mn: 0.2-0.6%, Cr: 0.05-0.3% and / or Zr: 0.05-0.25%, Mn + Cr + Zr = 0.35-0.7%. Desirable ranges of Mn, Cr, and Zr are Mn: 0.25 to 0.45%, Cr: 0.07 to 0.2%, Zr: 0.07 to 0.15%, and Mn + Cr + Zr = 0.4 to 0.6%. Note that Cr and Zr are desirably added in combination.
[0012]
Ti and B have the effect of refining the cast structure and preventing casting cracks, but the desired effect can be obtained when the content of either Ti or B is less than 0.001% and less than 0.0001% Ti. On the other hand, if the content of either Ti or B exceeds Ti: 0.1% and B: 0.004%, a coarse intermetallic compound is generated, and cracking due to deformation at the time of collision tends to occur. Therefore, Ti 0.001 to 0.1% and B 0.0001 to 0.004%. Desirable ranges of Ti and B are Ti: 0.005 to 0.05% and B: 0.0005 to 0.001%.
[0013]
In the present invention, it is desirable that the yield strength is 250 to 290 MPa and the ratio between the yield strength and the tensile strength is 0.85 or more by controlling the alloy components and the heat treatment. This is because sufficient energy absorption efficiency can be obtained when the proof stress is 250 MPa or more, but if it exceeds 290 MPa, cracking due to deformation at the time of collision tends to occur. Also, if the ratio of proof stress to tensile strength is less than 0.85, cracks are likely to occur. In the case of an alloy composition with a small amount of Mg, Si, Cu, aging treatment conditions are set at a high temperature for a long time. On the other hand, in the case of an alloy composition with a large amount of Mg, Si, Cu, at a low temperature for a short time. The specified proof stress can be obtained by using the aging treatment conditions of. Moreover, the ratio of the proof stress and the tensile strength can be within a specified range by performing a sub-aging before the peak aging or an over-aging treatment after the peak aging.
Furthermore, in the Al-Mg-Si alloy extruded profile for side members of the present invention, the absorbed energy during compression deformation is preferably 4000 J or more.
[0014]
The Al-Mg-Si alloy extruded profile according to the present invention is obtained by homogenizing an aluminum alloy billet having the above chemical composition at 510 to 580 ° C for 1 to 24 hours and then heating to 450 to 520 ° C. Extrusion is performed, but immediately after passing through the extrusion die, a low-temperature liquid such as liquid nitrogen is sprayed on the surface of the shape material to rapidly cool it. This rapid cooling suppresses recrystallization of the mold surface.
The extruded profile thus obtained may be subjected to either aging treatment after bending or bending after aging treatment. The aging treatment may be performed at a temperature range of 150 to 210 ° C. for 1 to 24 hours.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described based on embodiments.
204 mm diameter alloy billets having the compositions of Samples 1 to 7 shown in Table 1 were melted by a conventional method, and after homogenization treatment was performed on these billets at 545 ° C. for 4 hours, a 1650 ton extruder was used. Extrusion processing was performed. Extrusion was carried out at an extrusion temperature of 500 ° C. and an extrusion speed of 5 m / min. Immediately after passing through the die, it was rapidly cooled under the condition of water cooling after spraying with liquid nitrogen. Subsequently, this was subjected to an aging treatment at a temperature of 175 ° C. or 205 ° C. for 8 hours, thereby producing square pipe-shaped extruded shapes having a thickness of 2 mm and a cross section of 54 mm × 70 mm. In Table 1, Samples 1 and 2 are examples of the present invention, and Samples 3 to 7 are comparative examples.
[0016]
The obtained extruded profile of the present invention and the extruded profile of the comparative example were subjected to microstructure observation, yield strength measurement by a tensile test, and evaluation of crushing characteristics by a static compression test. These results are shown in Table 2.
[0017]
[Table 1]
Figure 0003691254
[0018]
[Table 2]
Figure 0003691254
[0019]
Samples 1 to 3 which are extruded shapes of the examples of the present invention shown in Table 2 were compressed and deformed in an accordion shape without cracking, and the absorbed energy was 4000 J or more and excellent in crushing characteristics.
On the other hand, Samples 4 to 9, which are extruded shapes of comparative examples, could not obtain sufficient crushing characteristics. Specifically, samples 3 and 4 whose alloy composition and proof stress values are outside the scope of the present invention, and sample 5 whose ratio of proof stress and tensile strength subjected to aging treatment at 175 ° C. × 8 h is outside the scope of the present invention, Cracks occurred in the compression test. Samples 6 and 7 are 6063 alloy and 6061 alloy conventionally used in this application, but sample 6 (6063 alloy) does not generate cracks in the compression test, but its absorbed energy is low at about 3500 J, and its crushing characteristics The sample 7 (6061 alloy) was cracked.
[0020]
【The invention's effect】
According to the present invention, by weight, Si 0.8-1.2%, Mg 0.6-0.9%, but Si / Mg> 1.2, Fe 0.1-0.4%, Mn 0.2-0.5%, Cr 0. A composition containing 05 to 0.25% and / or Zr 0.05 to 0.25%, except that Mn + Cr + Zr = 0.35 to 0.7%, Ti 0.001 to 0.1%, and B0.0001 to 0.004%, with the balance being Al and inevitable impurities. Since the internal structure is mainly a fibrous structure, there is no cracking when subjected to compressive deformation at the time of collision, and the energy absorption efficiency is high. An Mg-Si alloy extruded profile was obtained.

