JPH108172A - Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material - Google Patents

Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material

Info

Publication number
JPH108172A
JPH108172A JP8177059A JP17705996A JPH108172A JP H108172 A JPH108172 A JP H108172A JP 8177059 A JP8177059 A JP 8177059A JP 17705996 A JP17705996 A JP 17705996A JP H108172 A JPH108172 A JP H108172A
Authority
JP
Japan
Prior art keywords
weight
strength
content
alloy
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8177059A
Other languages
Japanese (ja)
Inventor
Masahito Yatsukura
政仁 谷津倉
Takayuki Tsuchida
孝之 土田
Hajime Kamio
一 神尾
Masaharu Morohashi
雅晴 諸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nikkei Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Shin Nikkei Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nikkei Co Ltd, Nippon Light Metal Co Ltd filed Critical Shin Nikkei Co Ltd
Priority to JP8177059A priority Critical patent/JPH108172A/en
Publication of JPH108172A publication Critical patent/JPH108172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an alloy high in the extruding rate and having high strength by prescribing the alloy components and melting starting temp. SOLUTION: This alloy contains, by weight, 0.2 to 0.9% Cu, 0.6 to 1.1% Si, 0.4 to 1.0% Mg, and prescribed amounts of Fe, Mn, Cr, Ti and B. Then, the components are set so as to regulate the melting starting temp. T defined by T( deg.C)=667-21%Cu-42×%Si-38×Mg to >=585 deg.C. Furthermore, by suitably regulating the casting conditions, homogenizing treatment to a billet and the conditions of extruding and aging treatment, the material strength of >=350N/mm<2> tensile strength and >=330N/mm<2> 0.2% proof stress can be obtd. Thus, it is usable instead of steels, and the remarkable lightening of various apparatus and structural bodies is made possible. Furthermore, the material extrudable at the extruding rate equivalent to that in 6061 alloys good in extrudabilidty can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建材,車両等の構造材
として使用され、押出し性に優れた高強度Al−Mg−
Si系合金及び押出し形材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a structural material for building materials, vehicles, and the like, and has a high extrudability and high strength.
The present invention relates to a method for producing a Si-based alloy and an extruded profile.

【0002】[0002]

【従来の技術】トラック用の根太や桁材,建造物用の柱
や梁材,カーテンウォールの方立,ファスナー材や横材
等の構造物を軽量化するため、従来の鋼材に替えてアル
ミ材を使用する傾向が強まっている。アルミ材を構造材
として使用するためには、押出し加工によって複雑な断
面形状が得られ、且つ剛性を考慮した設計が可能となる
アルミ合金が必要とされる。一般的な押出し用アルミ合
金である6063,6061等は、押出し性が優れてい
るため複雑な断面形状に押し出すことができる。しか
し、鋼材SS400に比較して強度が劣るため、厚肉で
大型の断面形状が余儀なくされ、コストの高い製品とな
る。6000系合金では、Mg2 Si,過剰Si,Cu
量を増加させ、或いはMn,Cr,Zr等の繊維元素を
添加することにより強度を高めたものもあるが、押出し
加工時に形材表面に肌荒れやテアリングが発生し易く、
そのため押し出し速度を低く設定せざるをえない。ま
た、押出し圧力が高く、ダイス寿命を低下させる外、製
造可能な断面形状に制約を受けることもある。押出し前
にビレットの加熱温度を高めることにより押出し圧力を
低下させ、押出し速度を上げることができる。しかし、
押出し形材が昇温するため、材料が部分的に溶融し、肌
荒れ,テアリング等が発生し易くなる。そのため、素材
温度を高く設定して押出し速度を上昇させることには限
界がある。
2. Description of the Related Art In order to reduce the weight of structures such as joists and girders for trucks, pillars and beams for buildings, cubicles for curtain walls, fasteners and cross members, aluminum is used instead of conventional steel. The tendency to use wood is increasing. In order to use an aluminum material as a structural material, an aluminum alloy that can obtain a complicated cross-sectional shape by extrusion and can be designed in consideration of rigidity is required. Common extrusion aluminum alloys such as 6063 and 6061 have excellent extrudability and can be extruded into a complicated cross-sectional shape. However, since the strength is inferior to that of the steel material SS400, a thick and large cross-sectional shape is inevitable, resulting in a high cost product. In a 6000 series alloy, Mg 2 Si, excess Si, Cu
Some of them have increased their strength by increasing the amount or by adding fiber elements such as Mn, Cr, Zr, etc. However, roughening and tearing are likely to occur on the profile surface during extrusion.
Therefore, the extrusion speed must be set low. In addition, the extrusion pressure is high, and the life of the die is shortened. In addition, the cross-sectional shape that can be manufactured may be restricted. By increasing the heating temperature of the billet before extrusion, the extrusion pressure can be reduced and the extrusion speed can be increased. But,
Since the temperature of the extruded material rises, the material is partially melted, and roughening, tearing, and the like are likely to occur. Therefore, there is a limit in setting the material temperature high and increasing the extrusion speed.

【0003】[0003]

【発明が解決しようとする課題】一般構造用に使用され
ている鋼材SS400は、実際の引張強さが400〜5
10N/mm2 ,降伏点が245N/mm2 以上となっ
ている。そのため、SS400を構造材として使用する
構造物では、設計値決定上の諸計算の結果から材料の基
準強度を245N/mm2 として設計している。これを
アルミ材に当て嵌めると、アルミ材の材料強度は、引張
強さ305N/mm2 以上,0.2%耐力245N/m
2 以上と設定した。最低保証値としてこのような機械
的性質を満足するアルミ材が得られると、SS400で
設計していた構造材を軽量のアルミ材で置き換えること
が可能になり、構造体の大幅な軽量化が図られる。本発
明は、このような要求に応えるべく案出されたものであ
り、従来の高強度アルミニウム合金では得られていない
高い押出し速度で押し出すことができ、しかも鋼材SS
400の構造設計基準強度以上の強度を示すアルミニウ
ム合金を得ることを目的とする。
The steel SS400 used for general structures has an actual tensile strength of 400-5.
10 N / mm 2 , and the yield point is 245 N / mm 2 or more. Therefore, in a structure using SS400 as a structural material, the reference strength of the material is designed to be 245 N / mm 2 from the results of various calculations in determining the design values. When this is applied to an aluminum material, the material strength of the aluminum material is 305 N / mm 2 or more in tensile strength and 245 N / m in 0.2% proof stress.
m 2 or more. When an aluminum material that satisfies such mechanical properties is obtained as the minimum guaranteed value, it is possible to replace the structural material designed in SS400 with a lightweight aluminum material, and the structure can be significantly reduced in weight. Can be The present invention has been devised to meet such a demand, and can be extruded at a high extrusion speed which cannot be obtained with a conventional high-strength aluminum alloy.
An object of the present invention is to obtain an aluminum alloy having a strength equal to or higher than a structural design standard strength of 400.