Claims (6)

重量%で、Si0.8〜1.2%、Mg0.6〜0.9%、だたし、Si/Mg>1.2、Fe0.1〜0.4%、Mn0.2〜0.5%、Cr0.05〜0.25%および/またはZr0.05〜0.25%、ただし、Mn+Cr+Zr=0.35〜0.7%、Ti0.001〜0.1%、B0.0001〜0.004%を含有し、残部がAlと不可避不純物からなる組成を有する押出形材であって、該押出形材の内部組織が主として繊維状組織であることを特徴とするサイドメンバ−用Al−Mg−Si系合金押出形材。  In weight percent, Si 0.8-1.2%, Mg 0.6-0.9%, but Si / Mg> 1.2, Fe 0.1-0.4%, Mn 0.2-0.5%, Cr 0.05-0.25% and / or Or Zr 0.05 to 0.25%, except that Mn + Cr + Zr = 0.35 to 0.7%, Ti 0.001 to 0.1%, B 0.0001 to 0.004%, and the balance is a composition composed of Al and inevitable impurities. In addition, an Al-Mg-Si alloy extruded shape for side members, wherein the internal structure of the extruded shape is mainly a fibrous structure. 前記押出形材の表層部の再結晶組織層の厚さが100μm以下である請求項1に記載のサイドメンバ−用Al−Mg−Si系合金押出形材。For Al-Mg-Si series alloy extruded shapes - side member according to claim 1, wherein a thickness of the recrystallized structure layer of the surface layer portion of the extruded shape member is 100μm or less. 前記押出形材の耐力が250〜290MPa、耐力と引張強さの比が0.85以上である請求項1または2に記載のサイドメンバ−用Al−Mg−Si系合金押出形材。The Al-Mg-Si alloy extruded shape for side members according to claim 1 or 2, wherein the extruded shape has a yield strength of 250 to 290 MPa and a ratio of the yield strength to the tensile strength of 0.85 or more. 圧縮変形時の吸収エネルギーが4000J以上であることを特徴とする請求項1ないし請求項3のいずれかに記載のサイドメンバ−用Al−Mg−Si系合金押出形材。  The Al-Mg-Si alloy extruded profile for a side member according to any one of claims 1 to 3, wherein the absorbed energy at the time of compressive deformation is 4000 J or more. 重量%で、Si0.8〜1.2%、Mg0.6〜0.9%、だたし、Si/Mg>1.2、Fe0.1〜0.4%、Mn0.2〜0.5%、Cr0.05〜0.25%および/またはZr0.05〜0.25%、ただし、Mn+Cr+Zr=0.35〜0.7%、Ti0.001〜0.1%、B0.0001〜0.004%を含有し、残部がAlと不可避不純物からなる組成を有し、残部がAlと不可避不純物からなる組成を有する合金を押出加工するに際し、押出ダイス通過直後に被押出形材表面を急速冷却することを特徴とするサイドメンバ−用Al−Mg−Si系合金押出形材の製造方法。  % By weight, Si 0.8-1.2%, Mg 0.6-0.9%, but Si / Mg> 1.2, Fe 0.1-0.4%, Mn 0.2-0.5%, Cr 0.05-0.25% and / or Or Zr 0.05 to 0.25%, except that Mn + Cr + Zr = 0.35 to 0.7%, Ti 0.001 to 0.1%, B 0.0001 to 0.004%, the balance is composed of Al and inevitable impurities, and the balance is Al Of an Al-Mg-Si alloy for a side member, which is rapidly cooled immediately after passing through an extrusion die when an alloy having a composition consisting of inevitable impurities is extruded. Method. 急速冷却を液体窒素を吹き付けることにより行う請求項5に記載のサイドメンバ−用Al−Mg−Si系合金押出形材の製造方法。6. The method for producing an Al-Mg-Si alloy extruded profile for a side member according to claim 5, wherein the rapid cooling is performed by spraying liquid nitrogen.
JP22502098A 1998-08-07 1998-08-07 Al-Mg-Si alloy extruded profile for side member and method for producing the same Expired - Fee Related JP3691254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22502098A JP3691254B2 (en) 1998-08-07 1998-08-07 Al-Mg-Si alloy extruded profile for side member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22502098A JP3691254B2 (en) 1998-08-07 1998-08-07 Al-Mg-Si alloy extruded profile for side member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000054051A JP2000054051A (en) 2000-02-22
JP3691254B2 true JP3691254B2 (en) 2005-09-07