【0004】[0004]

【課題を解決するための手段】本発明の構造材料用高強
度Al−Mg−Si系合金は、その目的を達成するた
め、Cu:0.2〜0.9重量%,Si:0.6〜1.
1重量%,Mg:0.4〜1.0重量%,Fe:0.1
〜0.3重量%,Mn:0.2〜0.5重量%,Cr:
0.1〜0.3重量%,Ti:0.005〜0.05重
量%,B:0.001〜0.01重量%を含み、T
(℃)=667−21×%Cu−42×%Si−38×
%Mgで定義される溶融開始温度Tが585℃以上とな
るように成分設計された組成をもつことを特徴とする。
このAl−Mg−Si系合金は、更にZr:0.05〜
0.2重量%を含むことができる。Si含有量及びMg
含有量は、Si含有量−Mg含有量の座標系でA点
(0.8,1.0),B点(0.6,0.4),C点
(1.1,0.4)及びD点(1.1,0.8)で区画
される領域A−B−C−D内にあることが好ましい。M
n,Cr及びZrの合計含有量は、0.3〜0.8重量
%の範囲に調整されていることが好ましい。また、構造
材料用高強度Al−Mg−Si系合金押出し形材は、微
細化剤添加後120分以内にDC鋳造し、200℃/時
以下の昇温速度,高温保持500〜580℃×1〜12
時間、冷却速度200〜500℃/時の均質化処理を施
し、予熱430〜520℃×1〜60分,押出し直後の
形材表面温度500〜555℃の条件下で押し出し、形
材の表面温度430℃以上から水冷するプレス端焼入れ
を施し、次いで170〜200℃×1〜12時間保持し
た後空冷する時効処理を施すことにより製造される。
SUMMARY OF THE INVENTION The high-strength Al-Mg-Si alloy for structural materials of the present invention has a Cu content of 0.2 to 0.9% by weight and a Si content of 0.6. ~ 1.
1% by weight, Mg: 0.4 to 1.0% by weight, Fe: 0.1
To 0.3% by weight, Mn: 0.2 to 0.5% by weight, Cr:
0.1 to 0.3% by weight, Ti: 0.005 to 0.05% by weight, B: 0.001 to 0.01% by weight,
(° C) = 667-21 ×% Cu-42 ×% Si-38 ×
It is characterized by having a composition designed so that the melting start temperature T defined by% Mg is 585 ° C. or higher.
This Al-Mg-Si alloy further has a Zr: 0.05-
0.2% by weight. Si content and Mg
The content is represented by a point A (0.8, 1.0), a point B (0.6, 0.4), and a point C (1.1, 0.4) in a coordinate system of Si content-Mg content. It is preferable to be within the area ABCD defined by the points A and D (1.1, 0.8). M
It is preferable that the total content of n, Cr and Zr is adjusted in the range of 0.3 to 0.8% by weight. The extruded high-strength Al-Mg-Si alloy for structural materials is DC-cast within 120 minutes after the addition of the refining agent, and is heated at a rate of 200 ° C / hour or less and maintained at a high temperature of 500 to 580 ° C x 1 ~ 12
Time, cooling rate 200-500 ° C / hour, homogenization treatment, preheating 430-520 ° C x 1-60 minutes, extruding under the condition of profile surface temperature 500-555 ° C immediately after extrusion, surface temperature of profile It is manufactured by quenching a press end that is water-cooled from 430 ° C. or higher, then holding at 170 to 200 ° C. × 1 to 12 hours, and then performing an aging treatment of air cooling.

【0005】[0005]

【作用】一般構造用圧延鋼材SS400の設計強度基準
強度を満足するためには、アルミ材の最低保証値として
305N/mm2 以上の引張強さ且つ245N/mm2
以上の0.2%耐力が必要である。更に、製造コストの
面から、押出し性の良好な6000系の6061合金に
匹敵する押出し性をもつことが必要と設定した。このよ
うな前提で、本発明者等は、SS400と同じ形状でア
ルミニウム合金押出し材の時効処理材と置き替えるべ
く、T6処理後の強度が引張強さ350N/mm2
上,0.2%耐力330N/mm2 以上で、且つ606
1合金と同等の押出し速度で押し出すことができる材料
を調査・研究した。その結果、合金成分を特定すると共
に、667−21×%Cu−42×%Si−38×%M
gで定義される溶融開始温度Tが585℃以上となるよ
うに成分調整するとき、強度及び押出し性の双方に優れ
たアルミニウム合金押出し形材が得られることを見い出
した。押出し性については、ピックアップ,肌荒れ,テ
アリング等の欠陥が表面に発生がない押出し形材が得ら
れる限界押出し速度を判定基準とした。因みに、606
1合金と同等以上の押出し速度とは、形材の形状によっ
ても異なるが、たとえば高さ150mm,幅50mm,
肉厚2mmの中空矩形状ホロー材では8m/分以上の押
出し速度である。
In order to satisfy the design strength standard strength of the rolled steel for general structure SS400, the minimum guaranteed value of the aluminum material is a tensile strength of 305 N / mm 2 or more and 245 N / mm 2.
The above 0.2% proof stress is required. Further, from the viewpoint of production cost, it is set that the extrudability is required to be comparable to that of the 6000 series 6061 alloy having good extrudability. Under such a premise, the present inventors, in order to replace the aging material of the extruded aluminum alloy with the same shape as SS400, the strength after T6 treatment has a tensile strength of 350 N / mm 2 or more, 0.2% proof stress. 330 N / mm 2 or more and 606
Materials that can be extruded at the same extrusion speed as one alloy were investigated and studied. As a result, while specifying the alloy components, 667-21 ×% Cu-42 ×% Si-38 ×% M
It has been found that when the composition is adjusted so that the melting start temperature T defined by g becomes 585 ° C. or higher, an aluminum alloy extruded profile excellent in both strength and extrudability can be obtained. With respect to the extrudability, the limit extrusion speed at which an extruded profile having no defects such as pickup, rough skin, tearing and the like on the surface was obtained was used as a criterion. By the way, 606
The extrusion speed equal to or higher than that of one alloy differs depending on the shape of the shape material, but is, for example, 150 mm in height, 50 mm in width,
With a hollow rectangular hollow material having a thickness of 2 mm, the extrusion speed is 8 m / min or more.

【0006】以下、本発明のアルミニウム合金の合金成
分,含有量,製造条件等について説明する。 Cu:0.2〜0.9重量% S’−CuMgAl又はAl−Cu系の化合物を形成
し、析出硬化によってAl−Mg−Si系合金の強度を
向上させる作用を呈する。特にMg及びSi添加によっ
て付与された強度が、部材に要求される強度を満足でき
ない場合に有効な合金成分として添加される。このよう
な作用は、0.2重量%以上のCu含有量で顕著にな
る。しかし、0.9重量%を超えるCu含有量では、押
出し時のビレットの溶融開始温度の低下及び熱間変形抵
抗値の上昇を招き、良品を得るために押出し速度を遅く
することが要求される。また、Cu含有量の増加に伴っ
て、耐食性も低下する。 Si:0.6〜1.1重量% 主としてMgと結合し、β’−Mg2 Siの析出硬化で
強度を上昇させる。また、本発明では、Mg2 Siの生
成に必要な量以上のSiを添加している。この過剰Si
は、押出し時の熱間変形抵抗を下げ、押出し速度を効果
的に上昇させる。この作用は、0.6重量%以上のSi
含有量で顕著になる。しかし、1.1重量%を超える多
量のSiが含まれると、ビレットの溶融開始温度を下
げ、表面性状の良好な製品を得るためには押出し速度を
遅くしなければならない。
Hereinafter, alloy components, contents, production conditions, and the like of the aluminum alloy of the present invention will be described. Cu: 0.2 to 0.9% by weight S'-CuMgAl or an Al-Cu-based compound is formed, and has an effect of improving the strength of the Al-Mg-Si-based alloy by precipitation hardening. In particular, when the strength imparted by the addition of Mg and Si cannot satisfy the strength required for the member, it is added as an effective alloy component. Such an effect becomes remarkable at a Cu content of 0.2% by weight or more. However, if the Cu content exceeds 0.9% by weight, the melting start temperature of the billet at the time of extrusion is reduced and the hot deformation resistance is increased, and it is necessary to reduce the extrusion speed to obtain a good product. . In addition, the corrosion resistance decreases as the Cu content increases. Si: 0.6 to 1.1% by weight Mainly binds to Mg, and increases the strength by precipitation hardening of β′-Mg 2 Si. Further, in the present invention, Si is added in an amount more than necessary for the generation of Mg 2 Si. This excess Si
Reduces the hot deformation resistance during extrusion and effectively increases the extrusion speed. This effect is caused by the fact that at least 0.6% by weight of Si
It becomes remarkable in the content. However, when a large amount of Si exceeding 1.1% by weight is contained, the melting start temperature of the billet must be lowered and the extrusion speed must be reduced in order to obtain a product having good surface properties.

【0007】Mg:0.4〜1.0重量% マトリックスを固溶強化すると共に、SiやCuと結合
しβ’−Mg2 SiやS’−CuMgAl2 として析出
し、析出硬化により強度を向上させる。Mgによる析出
硬化作用は、0.4重量%以上のMg含有量で顕著にな
る。しかし、1.0重量%を超えてMgを添加しても、
押出し加工後の熱処理で強度を付与できず、却って熱間
変形抵抗値の上昇やビレットの溶融開始温度の低下を招
き、押出し形材の肌荒れ等の原因となる。 Fe:0.1〜0.3重量% 鋳造時、Al−Fe−Si系の晶出物を形成し、続くビ
レットの均質化処理を経て押出し加工中に分断されるこ
とにより微細化し、再結晶粒界の移動をピンニングし、
再結晶粒の粗大化を防止することによって強度を向上さ
せる。Feの作用は0.1重量%以上の含有量で顕著に
なるが、0.3重量%を超える多量のFeが含まれると
粗大なAl−Fe−Si系化合物が生成し、押出し材の
表面に肌荒れ等が発生し易くなる。また、Al(Fe,
M)Si系晶出物(MはMn,Crをさす)を生成し、
Mn,Cr等の再結晶抑制効果を阻害する傾向がみられ
Mg: 0.4-1.0% by weight While strengthening the solid solution of the matrix, combining with Si or Cu and precipitating as β'-Mg 2 Si or S'-CuMgAl 2 , improving the strength by precipitation hardening. Let it. The precipitation hardening effect by Mg becomes remarkable at a Mg content of 0.4% by weight or more. However, even if Mg is added in excess of 1.0% by weight,
Heat treatment after extrusion processing cannot provide strength, but rather increases the hot deformation resistance value and lowers the melting start temperature of the billet, and causes roughening of the extruded profile. Fe: 0.1 to 0.3% by weight At the time of casting, an Al-Fe-Si crystallized substance is formed, and after the subsequent billet homogenization treatment, it is divided during extrusion processing to be refined and recrystallized. Pinning the movement of grain boundaries,
Strength is improved by preventing coarsening of recrystallized grains. The effect of Fe becomes remarkable at a content of 0.1% by weight or more, but when a large amount of Fe exceeding 0.3% by weight is contained, a coarse Al—Fe—Si compound is generated, and the surface of the extruded material is formed. The surface is likely to be rough. Al (Fe,
M) Produces Si-based crystallization (M represents Mn and Cr)
There is a tendency to inhibit the effect of suppressing recrystallization of Mn, Cr, etc.

【0008】Mn:0.2〜0.5重量% 均質化処理でサブミクロンサイズのAl−Mn系金属間
化合物を形成し、押出し加工中に生じる再結晶粒界の移
動をピンニングし、再結晶化を防止することによって強
度を向上させる。Mnの作用は0.2重量%以上の含有
量で顕著になるが、0.5重量%を超えるMn含有量で
はMnがMg2 Siの析出サイトとして作用することに
起因し、焼入れ感受性を高め、焼入れの効果を低減す
る。また、Al(Fe,M)Si系の晶出物を粗大化
し、押出し形材の表面状態を悪化させる。 Cr:0.1〜0.3重量% Mnと同様に均質化処理後にサブミクロンサイズのAl
−Cr系化合物を形成し、再結晶化を防止することによ
りアルミニウム合金の強度を向上させる。このような作
用は、0.1重量%以上のCr含有量で顕著になる。し
かし、0.3重量%を超える多量のCrを含有させる
と、Mnと同様にMg2 Siの析出サイトとして作用す
ることに起因し、焼入れ感受性を高め、焼入れの効果を
低減する。また、Al(Fe,M)Si系の晶出物を粗
大化し、押出し形材の表面状態を悪化させる。
Mn: 0.2-0.5% by weight An Al-Mn intermetallic compound having a submicron size is formed by homogenization treatment, and the movement of recrystallized grain boundaries generated during extrusion is pinned, and recrystallization is performed. By improving the strength, the strength is improved. The effect of Mn becomes remarkable at a content of 0.2% by weight or more, but when the content of Mn exceeds 0.5% by weight, Mn acts as a precipitation site of Mg 2 Si, thereby increasing quenching sensitivity. , Reduce the effect of quenching. In addition, the Al (Fe, M) Si crystallized material is coarsened, and the surface condition of the extruded material is deteriorated. Cr: 0.1-0.3% by weight Subhomogeneous Al after homogenization as in Mn
-Improve the strength of the aluminum alloy by forming a Cr-based compound and preventing recrystallization. Such an effect becomes remarkable at a Cr content of 0.1% by weight or more. However, when Cr is contained in a large amount exceeding 0.3% by weight, it acts as a precipitation site of Mg 2 Si like Mn, so that quenching sensitivity is increased and the effect of quenching is reduced. In addition, the Al (Fe, M) Si crystallized material is coarsened, and the surface condition of the extruded material is deteriorated.

【0009】Ti:0.005〜0.05重量% 鋳塊の結晶粒微細化に有効な合金成分であり、鋳造割れ
を防止し、熱間変形抵抗値を下げ、押出し速度を高める
作用を呈する。このような作用は、0.005重量%以
上のTi含有量で顕著になり、Bとの複合添加によって
更に高められる。しかし、0.05重量%を超える多量
のTiが含まれると、Al−Ti系の粗大な粒子が生成
され、押出し時に形材の表面欠陥が発生し易くなる。 B:0.001〜0.01重量% Tiと同様に鋳塊の結晶粒を微細化し、鋳造割れを防止
する作用を呈する。このような作用は、0.001重量
%以上のB含有量で顕著になる。しかし、0.01重量
%を超える多量のBが含まれると、Al−B系やTi−
B系の粗大な粒子を生成し、押出し時に形材の表面欠陥
が発生し易くなる。
Ti: 0.005 to 0.05% by weight An alloy component effective for refining the crystal grains of an ingot, which prevents casting cracks, reduces hot deformation resistance, and increases extrusion speed. . Such an effect becomes remarkable at a Ti content of 0.005% by weight or more, and is further enhanced by the combined addition with B. However, when a large amount of Ti exceeding 0.05% by weight is contained, coarse particles of Al-Ti system are generated, and surface defects of the shaped material easily occur during extrusion. B: 0.001 to 0.01% by weight Similar to Ti, it has the effect of refining the crystal grains of the ingot and preventing casting cracks. Such an effect becomes remarkable at a B content of 0.001% by weight or more. However, when a large amount of B exceeding 0.01% by weight is contained, Al-B and Ti-
B-type coarse particles are generated, and surface defects of the shaped material are easily generated at the time of extrusion.

【0010】Zr:0.05〜0.2重量% 必要に応じて添加される合金成分であり、ビレットの均
質化処理後、サブミクロンサイズ(0.05μm以下)
のAl−Zr系化合物(Al3 Zr)を形成し、押出し
中の再結晶化を防止することにより、押出し材に繊維状
の組織を形成させ、強度及び耐応力腐食割れ性を向上さ
せる。このような作用は、0.05重量%以上のZrが
含まれると顕著になる。しかし、0.2重量%を超える
多量のZrが含まれると、Mn,Cr等と同様にMg2
Siの析出サイトとしてAl−Zr系化合物が作用する
ことに起因し、焼入れ感受性を高め、焼入れ効果を低減
する。また、Al−Zr系の晶出物を粗大化させ、押出
し材の表面状態を悪化させる。本発明のアルミニウム合
金においては、Mn,Cr,Zr等の複合添加により再
結晶を強固に防止し、強度の向上を図っている。これら
添加成分による再結晶抑制作用はMn,Cr,Zr等の
合計含有量が0.3重量%以上で顕著になるが、合計含
有量が0.8重量%を超えると鋳造時に巨大な晶出物が
生成し、押出し時に形材に表面欠陥を発生させる原因と
なる。また、焼入れ感受性を高め、プレス焼入れ性が著
しく損なわれる。このようなことから、Mn+Cr又は
Mn+Cr+Zrの合計含有量は、0.3〜0.8重量
%の範囲に調整することが好ましい。
Zr: 0.05-0.2% by weight An alloy component added as necessary. After homogenizing the billet, it has a submicron size (0.05 μm or less).
By forming an Al-Zr-based compound (Al 3 Zr) and preventing recrystallization during extrusion, a fibrous structure is formed in the extruded material, and strength and stress corrosion cracking resistance are improved. Such an effect becomes remarkable when Zr is contained in an amount of 0.05% by weight or more. However, when it contains a large amount of Zr in excess of 0.2 wt%, Mn, similarly to Cr, Mg 2
The quenching sensitivity is increased and the quenching effect is reduced due to the Al-Zr-based compound acting as a Si deposition site. In addition, the Al-Zr-based crystallized product is coarsened, and the surface state of the extruded material is deteriorated. In the aluminum alloy of the present invention, recrystallization is firmly prevented by the complex addition of Mn, Cr, Zr, etc., and the strength is improved. The recrystallization inhibiting action of these added components becomes remarkable when the total content of Mn, Cr, Zr, etc. is 0.3% by weight or more, but when the total content exceeds 0.8% by weight, huge crystallization occurs during casting. A product is generated, which causes surface defects in the profile during extrusion. In addition, quenching sensitivity is increased, and press quenching property is significantly impaired. For this reason, it is preferable to adjust the total content of Mn + Cr or Mn + Cr + Zr to a range of 0.3 to 0.8% by weight.

【0011】Mg含有量とSi含有量との関係 本発明のアルミニウム合金は、時効処理で析出するβ’
−Mg2 Siの析出硬化により高い材料強度が付与され
る。このとき、計算値のMg2 Si量[Mg2 Si=M
g%(1/1.73+1)]に比較してSiを過剰に添
加することが必要である。過剰Siは、押出し時の熱間
変形抵抗を下げ、押出し速度を上昇させる。しかし、S
iを過剰に添加しすぎると、材料の溶融開始温度が下が
り、押出し形材の表面状態が悪化する。本発明者等は、
Mg含有量との関係でSi含有量を調査した結果、図1
のA−B−C−D領域内にSi含有量及びMg含有量が
調整されていると、表面状態の良好な押出し形材を高押
出し速度で製造できることを見い出した。A−B−C−
D領域内にSi含有量及びMg含有量があると、目標と
する引張強さ及び0.2%耐力が得られ、且つ限界押出
し速度(押出し形材の表面に肌荒れが発生しない生産上
の最高速度)も6061と同等又はそれ以上の速度に設
定でき、高生産性で押出し形材が製造できる。A−B−
C−D領域内は、本発明者等による多数の実験結果から
定められたものであるが、この領域を外れると目標とす
る機械的性質をもつ押出し形材を高押出し速度で得られ
ない。すなわち、直線A−Bより左側の領域では、過剰
Si量が少なく、Mg2 Siが微細均一に析出せず、強
度が十分でない。直線B−Cより下側の領域では、Mg
量が不足し、Mg2 Siの析出量が少ないため十分な強
度が得られない。直線C−Dより右側の領域では、過剰
Siが多すぎ、押出し中の溶融温度が降下し、肌荒れが
発生し易くなる。直線A−Dより上側の領域では、Mg
含有量が多すぎ、押出し圧力が上昇して複雑形状の形材
の押出しが困難になると共に、押出し中の溶融温度が降
下して肌荒れが発生し易くなる。
Relationship between Mg Content and Si Content The aluminum alloy of the present invention has β ′
High material strength is imparted by the precipitation hardening of -mg 2 Si. At this time, the calculated value of Mg 2 Si amount [Mg 2 Si = M
g% (1 / 1.73 + 1)], it is necessary to add Si in excess. Excess Si lowers the hot deformation resistance during extrusion and increases the extrusion speed. However, S
If i is added excessively, the melting start temperature of the material decreases, and the surface state of the extruded shape material deteriorates. The present inventors,
As a result of examining the Si content in relation to the Mg content, FIG.
It has been found that when the Si content and the Mg content are adjusted in the ABCD region of the above, an extruded profile having a good surface condition can be produced at a high extrusion rate. ABC-
When the Si content and the Mg content are in the D region, the target tensile strength and 0.2% proof stress can be obtained, and the limit extrusion speed (the highest production rate at which the surface of the extruded profile does not have a rough surface). Speed) can be set to a speed equal to or higher than 6061, and an extruded profile can be manufactured with high productivity. AB-
The inside of the CD region is determined from the results of many experiments by the present inventors, but if it is outside this region, an extruded profile having the desired mechanical properties cannot be obtained at a high extrusion speed. That is, in the region on the left side of the line AB, the amount of excess Si is small, Mg 2 Si is not finely and uniformly deposited, and the strength is not sufficient. In the region below the straight line BC, Mg
Insufficient amount and a small amount of Mg 2 Si deposited cannot provide sufficient strength. In the region on the right side of the straight line CD, there is too much excess Si, the melting temperature during extrusion is lowered, and the skin is likely to be rough. In the region above the straight line AD, Mg
If the content is too large, the extrusion pressure rises, which makes it difficult to extrude a shaped member having a complicated shape, and the melting temperature during the extrusion decreases, so that the skin becomes rough.

【0012】溶融開始温度:T≧585℃ 一般的には、素材温度が高くなるほど押出し速度を高く
設定できる。しかし、素材温度が高いとき、押出し中に
発生した加工熱で更に昇温した素材の表面が部分的に溶
融することがある。この状態で押出された形材には、ピ
ックアップ,肌荒れ,テアリング等の表面欠陥が発生し
易い。そこで、これら表面欠陥を抑制し、且つ高強度が
得られるAl−Mg−Si合金系の成分を検討した結
果、T(℃)=667−21×%Cu−42×%Si−
38×%Mgで定義される溶融開始温度Tを585℃以
上に調整するとき、表面性状が良好な押出し形材が大き
な押出し速度で得られることを見い出した。ここに示し
た定義式は、表1に掲げた12種及びこれ以外の14
種,合計26種のアルミニウム合金ビレットの溶融開始
温度を示差走査熱量計で測定し、得られた溶融開始温度
と添加元素及びその含有量との関係を直線回帰して求め
た。このとき、変数をSi,Cu,Mgとすることによ
り相関係数の高い回帰式が得られ、各成分に対する係数
はCuが−21,Siが−42,Mgが−38であっ
た。なお、667℃は、Y軸、すなわち温度軸との切片
である。
Melting start temperature: T ≧ 585 ° C. Generally, the higher the material temperature, the higher the extrusion speed can be set. However, when the raw material temperature is high, the surface of the raw material further heated by the processing heat generated during the extrusion may be partially melted. Surface defects such as pick-up, rough skin, tearing and the like are likely to occur in the profile extruded in this state. Then, as a result of examining an Al-Mg-Si alloy-based component capable of suppressing these surface defects and obtaining high strength, T (° C) = 667-21 ×% Cu-42 ×% Si-
When the melting start temperature T defined by 38 ×% Mg was adjusted to 585 ° C. or higher, it was found that an extruded profile having good surface properties could be obtained at a high extrusion speed. The definition formulas shown here are the 12 types listed in Table 1 and the other 14 types.
The melting start temperature of a total of 26 types of aluminum alloy billets was measured with a differential scanning calorimeter, and the relationship between the obtained melting start temperature and the added elements and their contents was determined by linear regression. At this time, a regression equation having a high correlation coefficient was obtained by setting the variables to Si, Cu, and Mg, and the coefficients for each component were −21 for Cu, −42 for Si, and −38 for Mg. Note that 667 ° C. is an intercept with the Y axis, that is, the temperature axis.

【0013】本発明に従ったアルミニウム合金は、析出
強化及び組織強化により高い強度を呈する。組織強化
は、Mn,Cr,Zr等の遷移元素を添加することによ
り行われ、押出し形材に繊維状組織が安定形成される量
に遷移元素の添加量が定められる。これら遷移元素は均
質化処理中にマトリックスから析出するため、その添加
量が押出し時のマトリックスの純度にほとんど影響せ
ず、溶融開始温度には影響を及ぼさない。他方、析出強
化のために添加されるMg,Si,Cu等は、マトリッ
クス中に固溶し、マトリックスの純度を下げ、溶融開始
温度を低下させる因子として働く。したがって、溶融開
始温度の式においてマイナスの係数となる。なお、F
e,Ti,Bは、鋳造中にほぼ晶出又は析出してしまう
ため、溶融開始温度を低下させる因子として働かない。
試験の結果、溶融開始温度の低い合金ほど限界の押出し
速度が低下する傾向にあることを把握した。そこで、高
強度と優れた押出し性をもつ合金は、その成分を決める
上で溶融開始温度に着目し、定義式から求めたCu,S
i,Mg量に依存している計算上の溶融開始温度を58
5℃以上に規制した。溶融開始温度が585℃未満の合
金では、表面性状の良好な押出し材を得るために一般的
な押出し用合金である6061合金に比較して押出し速
度を著しく下げなければならず、その製造コストが上昇
することになる。一方、計算式を満足するCu,Si,
Mg量に設計すると、585℃以上の溶融開始温度をも
つ合金となり、6061合金と同等又はそれ以上の押出
し速度で押し出すことができる。
[0013] The aluminum alloy according to the present invention exhibits high strength due to precipitation strengthening and structure strengthening. The strengthening of the structure is performed by adding a transition element such as Mn, Cr, or Zr, and the amount of the transition element is determined so that the fibrous structure can be stably formed in the extruded profile. Since these transition elements are precipitated from the matrix during the homogenization treatment, the added amount thereof hardly affects the purity of the matrix at the time of extrusion, and does not affect the melting start temperature. On the other hand, Mg, Si, Cu, and the like added for precipitation strengthening dissolve in the matrix, lower the purity of the matrix, and act as a factor for lowering the melting start temperature. Therefore, it becomes a negative coefficient in the equation of the melting start temperature. Note that F
Since e, Ti, and B are almost crystallized or precipitated during casting, they do not act as a factor for lowering the melting start temperature.
As a result of the test, it was found that the lower the melting start temperature, the lower the limit extrusion speed tends to be. Therefore, for alloys having high strength and excellent extrudability, attention should be paid to the melting start temperature in determining the components, and Cu, S
The calculated melting onset temperature depending on the i, Mg content is 58
Regulated to 5 ° C or higher. In the case of an alloy having a melting start temperature of less than 585 ° C., in order to obtain an extruded material having good surface properties, the extrusion speed must be remarkably reduced as compared with 6061 alloy, which is a general extrusion alloy, and the production cost is reduced. Will rise. On the other hand, Cu, Si,
When the amount of Mg is designed, the alloy has a melting start temperature of 585 ° C. or higher, and can be extruded at an extrusion speed equal to or higher than that of the 6061 alloy.

【0014】鋳造:微細化剤添加後120分以内にDC
鋳造 以上のように成分調整されたアルミニウム合金は、脱ガ
ス,脱滓後、常法に従ってDC鋳造される。DC鋳造
は、十分な微細化作用を得るためTi,B,Ti−B等
の微細化剤添加から120分までの期間に実施される。
120分以上経過して時点で鋳造すると、結晶核の沈降
や化学的変化に起因して所与の微細化効果が十分発揮さ
れず、鋳造割れが発生し易くなる。
Casting: DC within 120 minutes after adding the refiner
Casting The aluminum alloy whose components have been adjusted as described above is subjected to DC casting according to a conventional method after degassing and deslagging. DC casting is performed for a period of up to 120 minutes after the addition of a refiner such as Ti, B or Ti-B to obtain a sufficient refinement action.
If casting is performed at a point in time after 120 minutes or more, a given refining effect is not sufficiently exhibited due to sedimentation or chemical change of crystal nuclei, and casting cracks are likely to occur.

【0015】 均質化処理: 昇温速度 200℃/時以下 高温保持 500〜580℃×1〜12時間 200〜500℃/時で強制冷却 高温保持は、鋳造時に形成された結晶粒内及び粒界にお
けるMg,Si,Cu等の濃度偏析を均質化すると共
に、Mn,Cr,Zr等の遷移金属を含む化合物をサブ
ミクロンサイズに析出させるために行われる。均質化処
理の昇温条件は、Mn,Cr,Zr等の遷移金属を含む
化合物を均一に析出させるために200℃/時以下とす
る。析出物は、その後の500〜580℃×1〜12時
間の高温保持でサブミクロンサイズに成長する。一方、
Mg,Si,Cuは、高温保持中、マトリックスに均一
に固溶する。その後、200〜500℃/時の範囲で強
制空冷することにより、Mg−Si系,Al−Cu系,
Al−Mg−Cu系化合物を押出し加工時に再固溶可能
な1μm以下のサイズに析出させる。このとき、これら
の化合物は、高温保持で成長したMn,Cr,Zr等の
遷移金属を含む化合物を析出サイトとしているため、均
一に且つ微細に析出する。このことは、後工程の時効処
理で部材強度を一層向上させることに有効に働く。析出
したMn,Cr,Zr等の微細な化合物は、押出し時の
再結晶化を抑制する。また、均質化処理でMg,Si,
Cu等を十分に均質化処理することにより、押出し中の
肌荒れ発生が防止される。均質化処理温度が500℃に
達しないと、Mg,Si,Cuの十分な均質化が図れな
い。580℃を超える均質化処理温度では、Mn,C
r,Zr等を含む化合物が粗大に析出して再結晶抑制作
用を低下させ、押出し形材に十分な強度が付与できな
い。また、1時間に達しない保持時間では580℃の温
度域においてもMg,Si又はCuの均質化が不十分と
なり、12時間を超えると生産性に支障を来し、コスト
面で問題を生じる。高温保持後の冷却条件が200℃/
時未満では、Mg−Si系,Al−Cu系,Al−Mg
−Cu系等の化合物の析出物が粗大になり、押出し時に
十分溶体化できず、その後の時効処理で十分な強度が得
られない。
Homogenization treatment: Heating rate 200 ° C./hour or less High-temperature holding 500-580 ° C. × 1-12 hours Forced cooling at 200-500 ° C./hour High-temperature holding is performed in crystal grains and grain boundaries formed during casting. This is performed in order to homogenize the concentration segregation of Mg, Si, Cu, etc., and to precipitate a compound containing a transition metal, such as Mn, Cr, Zr, in a submicron size. The temperature raising condition of the homogenization treatment is 200 ° C./hour or less in order to uniformly precipitate a compound containing a transition metal such as Mn, Cr, and Zr. The precipitate grows to a submicron size by the subsequent high-temperature holding at 500 to 580 ° C for 1 to 12 hours. on the other hand,
Mg, Si, and Cu uniformly dissolve in the matrix during high-temperature holding. Then, by performing forced air cooling in the range of 200 to 500 ° C./hour, Mg-Si system, Al-Cu system,
The Al-Mg-Cu-based compound is precipitated to a size of 1 µm or less that can be re-dissolved during extrusion. At this time, since these compounds use a compound containing a transition metal such as Mn, Cr, or Zr grown at high temperature as a precipitation site, they are uniformly and finely precipitated. This effectively works to further improve the strength of the member in the aging treatment in the subsequent step. Fine compounds such as precipitated Mn, Cr, and Zr suppress recrystallization during extrusion. In addition, Mg, Si,
By sufficiently homogenizing Cu or the like, occurrence of rough surface during extrusion is prevented. Unless the homogenization temperature reaches 500 ° C., sufficient homogenization of Mg, Si, and Cu cannot be achieved. At homogenization treatment temperatures exceeding 580 ° C., Mn, C
Compounds containing r, Zr, and the like are coarsely precipitated to reduce the recrystallization suppressing action, and it is impossible to impart sufficient strength to the extruded profile. If the holding time does not reach 1 hour, the homogenization of Mg, Si or Cu becomes insufficient even in the temperature range of 580 ° C., and if the holding time exceeds 12 hours, the productivity is hindered and a problem arises in terms of cost. Cooling condition after holding at high temperature is 200 ° C /
If less than the time, Mg-Si system, Al-Cu system, Al-Mg
-Precipitates of compounds such as the Cu system become coarse, cannot be sufficiently dissolved during extrusion, and sufficient strength cannot be obtained by subsequent aging treatment.

【0016】 押出し加工: ビレット予熱処理 430〜520℃×1〜60分 押出し直後の形材表面温度 500〜555℃ 形材冷却開始時の表面温度430℃以上から水冷するプ
レス端焼入れ押出し加工では、押出し前に430〜52
0℃×1〜60分の予熱処理をビレットに施すと共に、
押出し直後の形材表面温度を500〜555℃の温度範
囲に制御する。ビレット均質化処理後の強制空冷で析出
したMg−Si系,Al−Cu系,Al−Mg−Cu系
等の化合物は、予熱処理及び押出し加工中の加工発熱に
より再固溶する。続いて、プレス端で形材冷却時の表面
温度430℃以上から水冷することによって、押出し中
に溶体化処理を完了する。以上の処理によって、後続す
る時効処理工程でMg−Si系,Al−Cu−Mg系化
合物の析出硬化が得られ、部材強度を向上させることが
できる。
Extrusion processing: Billet pre-heat treatment 430-520 ° C. × 1-60 minutes Surface temperature immediately after extrusion 500-555 ° C. In the press-end quenching extrusion processing in which water is cooled from a surface temperature of 430 ° C. or more at the start of shape cooling, 430-52 before extrusion
Pre-heat treatment at 0 ° C for 1 to 60 minutes is applied to the billet,
The surface temperature of the profile immediately after extrusion is controlled in the temperature range of 500 to 555 ° C. Compounds such as Mg-Si-based, Al-Cu-based, and Al-Mg-Cu-based compounds precipitated by forced air cooling after the billet homogenization treatment form a solid solution again due to heat generation during preheating and extrusion. Subsequently, the solution treatment is completed during the extrusion by performing water cooling from a surface temperature of 430 ° C. or more at the time of cooling the profile at the press end. By the above treatment, precipitation hardening of the Mg-Si-based or Al-Cu-Mg-based compound is obtained in the subsequent aging treatment step, and the member strength can be improved.

【0017】ビレットの予熱温度が430℃に達しない
と、低い加工温度に起因して変形抵抗が大きくなり、大
きな押出し速度が得られない。予熱時間も1分に達しな
いと、ビレットの温度が均一にならない。また、押出し
形材の表面温度も500℃に達しないので、Mg−Si
系,Al−Cu系,Al−Mg−Cu系等の化合物が十
分に再固溶せず、後続する時効処理工程で十分な強度が
得られない。逆に520℃を超える予熱温度では、形材
温度が上昇し表面荒れやテアリングが発生し易くなるた
め、表面性状が良好な製品を得るには押出し速度を低下
せざるをえない。また、形材の表面温度が555℃を超
えると、Mn,Cr,Zr等を含む微細化合物で再結晶
化を抑制するピンニング作用が十分でなくなり、部材強
度を低下させる原因となる。なお、60分を超える予熱
は、経済的でない。プレス端焼入れで形材の表面温度4
30℃以上から焼入れすることは、再固溶したMg,C
u,Si等を押出し中に析出させないためである。形材
表面温度が430℃未満では、室温強度に寄与しないサ
イズの析出が起こり、その後の時効硬化性を低下させ
る。本発明のアルミニウム合金では、溶融開始温度を5
85℃以上に設定しているので、通常の6000系合金
と同等又は高温で押し出すことができる。その分、熱間
変形抵抗が小さくなり、押出し速度を増加できる。しか
し、本発明者等の調査・研究によるとき、溶融開始温度
より30℃以上低い温度で押し出さないと、押出し形材
の表面が荒れてくることが判った。したがって、押出し
形材の表面温度の上限を555℃に規定した。
If the billet preheating temperature does not reach 430 ° C., the deformation resistance becomes large due to the low processing temperature, and a high extrusion speed cannot be obtained. If the preheating time does not reach 1 minute, the billet temperature will not be uniform. In addition, since the surface temperature of the extruded material does not reach 500 ° C., Mg-Si
, Al-Cu-based, Al-Mg-Cu-based compounds, etc. do not sufficiently re-dissolve in solid form, and sufficient strength cannot be obtained in the subsequent aging process. Conversely, if the preheating temperature exceeds 520 ° C., the temperature of the profile increases, and surface roughness and tearing are likely to occur. Therefore, in order to obtain a product having good surface properties, the extrusion speed must be reduced. If the surface temperature of the shaped material exceeds 555 ° C., the fine compound containing Mn, Cr, Zr or the like does not have sufficient pinning action to suppress recrystallization and causes a reduction in member strength. Preheating for more than 60 minutes is not economical. Surface temperature of profiled material by press end quenching 4
Quenching from 30 ° C. or higher can be achieved by re-dissolving Mg, C
This is because u, Si and the like are not precipitated during the extrusion. If the profile surface temperature is lower than 430 ° C., precipitation of a size that does not contribute to room temperature strength occurs, and the subsequent age hardening property is reduced. In the aluminum alloy of the present invention, the melting start temperature is 5
Since the temperature is set to 85 ° C. or higher, it can be extruded at a temperature equal to or higher than that of a normal 6000 series alloy. To that extent, the hot deformation resistance is reduced, and the extrusion speed can be increased. However, according to investigations and studies by the present inventors, it has been found that unless extruded at a temperature lower than the melting start temperature by 30 ° C. or more, the surface of the extruded shape becomes rough. Therefore, the upper limit of the surface temperature of the extruded profile was set to 555 ° C.

【0018】時効処理:170〜200℃×1〜12時
間 → 空冷 時効処理では、押出し加工及びプレス端焼入れ処理で得
た過飽和固溶体からβ’−Mg2 Si,S’−CuMg
Al2 等を析出させることにより部材強度を向上させ
る。時効処理温度が170℃に達しないと、12時間を
超える長時間の処理が必要とされ、経済的でない。逆に
200℃を超える時効処理温度では過時効となり、ピー
ク強度が低く、十分な部材強度が得られない。また、1
時間未満の保持時間では、時効が不十分となり、安定し
た強度が得られない。
Aging treatment: 170-200 ° C. × 1-12 hours → air cooling In the aging treatment, β′-Mg 2 Si, S′-CuMg is obtained from a supersaturated solid solution obtained by extrusion and quenching at the press end.
By precipitating Al 2 or the like, the strength of the member is improved. If the aging treatment temperature does not reach 170 ° C., a long treatment exceeding 12 hours is required, which is not economical. Conversely, if the aging treatment temperature exceeds 200 ° C., overaging occurs, the peak strength is low, and sufficient member strength cannot be obtained. Also, 1
If the holding time is shorter than the time, the aging becomes insufficient and stable strength cannot be obtained.

【0019】[0019]

【実施例】表1に示す組成をもつ溶湯を通常の溶解法で
調整し、微細化剤添加後1時間鎮静し、直径254mm
のビレットに鋳造した。各ビレットを80℃/時の加熱
速度で昇温し、540℃×4時間の均質化処理を施し、
冷却速度300℃/時で室温まで強制空冷した。ビレッ
トからサンプルを採取し、溶融開始温度を示差走査熱量
計で測定した。本発明に従ってT(℃)=667−21
×%Cu−42×%Si−38×%Mgで算出した溶融
開始温度の計算値を、実測値と比較して表1に併せ示
す。表1にみられるように、計算値と実測値との差は0
〜4℃であり、回帰分析で求めた設計上の計算値が実測
値と高い一致性を示していることが判る。
EXAMPLE A melt having the composition shown in Table 1 was prepared by a usual dissolution method, sedated for 1 hour after the addition of a refiner, and had a diameter of 254 mm.
Cast into billets. Each billet was heated at a heating rate of 80 ° C./hour, and subjected to a homogenizing treatment at 540 ° C. × 4 hours.
Forced air cooling was performed to room temperature at a cooling rate of 300 ° C./hour. A sample was taken from the billet and the melting onset temperature was measured with a differential scanning calorimeter. According to the invention, T (° C.) = 667-21
Table 1 also shows the calculated values of the melting onset temperature calculated with x% Cu-42x% Si-38x% Mg, compared with the actually measured values. As seen in Table 1, the difference between the calculated value and the measured value is 0.
-4 ° C, and it can be seen that the calculated values in the design obtained by the regression analysis show high consistency with the actually measured values.

【0020】 [0020]

【0021】次いで、ビレットを450℃に予熱して5
分保持した後、縦150mm,横50mm,肉厚2mm
の中空矩形状断面(図2)をもつ形材に押し出した。こ
のとき、押し出し直後の形材の表面温度は、押出し速度
によって変わるが、520〜555℃の範囲に入ってい
た。押出し形材は、押出し中にプレス端で水冷された
後、180℃×6時間の時効処理が施され、空冷され
た。時効処理後の形材から試験片JIS 14B号を切
り出し、引張試験に供して引張強さ,0.2%耐力,伸
び等の機械的性質を測定した。また、表面肌荒れが発生
するまで押出し速度を上昇し、その最高速度を限界押出
し速度として測定した。調査結果を表2に示す。
Next, the billet is preheated to 450 ° C.
After holding for minutes, length 150mm, width 50mm, wall thickness 2mm
In a hollow rectangular cross section (FIG. 2). At this time, the surface temperature of the profile immediately after extrusion varied depending on the extrusion speed, but was in the range of 520 to 555 ° C. The extruded profile was water-cooled at the press end during extrusion, then subjected to an aging treatment at 180 ° C. for 6 hours, and air-cooled. A test piece JIS No. 14B was cut out from the shape material after the aging treatment, and subjected to a tensile test to measure mechanical properties such as tensile strength, 0.2% proof stress, and elongation. In addition, the extrusion speed was increased until surface roughness occurred, and the maximum speed was measured as the limit extrusion speed. Table 2 shows the survey results.

【0022】 [0022]

【0023】表2にみられるように、本発明に従った試
験番号1〜5では、引張強さが350N/mm2 以上,
0.2%耐力330N/mm2 以上と機械的特性に優
れ、且つ限界押出し速度8m/分以上の高速押出しが可
能であった。高速押出しは、試験番号1〜5の溶融開始
温度が585℃以上と高いことに一つの要因がある。こ
れに対して、試験番号6〜8では、溶融開始温度が58
5℃より低く、押出し速度を上げると肌荒れが生じ、限
界押出し速度が目標値8m/分に達しなかった。試験番
号9は、Mg含有量が少ないためMg2 Siの析出量が
少なく、0.2%耐力が低かった。試験番号10は、M
g及びSiの含有量が適正であったもののCu含有量が
少ないことから、引張強さ及び耐力が不足していた。ま
た、Mn添加のみで組織強化を図る設計であるためMn
含有量を多くしたが、Cr又はZrとの複合添加に比較
して再結晶抑制作用が弱く、その分だけ強度向上に結び
付かなかった。試験番号11は、Mg含有量に比較して
Si含有量がやや少なく、またCr添加のみであり、し
かもCr含有量が少ないため、Mn又はCrとの複合添
加に比較して強度上昇に結び付かなかった。試料番号1
2は、Cu含有量が少なく、Mn+Crの添加量も少な
いことから、十分な強度が得られなかった。
As shown in Table 2, in Test Nos. 1 to 5 according to the present invention, the tensile strength was 350 N / mm 2 or more,
High mechanical strength of 0.2 N proof stress of 330 N / mm 2 or more and high-speed extrusion at a limit extrusion speed of 8 m / min or more were possible. One factor in high-speed extrusion is that the melting start temperatures of Test Nos. 1 to 5 are as high as 585 ° C. or higher. On the other hand, in Test Nos. 6 to 8, the melting start temperature was 58
When the extrusion speed was increased below 5 ° C., the surface became rough, and the limit extrusion speed did not reach the target value of 8 m / min. In Test No. 9, since the Mg content was small, the amount of Mg 2 Si precipitated was small, and the 0.2% proof stress was low. Test number 10 is M
Although the contents of g and Si were appropriate, the tensile strength and proof stress were insufficient due to the low Cu content. In addition, since the structure is designed to strengthen the structure only by adding Mn,
Although the content was increased, the effect of suppressing recrystallization was weaker than that of the composite addition with Cr or Zr, and it did not lead to an improvement in strength. Test No. 11 shows that the Si content was slightly lower than the Mg content, and only Cr was added, and the Cr content was low, leading to an increase in strength as compared to the composite addition with Mn or Cr. Did not. Sample number 1
In No. 2, sufficient strength was not obtained because the Cu content was small and the added amount of Mn + Cr was small.

【0024】[0024]

【発明の効果】以上に説明したように、本発明のAl−
Mg−Si系合金は、各合金成分の組成を調整すると共
に、T(℃)=667−21×%Cu−42×%Si−
38×%Mgで定義される溶融開始温度Tが585℃以
上となるように合金設計し、鋳造条件,ビレットの均質
化処理条件,押出し条件及び時効条件を適切に調整する
ことにより、引張強さ350N/mm2 以上,0.2%
耐力330N/mm2 以上と鋼材SS400並の材料強
度が得られる。そのため、鋼材に替えてアルミ材を使用
でき、各種機器,構造体の大幅な軽量化が可能となる。
また、6061合金以上の生産性で押出し加工できるた
め、優れた特性をもつ押出し形材を安価に提供できる。
As described above, according to the present invention, the Al-
For the Mg-Si alloy, the composition of each alloy component is adjusted, and T (° C.) = 667-21 ×% Cu-42 ×% Si—
The alloy is designed so that the melting start temperature T defined by 38 ×% Mg is 585 ° C. or more, and the tensile strength is adjusted by appropriately adjusting the casting conditions, billet homogenization treatment conditions, extrusion conditions and aging conditions. 350 N / mm 2 or more, 0.2%
A proof strength of 330 N / mm 2 or more and a material strength comparable to that of steel SS400 can be obtained. Therefore, aluminum can be used in place of steel, and various devices and structures can be significantly reduced in weight.
In addition, since extrusion can be performed with a productivity of 6061 alloy or more, an extruded member having excellent characteristics can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で規定したSi含有量とMg含有量の
範囲
FIG. 1 Range of Si content and Mg content defined in the present invention

【図2】 本発明実施例で得られた押出し形材FIG. 2 is an extruded profile obtained in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 孝之 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 神尾 一 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 諸橋 雅晴 東京都江東区木場2丁目7番23号 新日軽 株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takayuki Tsuchida 1-34-1, Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor: Kazuto Kamio 1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture (34) Inventor Masaharu Morohashi 2-7-23 Kiba, Koto-ku, Tokyo Nippon Light Metal Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Cu:0.2〜0.9重量%,Si:
0.6〜1.1重量%,Mg:0.4〜1.0重量%,
Fe:0.1〜0.3重量%,Mn:0.2〜0.5重
量%,Cr:0.1〜0.3重量%,Ti:0.005
〜0.05重量%,B:0.001〜0.01重量%を
含み、T(℃)=667−21×%Cu−42×%Si
−38×%Mgで定義される溶融開始温度Tが585℃
以上となるように成分設計された組成をもつ押出し性に
優れた構造材料用高強度Al−Mg−Si系合金。
1. Cu: 0.2-0.9% by weight, Si:
0.6 to 1.1% by weight, Mg: 0.4 to 1.0% by weight,
Fe: 0.1 to 0.3% by weight, Mn: 0.2 to 0.5% by weight, Cr: 0.1 to 0.3% by weight, Ti: 0.005
-0.05% by weight, B: 0.001-0.01% by weight, T (° C.) = 667-21 ×% Cu-42 ×% Si
Melting start temperature T defined by −38 ×% Mg is 585 ° C.
A high-strength Al-Mg-Si alloy for structural materials having a composition designed to be as described above and having excellent extrudability.
【請求項2】 請求項1記載の組成が更にZr:0.0
5〜0.2重量%を含む構造材料用高強度Al−Mg−
Si系合金。
2. The composition according to claim 1, further comprising Zr: 0.0.
High strength Al-Mg- for structural materials containing 5 to 0.2% by weight
Si-based alloy.
【請求項3】 Si含有量−Mg含有量の座標系でA点
(0.8,1.0),B点(0.6,0.4),C点
(1.1,0.4)及びD点(1.1,0.8)で区画
される領域A−B−C−D内にSi含有量及びMg含有
量がある請求項1又は2記載の構造材料用高強度Al−
Mg−Si系合金。
3. Point A (0.8, 1.0), point B (0.6, 0.4), point C (1.1, 0.4) in a coordinate system of Si content-Mg content. 3) and a high-strength Al— material for a structural material according to claim 1 or 2, wherein the area ABCD defined by the point D (1.1, 0.8) has a Si content and a Mg content.
Mg-Si based alloy.
【請求項4】 Mn,Cr及びZrの合計含有量が0.
3〜0.8重量%の範囲に調整されている請求項1〜3
の何れかに記載の組成をもつ構造材料用高強度Al−M
g−Si系合金。
4. The total content of Mn, Cr and Zr is 0.4.
4. The composition according to claim 1, wherein the content is adjusted in a range of 3 to 0.8% by weight.
High-strength Al-M for structural materials having the composition described in any one of the above.
g-Si alloy.
【請求項5】 請求項1〜4の何れかに記載の組成をも
つAl−Mg−Si系合金を微細化剤添加後120分以
内にDC鋳造し、200℃/時以下の昇温速度,高温保
持500〜580℃×1〜12時間、冷却速度200〜
500℃/時の均質化処理を施し、予熱430〜520
℃×1〜60分,押出し直後の形材表面温度500〜5
55℃の条件下で押し出し、形材の表面温度430℃以
上から水冷するプレス端焼入れを施し、次いで170〜
200℃×1〜12時間保持した後空冷する時効処理を
施す構造材料用高強度Al−Mg−Si系合金押出し形
材の製造方法。
5. An Al—Mg—Si alloy having a composition according to claim 1 which is DC-cast within 120 minutes after the addition of the refining agent, and has a heating rate of 200 ° C./hour or less. High temperature holding 500-580 ° C x 1-12 hours, cooling rate 200-
A homogenization treatment of 500 ° C./hour is performed, and preheating is performed at 430 to 520.
℃ x 1 to 60 minutes, surface temperature of the profile immediately after extrusion 500 to 5
Extruded at 55 ° C, water-cooled from the surface temperature of 430 ° C or higher, and then subjected to press end quenching.
A method for producing a high-strength Al-Mg-Si-based alloy extruded section for a structural material, which is subjected to an aging treatment of holding at 200C for 1 to 12 hours and then air cooling.
JP8177059A 1996-06-17 1996-06-17 Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material Pending JPH108172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8177059A JPH108172A (en) 1996-06-17 1996-06-17 Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8177059A JPH108172A (en) 1996-06-17 1996-06-17 Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material

Publications (1)

Publication Number Publication Date
JPH108172A true JPH108172A (en) 1998-01-13

Family

ID=16024414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8177059A Pending JPH108172A (en) 1996-06-17 1996-06-17 Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material

Country Status (1)

Country Link
JP (1) JPH108172A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070847A (en) * 2008-08-21 2010-04-02 Aisin Keikinzoku Co Ltd Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE
CN102373349A (en) * 2010-08-13 2012-03-14 赵凯志 Material formula of magnesium alloy hub
JP2012201923A (en) * 2011-03-25 2012-10-22 Lixil Corp Aluminum extruded shape and extrusion molding method thereof
JP2014208865A (en) * 2013-04-16 2014-11-06 日本軽金属株式会社 Heat treatment type aluminum alloy for cold plastic working and manufacturing method therefor
CN104561859A (en) * 2014-07-23 2015-04-29 安徽四翔铝业有限公司 Thermal treatment process of 6061 aluminum alloy
JP2015520801A (en) * 2012-04-25 2015-07-23 ノルスク・ヒドロ・アーエスアーNorsk Hydro Asa Al-Mg-Si aluminum alloy with improved properties
WO2017061269A1 (en) * 2015-10-08 2017-04-13 Ykk株式会社 Element for slide fasteners
JP2017110238A (en) * 2015-12-14 2017-06-22 日本軽金属株式会社 Aluminum alloy extrusion material for cutting work excellent in fatigue strength property and manufacturing method therefor
CN106884112A (en) * 2017-04-17 2017-06-23 贵阳白云中航紧固件有限公司 High hardness alloy and preparation method, the process equipment of its manufacture fastener and method
CN108441793A (en) * 2018-05-23 2018-08-24 山东南山铝业股份有限公司 A kind of aluminium alloy forces the heat treatment method and aviation alloyed aluminium proximate matter of sizing
CN109207811A (en) * 2018-11-21 2019-01-15 重庆铝王铝业有限公司 A kind of preparation method and applications of aluminium alloy extrusions
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
EP3763844B1 (en) 2019-07-10 2023-06-07 Kaiser Aluminum Fabricated Products, LLC Al-mg-si energy absorption extrusion component and method of making thereof
CN116287899A (en) * 2023-03-24 2023-06-23 北京欧力普城市科技有限公司 Aluminum alloy for lamp post and preparation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070847A (en) * 2008-08-21 2010-04-02 Aisin Keikinzoku Co Ltd Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE
EP2157200B1 (en) * 2008-08-21 2017-11-08 Aisin Keikinzoku Co., Ltd. Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
CN102373349A (en) * 2010-08-13 2012-03-14 赵凯志 Material formula of magnesium alloy hub
JP2012201923A (en) * 2011-03-25 2012-10-22 Lixil Corp Aluminum extruded shape and extrusion molding method thereof
JP2015520801A (en) * 2012-04-25 2015-07-23 ノルスク・ヒドロ・アーエスアーNorsk Hydro Asa Al-Mg-Si aluminum alloy with improved properties
JP2014208865A (en) * 2013-04-16 2014-11-06 日本軽金属株式会社 Heat treatment type aluminum alloy for cold plastic working and manufacturing method therefor
CN104561859A (en) * 2014-07-23 2015-04-29 安徽四翔铝业有限公司 Thermal treatment process of 6061 aluminum alloy
US10870907B2 (en) 2015-10-08 2020-12-22 Ykk Corporation Element for slide fastener
WO2017061269A1 (en) * 2015-10-08 2017-04-13 Ykk株式会社 Element for slide fasteners
CN108138270A (en) * 2015-10-08 2018-06-08 Ykk株式会社 Slide fastener chain tooth
JP2017110238A (en) * 2015-12-14 2017-06-22 日本軽金属株式会社 Aluminum alloy extrusion material for cutting work excellent in fatigue strength property and manufacturing method therefor
CN106884112A (en) * 2017-04-17 2017-06-23 贵阳白云中航紧固件有限公司 High hardness alloy and preparation method, the process equipment of its manufacture fastener and method
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN108441793A (en) * 2018-05-23 2018-08-24 山东南山铝业股份有限公司 A kind of aluminium alloy forces the heat treatment method and aviation alloyed aluminium proximate matter of sizing
CN109207811A (en) * 2018-11-21 2019-01-15 重庆铝王铝业有限公司 A kind of preparation method and applications of aluminium alloy extrusions
CN109207811B (en) * 2018-11-21 2020-12-22 重庆铝王铝业有限公司 Preparation method and application of aluminum alloy profile
EP3763844B1 (en) 2019-07-10 2023-06-07 Kaiser Aluminum Fabricated Products, LLC Al-mg-si energy absorption extrusion component and method of making thereof
CN116287899A (en) * 2023-03-24 2023-06-23 北京欧力普城市科技有限公司 Aluminum alloy for lamp post and preparation method thereof

Similar Documents

Publication Publication Date Title
US9869008B2 (en) High-temperature efficient aluminum copper magnesium alloys
US8133331B2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JPH108172A (en) Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP2005307300A (en) Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
US6918975B2 (en) Aluminum alloy extrusions having a substantially unrecrystallized structure
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP3324444B2 (en) Manufacturing method of extruded aluminum material with excellent bending workability
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JP3550944B2 (en) Manufacturing method of high strength 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP3006446B2 (en) Heat-treated thin aluminum extruded profile and method for producing the same
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP3550943B2 (en) Manufacturing method of 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JP2003105474A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JPH06136497A (en) Production of aluminum alloy sheet with high formability