Family

ID=16822823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22502098A Expired - Fee Related JP3691254B2 (en) 1998-08-07 1998-08-07 Al-Mg-Si alloy extruded profile for side member and method for producing the same

Country Status (1)

Country Link
JP (1) JP3691254B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135077B2 (en) * 2000-05-24 2006-11-14 Pechiney Rhenalu Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products
JP4541969B2 (en) * 2005-05-13 2010-09-08 日本軽金属株式会社 Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
JP5166702B2 (en) * 2006-03-30 2013-03-21 トヨタ自動車株式会社 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
CN103911533A (en) * 2014-04-26 2014-07-09 广东兴发铝业有限公司 Formula of 6061 aluminum alloy extrusion section for refrigerated container
CN111041289A (en) * 2019-12-18 2020-04-21 山东友升铝业有限公司 6005A aluminum alloy for automobile and energy absorption box processing method
CN114959374B (en) * 2022-05-30 2023-08-29 中国科学院长春应用化学研究所 High-extrudability high-strength aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2000054051A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
EP2878692A1 (en) High-strength aluminum-base alloy products and process for production thereof
CN114592147B (en) Aluminum alloy section and preparation method thereof
JP2001262264A (en) Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP3791408B2 (en) Method for producing extruded aluminum alloy material excellent in bending workability and energy absorption characteristics
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP4111651B2 (en) Al-Mg-Si aluminum alloy extruded material for door beam and door beam
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
EP4368735A1 (en) High-strength and high-toughness impact-resistant energy-absorbing al-mg-si alloy
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP3676090B2 (en) Al-Mg-Si alloy extruded profile for side members
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JP3248255B2 (en) Al-Mg-Si alloy material for cryogenic forming
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP2001355032A (en) Aluminum alloy extruded material having excellent impact absorptivity
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JP4611543B2 (en) Energy absorbing member in automobile frame structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees