JP5830006B2 - Extruded aluminum alloy with excellent strength - Google Patents
Extruded aluminum alloy with excellent strength Download PDFInfo
- Publication number
- JP5830006B2 JP5830006B2 JP2012285869A JP2012285869A JP5830006B2 JP 5830006 B2 JP5830006 B2 JP 5830006B2 JP 2012285869 A JP2012285869 A JP 2012285869A JP 2012285869 A JP2012285869 A JP 2012285869A JP 5830006 B2 JP5830006 B2 JP 5830006B2
- Authority
- JP
- Japan
- Prior art keywords
- extruded material
- extrusion
- aluminum alloy
- extruded
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Extrusion Of Metal (AREA)
Description
本発明は強度に優れた7000系アルミニウム合金押出材に関するものである。本発明で言う押出されたままの状態とは、熱間押出終了後に、押出温度からの冷却以外は、組織が変化する熱処理や加工を何も加えていない、押出上がりの押出材の組織状態のことを言う。 The present invention relates to a 7000 series aluminum alloy extruded material excellent in strength. The extruded state as used in the present invention refers to the state of the extruded extruded material that has not been subjected to any heat treatment or processing that changes the structure other than cooling from the extrusion temperature after the end of hot extrusion. Say that.
従来から、自動車、自転車、鉄道車両等の輸送機器、建築物、構造物における構造部材や、ボルトなどの締結部材などに向けて、強度と耐食性、軽量化に優れた材料として、Zn−Mg−Cu系である7000系のアルミニウム合金押出材が用いられている。 Conventionally, Zn-Mg- as a material excellent in strength, corrosion resistance, and weight reduction toward structural members in automobiles, bicycles, railway vehicles and other transportation equipment, buildings, structures, and fastening members such as bolts. A 7000 series aluminum alloy extruded material which is a Cu type is used.
前記7000系アルミニウム合金押出材は高強度であり、押出後にT6調質された材料では、引張強さが700MPa以上のものも、従来から種々提案されている。 The 7000 series aluminum alloy extruded material has high strength, and various materials having a tensile strength of 700 MPa or more have been proposed in the past as materials that have been subjected to T6 tempering after extrusion.
例えば、特許文献1では、Zn含有量が8質量%を超えるような7000系アルミニウム合金の線棒押出材につき、時効処理により容易に引張強さ720MPaを超える強度が付与できるとしている。しかし、同文献では、粗大な再結晶粒層が必然的に生じるので、押出材を大径ボルトに鍛造や転造などの塑性加工(成形加工)する際に発生する割れの原因となる。このため、塑性加工前に押出材表面(表層部)の粗大な再結晶粒層を除去することを必須としている。 For example, in Patent Document 1, a 7000 series aluminum alloy wire rod extruded material having a Zn content exceeding 8% by mass can be easily imparted with a strength exceeding a tensile strength of 720 MPa by aging treatment. However, in this document, since a coarse recrystallized grain layer is inevitably generated, it causes cracks that occur when the extruded material is plastically processed (molded) such as forging or rolling into a large-diameter bolt. For this reason, it is essential to remove the coarse recrystallized grain layer on the surface of the extruded material (surface layer portion) before plastic working.
これに対して、このような再結晶粒層自体を抑制しようとする試みも、従来から種々提案されている。例えば、特許文献2では、押出温度を480〜500℃の比較的低温で行って、7000系アルミニウム合金押出材内部を繊維状組織、表層の再結晶層の肉厚を10%以下とし、その再結晶粒径を150μm以下に制御することが開示されている。 In contrast, various attempts to suppress such a recrystallized grain layer have been proposed. For example, in Patent Document 2, the extrusion temperature is set at a relatively low temperature of 480 to 500 ° C., the inside of the extruded 7000 series aluminum alloy is made into a fibrous structure, and the thickness of the recrystallized layer on the surface layer is 10% or less. It is disclosed that the crystal grain size is controlled to 150 μm or less.
ただ、特許文献2のように、押出温度を480〜500℃の比較的低温で行っても、この温度域の押出では、やはり7000系アルミニウム合金は再結晶してしまう。このため、押出材の表層部や内部における再結晶化が避けがたく、再現性よく、引張強さで700MPa以上の強度を得ることができない。 However, even if the extrusion temperature is carried out at a relatively low temperature of 480 to 500 ° C. as in Patent Document 2, the 7000 series aluminum alloy is also recrystallized by extrusion in this temperature range. For this reason, the recrystallization in the surface layer part and the inside of the extruded material is unavoidable, and it is impossible to obtain a strength of 700 MPa or more with good reproducibility.
本発明はかかる問題に鑑みなされたもので、押出材の表層部や内部の再結晶化が抑制され、引張強さで700MPa以上の高強度が得られる7000系アルミニウム合金押出材を提供することを目的とする。 The present invention has been made in view of such problems, and provides a 7000 series aluminum alloy extruded material in which recrystallization of the surface layer portion and inside of the extruded material is suppressed and a high strength of 700 MPa or more can be obtained in tensile strength. Objective.
上記目的を達成するための本発明の強度に優れたアルミニウム合金押出材の要旨は、質量%で、Zn:7.0〜14.0%、Mg:1.0〜3.5%、Cu:0.5〜2.0%、Zr:0.05〜0.3%を含有し、残部がAl及び不可避的不純物からなるZn−Mg−Cu系アルミニウム合金押出材であって、押出されたままの状態での、押出材の軸中心部を通る押出方向に平行な断面の組織として、押出材の表層部の再結晶粒の平均結晶粒径が100μm以下であるとともに、押出材軸中心部における結晶粒の半径方向の平均切片長さが35μm以下であり、かつ、押出方向の<111>方位の結晶粒の平均面積率が0.5以上1.0以下で、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比、<001>/<111>が0.25以下であることとする。 The summary of the extruded aluminum alloy material excellent in strength of the present invention for achieving the above object is mass%, Zn: 7.0 to 14.0%, Mg: 1.0 to 3.5%, Cu: Zn-Mg-Cu-based aluminum alloy extruded material containing 0.5 to 2.0%, Zr: 0.05 to 0.3%, and the balance consisting of Al and inevitable impurities, and remains extruded As the structure of the cross section parallel to the extrusion direction passing through the axial center portion of the extruded material in the state, the average crystal grain size of the recrystallized grains in the surface layer portion of the extruded material is 100 μm or less, and <001> orientation crystal grains having an average section length of 35 [mu] m or less in the radial direction of crystal grains and an average area ratio of <111> orientation crystal grains in the extrusion direction of 0.5 to 1.0 Of the average area ratio of <111> -oriented grains and <001> It is assumed that >> / <111> is 0.25 or less.
本発明は、熱間押出終了後に、押出温度からの冷却以外は、組織が変化する熱処理や加工を何も加えていない、押出されたまま(押出上がり)の押出材の組織状態として、表層部だけでなく、押出材内部の再結晶(再結晶化)も抑制して、微細な押出加工組織(繊維状組織)とする。そして、これによって、人工時効処理後の引張強さで700MPa以上の高強度を得る。 The present invention, after completion of hot extrusion, except for cooling from the extrusion temperature, no heat treatment or processing to change the structure, the structure state of the extruded material as extruded (extruded), the surface layer portion In addition to suppressing the recrystallization (recrystallization) inside the extruded material, a fine extruded structure (fibrous structure) is obtained. And thereby, the high strength of 700 MPa or more is obtained as the tensile strength after the artificial aging treatment.
また、押出材表層部(表面部)の再結晶粒層を抑制できれば、押出材表層部の再結晶粒層を除去することなく、前記各用途の部材製品形状まで加工できる利点もあり、耐SCC性や耐粒界腐食感受性などの耐食性も向上できる。 In addition, if the recrystallized grain layer on the surface part of the extruded material (surface part) can be suppressed, there is also an advantage that it can be processed to the member product shape for each application without removing the recrystallized grain layer on the surface part of the extruded material. And corrosion resistance such as intergranular corrosion resistance can be improved.
以下に、本発明の実施の形態につき、順に要件ごとに具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described in order for each requirement.
成分組成:
本発明における7000系アルミニウム合金は、押出材として人工時効処理後の引張強さを700MPa以上とする高強度化のために、質量%で、Zn:7.0〜14.0%、Mg:1.0〜3.5%、Cu:0.5〜2.0%、Zr:0.05〜0.3%を含有し、残部がAl及び不可避的不純物からなるAl−Zn−Mg-Cu組成とする。ここで、各元素の含有量の%表示は、以下に記載の各元素の含有量を含めて、全て質量%の意味である。
Ingredient composition:
The 7000 series aluminum alloy in the present invention is, as an extruded material, Zn: 7.0 to 14.0% in mass%, Mg: 1 in order to increase the tensile strength after artificial aging treatment to 700 MPa or more. Al-Zn-Mg-Cu composition containing 0.0-3.5%, Cu: 0.5-2.0%, Zr: 0.05-0.3%, the balance being Al and inevitable impurities And Here, the% display of the content of each element means the mass%, including the content of each element described below.
Zn:7.0〜14.0%
必須の合金元素であるZnは、Mgとともに、後述する人工時効処理時に、本発明で規定するMgとZnとの金属間化合物である時効析出物を形成して強度を向上させる。Zn含有量が7.0%未満では強度が不足し、14.0%を超えると鋳造時に鋳塊割れが発生しやすくなり造塊が困難となる。従って、Zn含有量は7.0〜14.0%の範囲、好ましくは8.0〜12.0%の範囲とする。なお、Zn含有量が高いと、SCC感受性が鋭くなるが、それを抑えるためには、後述するCuあるいはAgを添加することが望ましい。
Zn: 7.0 to 14.0%
Zn, which is an essential alloy element, improves the strength together with Mg by forming an aging precipitate, which is an intermetallic compound of Mg and Zn, defined in the present invention, during the artificial aging treatment described later. If the Zn content is less than 7.0%, the strength is insufficient, and if it exceeds 14.0%, ingot cracking is likely to occur during casting and ingot formation becomes difficult. Therefore, the Zn content is in the range of 7.0 to 14.0%, preferably in the range of 8.0 to 12.0%. In addition, when Zn content is high, SCC sensitivity becomes sharp, but in order to suppress it, it is desirable to add Cu or Ag described later.
Mg:1.0〜3.5%
必須の合金元素であるMgは、Znとともに、後述する人工時効処理時に、本発明で規定するMgとZnとの金属間化合物である時効析出物を形成して強度と伸びを向上させる。Mg含有量が1.0%未満では強度が不足し、3.5質量%を超えると、鋳造ビレットの再結晶温度未満の低温での押出性が低下し、SCC感受性も強くなる。従って、Mg含有量は1.0〜3.5%の範囲、好ましくは1.5〜3.0%の範囲とする。
Mg: 1.0-3.5%
Mg, which is an essential alloying element, together with Zn, forms an aging precipitate that is an intermetallic compound of Mg and Zn as defined in the present invention during the artificial aging treatment described later, thereby improving strength and elongation. If the Mg content is less than 1.0%, the strength is insufficient, and if it exceeds 3.5% by mass, the extrudability at a low temperature below the recrystallization temperature of the cast billet is lowered, and the SCC sensitivity is enhanced. Therefore, the Mg content is in the range of 1.0 to 3.5%, preferably in the range of 1.5 to 3.0%.
Cu:0.5〜2.0%
CuはAl−Zn−Mg系合金の耐SCC性を向上させる作用がある。これを含有する場合、Cu含有量が0.5%未満では、耐SCC性向上効果が小さい。一方、Cu含有量が2.0%を超えると、鋳造時の割れが、鋳造ビレットの再結晶温度未満の低温での押出性を却って低下させ、耐食性も劣化させる。従って、Cu含有量は0.5〜2.0%の範囲、好ましくは0.8〜1.8%の範囲とする。
Cu: 0.5 to 2.0%
Cu has the effect of improving the SCC resistance of the Al—Zn—Mg alloy. When this is contained, if the Cu content is less than 0.5%, the effect of improving the SCC resistance is small. On the other hand, if the Cu content exceeds 2.0%, cracks during casting lower the extrudability at a low temperature below the recrystallization temperature of the cast billet, and deteriorate the corrosion resistance. Therefore, the Cu content is in the range of 0.5 to 2.0%, preferably in the range of 0.8 to 1.8%.
Zr:0.05〜0.3%
Zrは鋳塊及び最終製品の結晶粒を微細化して強度向上に寄与する。Zr含有量が0.05%未満では微細化効果が小さい。一方、Zr含有量が0.3%を超えると、鋳造時に粗大な初晶化合物を形成し、押出時の焼付や、製品の伸びの低下をもたらす。従って、Zr含有量は0.05〜0.3%の範囲、好ましくは0.08〜0.2%の範囲とする。
Zr: 0.05-0.3%
Zr contributes to strength improvement by refining the crystal grains of the ingot and the final product. If the Zr content is less than 0.05%, the effect of miniaturization is small. On the other hand, if the Zr content exceeds 0.3%, a coarse primary crystal compound is formed at the time of casting, and seizure at the time of extrusion and reduction of product elongation are caused. Therefore, the Zr content is in the range of 0.05 to 0.3%, preferably in the range of 0.08 to 0.2%.
Mn:0.1〜1.5%、Cr:0.05〜0.3%、Sc:0.05〜0.3%
Mn、Cr、Scは、鋳塊及び最終製品の結晶粒を微細化して強度向上に寄与する。これらをいずれか一種、或いは二種以上を選択的に含有させる場合、Mn、Cr、Scの含有量がいずれも加減未満では、含有量が不足して、強度が低下する。一方、Mn、Cr、Scの含有量がそれぞれの上限を超えた場合には、粗大晶出物を形成するための伸びが低下する。従って、Mn:0.1〜1.5%、Cr:0.05〜0.3%、Sc:0.05〜0.3%の各範囲、好ましくはMn:0.2〜1.0%、Cr:0.1〜0.2%、Sc:0.1〜0.2%の各範囲とする。
Mn: 0.1 to 1.5%, Cr: 0.05 to 0.3%, Sc: 0.05 to 0.3%
Mn, Cr, and Sc contribute to strength improvement by refining the crystal grains of the ingot and the final product. In the case where any one or two or more of these are selectively contained, if the contents of Mn, Cr, and Sc are all less than moderate, the contents are insufficient and the strength is lowered. On the other hand, when the contents of Mn, Cr, and Sc exceed the respective upper limits, the elongation for forming coarse crystals is reduced. Accordingly, Mn: 0.1 to 1.5%, Cr: 0.05 to 0.3%, Sc: 0.05 to 0.3%, preferably Mn: 0.2 to 1.0% , Cr: 0.1 to 0.2%, and Sc: 0.1 to 0.2%.
Ag:0.01〜0.2%
Agも鋳塊及び最終製品の結晶粒を微細化して強度向上に寄与する。選択的に含有させる場合、Ag含有量が0.01%未満では微細化効果が小さい。一方、Ag含有量が0.2%を超えると、鋳造時に粗大な初晶化合物を形成し、押出時の焼付や、製品の伸びの低下をもたらす。従って、Ag含有量は0.01〜0.2%の範囲とする。
Ag: 0.01-0.2%
Ag also contributes to strength improvement by refining the crystal grains of the ingot and the final product. When selectively contained, if the Ag content is less than 0.01%, the effect of miniaturization is small. On the other hand, when the Ag content exceeds 0.2%, a coarse primary crystal compound is formed at the time of casting, and seizure at the time of extrusion and reduction of the elongation of the product are brought about. Therefore, the Ag content is in the range of 0.01 to 0.2%.
Ti、B:
Ti、Bは押出材としては不純物であるが、アルミニウム合金鋳塊の結晶粒を微細化する効果があるので、7000系合金としてJIS規格で規定する範囲での各々の含有を許容する。
Ti, B:
Ti and B are impurities in the extruded material, but have the effect of refining the crystal grains of the aluminum alloy ingot, so that each of them is allowed as a 7000 series alloy within the range specified by the JIS standard.
その他の元素:
これら記載した以外の、Fe、Siなどのその他の元素は不可避的な不純物である。溶解原料として、純アルミニウム地金以外に、アルミニウム合金スクラップの使用による、これら不純物元素の混入なども想定(許容)して、7000系合金のJIS規格で規定する範囲での各々の含有を許容する。例えば、Fe、Siは各0.5質量%以下(0%を含む)の範囲で、それぞれ含有してもよい。
Other elements:
Other elements other than those described above, such as Fe and Si, are unavoidable impurities. As a melting raw material, in addition to pure aluminum ingots, the inclusion of these impurity elements due to the use of aluminum alloy scrap is assumed (allowed), and each content within the range specified by the JIS standard of 7000 series alloys is allowed. . For example, Fe and Si may each be contained within a range of 0.5% by mass or less (including 0%).
組織:
本発明では、規定するZn−Mg−Cu系アルミニウム合金押出材の組織を、押出されたままの状態での組織として規定する。そして同時に、この組織を押出材の軸中心部を通る押出方向に平行な断面の組織として規定する。図1に、本発明で規定する、軸中心部(軸心)を通る押出方向に平行な断面の組織を、中実な丸棒形状の押出材の断面組織の模式図として示す。
Organization:
In this invention, the structure | tissue of the Zn-Mg-Cu type aluminum alloy extrusion material to prescribe | regulate is prescribed | regulated as a structure | tissue in the state as extruded. At the same time, this structure is defined as a structure having a cross section parallel to the extrusion direction passing through the axial center portion of the extruded material. In FIG. 1, the structure of a cross section parallel to the extrusion direction passing through the shaft center portion (axial center) defined in the present invention is shown as a schematic diagram of the cross-sectional structure of a solid round bar-shaped extruded material.
表層部の組織:
本発明では、この押出されたままの状態での、押出材表層部の再結晶粒の平均結晶粒径を100μm以下に微細化させる。押出材表層部に存在する再結晶粒の結晶粒径は、図1に示す、押出材軸中心部(軸心)を通る押出方向に平行な断面の組織において、押出材の押出方向と半径方向との互いに直交する2つの矢印で各々示す、押出方向と半径方向との各切片長さで表される。本発明では、これらの押出方向と半径方向との各切片長さを合計して平均化した(足して2で割った)値を、押出材表層部の再結晶粒の平均結晶粒径として規定し、これを100μm以下とする。ちなみに、押出材表層部とは再結晶により構成される深さ領域を意味し、後述する実施例の通り、その厚みは、組成、製法によって種々異なる。
Surface organization:
In the present invention, the average crystal grain size of the recrystallized grains in the surface layer of the extruded material in the extruded state is refined to 100 μm or less. The crystal grain size of the recrystallized grains existing in the surface layer of the extruded material is determined by the extrusion direction and the radial direction of the extruded material in the cross-sectional structure parallel to the extrusion direction passing through the central part (axial center) of the extruded material shown in FIG. Are represented by respective section lengths in the extrusion direction and in the radial direction, each indicated by two arrows orthogonal to each other. In the present invention, the values obtained by summing and averaging the section lengths in the extrusion direction and the radial direction (added and divided by 2) are defined as the average crystal grain size of the recrystallized grains in the surface layer of the extruded material. And this shall be 100 micrometers or less. Incidentally, the surface layer portion of the extruded material means a depth region constituted by recrystallization, and the thickness varies depending on the composition and the production method as in Examples described later.
表層部の再結晶粒の平均結晶粒径を100μm以下に制御することで、押出材の溶体化処理後、或いは押出材の前記各用途の部材形状への鍛造などの熱間加工したあとの溶体化処理後の、表層部の再結晶粒も微細に制御することができる。また、押出材表層部の再結晶粒層が大きく抑制できれば、押出材表層部の再結晶粒層を除去することなく、前記各用途の部材製品形状まで加工できる利点もあり、耐SCC性や耐粒界腐食感受性などの耐食性も向上できる。 By controlling the average crystal grain size of the recrystallized grains in the surface layer part to 100 μm or less, the solution after the solution treatment of the extruded material, or after hot working such as forging the extruded material to the member shape of each application The recrystallized grains in the surface layer portion after the crystallization treatment can be finely controlled. Further, if the recrystallized grain layer on the surface layer of the extruded material can be largely suppressed, there is an advantage that it can be processed to the shape of the member product for each application without removing the recrystallized grain layer on the surface layer of the extruded material. Corrosion resistance such as intergranular corrosion sensitivity can also be improved.
これに対して、前記押出したままの状態での押出材表層部の再結晶粒の平均結晶粒径が100μm以上では、押出材の溶体化処理後に、表層部に粗大粒が発生し、強度が低下すると共に耐SCC性や耐粒界腐食感受性などの耐食性も劣化する。この押出材の溶体化処理とは、押出材の前記各用途の部材形状への鍛造などの熱間加工した後か、或いはこの熱間加工前の溶体化処理後であっても良いが、いずれの場合でも通常の溶体化処理の条件では、表層部に粗大粒が発生する。 On the other hand, when the average crystal grain size of the recrystallized grains in the surface layer portion of the extruded material in the extruded state is 100 μm or more, coarse particles are generated in the surface layer portion after the solution treatment of the extruded material, and the strength is increased. Corrosion resistance such as SCC resistance and intergranular corrosion susceptibility deteriorates as well as decreasing. The solution treatment of the extruded material may be after hot working such as forging of the extruded material into the member shape for each application, or after the solution treatment before this hot working. Even in this case, coarse particles are generated in the surface layer portion under the usual solution treatment conditions.
内部の組織:
本発明では、押出されたままの押出材の組織として、表層部だけでなく、押出材内部の再結晶化も抑制して、微細な押出加工組織(繊維状組織)とする。これによって、人工時効処理後の引張強さで700MPa以上の高強度を得る。ここで、押出材の内部とは、組織測定の再現性の点で押出材の軸中心部と規定する。
Internal organization:
In the present invention, as a structure of the extruded material as extruded, not only the surface layer portion but also recrystallization inside the extruded material is suppressed to obtain a fine extruded structure (fibrous structure). Thereby, a high strength of 700 MPa or more is obtained as the tensile strength after the artificial aging treatment. Here, the inside of the extruded material is defined as the axial center portion of the extruded material from the viewpoint of the reproducibility of the structure measurement.
このような微細な押出加工組織(繊維状組織)であることの基準として、押出材の軸中心部の結晶粒の半径方向の平均切片長さを35μm以下として、まず押出材の半径方向(押出方向に対して直角方向)に結晶粒の微細化を保障する。この押出材軸中心部における結晶粒の半径方向の平均切片長さとは、図1に示す、押出材軸中心部(軸心)を通る押出方向に平行な断面の組織において、押出材軸中心部の結晶粒の、押出材の半径方向の矢印で示す切片長さで表される。本発明では、この押出材軸中心部における結晶粒の半径方向の平均切片長さを35μm以下とする。 As a reference for such a fine extruded structure (fibrous structure), the average section length in the radial direction of the crystal grains in the axial center portion of the extruded material is set to 35 μm or less. Ensures crystal grain refinement in a direction perpendicular to the direction). The average section length in the radial direction of the crystal grains in the central portion of the extruded material shaft is the central portion of the extruded material shaft in the cross-sectional structure parallel to the extrusion direction passing through the central portion (axial center) of the extruded material shown in FIG. This is expressed by the section length indicated by the arrow in the radial direction of the extruded material. In the present invention, the average intercept length in the radial direction of the crystal grains at the central portion of the extruded material shaft is set to 35 μm or less.
このように、押出材内部(軸中心部)の結晶粒の半径方向の平均切片長さを上記サイズ以下に制御することで、押出材の熱間加工前の溶体化処理後、或いは押出材の前記各用途の部材形状への鍛造などの熱間加工したあとの溶体化処理後の、押出材内部の結晶粒の半径方向の平均切片長さも微細に制御することができる。標記平均切片長さ以上では、押出材の溶体化処理後、或いは押出材の前記各用途の部材形状への鍛造などの熱間加工したあとの溶体化処理後の、押出材内部に粗大粒が発生し、人工時効処理後の強度が低下する。 In this way, by controlling the average intercept length in the radial direction of the crystal grains inside the extruded material (axial center portion) to be equal to or smaller than the above size, the solution is subjected to a solution treatment before hot working of the extruded material, or of the extruded material. The average section length in the radial direction of the crystal grains inside the extruded material after the solution treatment after hot working such as forging into the member shape for each application can also be finely controlled. In the above-mentioned average section length or longer, coarse particles are present in the extruded material after the solution treatment of the extruded material or after the solution treatment after hot working such as forging the extruded material into the member shape for each application. Occurs and the strength after artificial aging treatment decreases.
押出方向の<111>方位の結晶粒:
本発明では、これだけでなく、押出方向の<111>方位の結晶粒の平均面積率を0.5以上1.0以下とし、かつ、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比、<001>/<111>が0.25以下とする。
Crystal grains with <111> orientation in the extrusion direction:
In the present invention, not only this, but also the average area ratio of <111> oriented crystal grains in the extrusion direction is 0.5 or more and 1.0 or less, and the average area ratio of <001> oriented crystal grains is <111> The ratio with the average area ratio of orientational crystal grains, <001> / <111>, is 0.25 or less.
押出方向の結晶粒が微細であり、押出加工組織(繊維状組織)となっていることを示す <111>方位の結晶粒成分を上記範囲に増大させることで、押出方向の強度を増大させることができる。押出材の微細な加工組織(繊維組織)は結晶構造がFCC(面心立方格子)であり、<111>面が最密面で、単位面積あたりの原子数が一番多く、面間隔が一番広い面となる。ちなみに、<111>方向とは、FCCの単位格子の辺に沿ってxyz軸を定義した時の、(0,0,0)と(1,1,1)を通る線で示される方向で、<111>面はそれに垂直な面である。 Indicates that the crystal grains in the extrusion direction are fine and have an extruded structure (fibrous structure). By increasing the <111> -oriented crystal grain component to the above range, the strength in the extrusion direction is increased. Can do. The fine processed structure (fiber structure) of the extruded material has a crystal structure of FCC (face-centered cubic lattice), the <111> face is the closest face, the number of atoms per unit area is the largest, and the face spacing is the same. It will be the widest surface. Incidentally, the <111> direction is the direction indicated by the line passing through (0, 0, 0) and (1, 1, 1) when the xyz axis is defined along the side of the FCC unit cell. The <111> plane is a plane perpendicular to it.
また、本発明では、これに加えて、更に粗大な再結晶粒を示す前記<001>方位の結晶粒を抑制し、前記<001>/<111>を上記範囲に低減させることで、<111>方位の結晶粒成分の量を保障し、押出方向の強度増大を保障することができる。前記<001>方位の結晶粒が全て再結晶粒ではないが、再結晶粒の主な方位成分は<001>方位であり、<001>方位の結晶粒の割合が再結晶化の目安になりうる。したがって、本発明では、前記<001>/<111>を規定し、再結晶を抑制する。 In addition, in the present invention, in addition to this, by suppressing the <001> -oriented crystal grains showing coarser recrystallized grains and reducing the <001> / <111> to the above range, <111 > The amount of crystal grain components in the orientation can be ensured, and the strength increase in the extrusion direction can be ensured. Although the crystal grains with the <001> orientation are not all recrystallized grains, the main orientation component of the recrystallized grains is the <001> orientation, and the ratio of the crystal grains with the <001> orientation is a guide for recrystallization. sell. Therefore, in the present invention, <001> / <111> is defined to suppress recrystallization.
押出方向の<111>方位の結晶粒の平均面積率が0.5未満か、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比<001>/<111>が0.25を超えて、上記規定範囲を外れると、従来の押出材のように、微細な押出加工組織(繊維状組織)ではなく、再結晶化が進んだ組織となっていることを示している。このため人工時効処理後の押出材の強度が低下する。 The average area ratio of the <111> -oriented crystal grains in the extrusion direction is less than 0.5, or the ratio of the average area ratio of the <001> -oriented crystal grains to the average area ratio of the <111> -oriented crystal grains <001> When <111> exceeds 0.25 and falls outside the above specified range, it is not a fine extruded structure (fibrous structure) but a recrystallized structure as in the case of conventional extruded materials. It shows that. For this reason, the strength of the extruded material after the artificial aging treatment is lowered.
組織の測定:
以上の組織の規定は、押出されたたままの状態での押出材の軸中心部を通る押出方向に平行な断面組織の面方位を、この主の組織解析に汎用される、SEM(走査型電子顕微鏡)−後方散乱電子回折[EBSP「Electron Back Scattering Pattern」と、EBSD「Electron Back Scattering Diffraction」を用いて測定・解析できる。これらの結晶解析では、電子チャネリングパターン法(ECP法)による結晶解析手法を用い、SEMと組み合わせて、材料に電子線を照射して走査しながら、材料表面で生じる電子線後方散乱回折により菊池線回折図形すなわちEBSDパターンを測定、解析する。これらFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66-70などに詳細に記載されている。
Tissue measurement:
The above-mentioned structure is defined by the SEM (scanning type), which is generally used for the main structure analysis of the plane orientation of the cross-sectional structure parallel to the extrusion direction passing through the axial center portion of the extruded material in the extruded state. Electron microscope)-Backscattered electron diffraction [ESPSP "Electron Back Scattering Pattern" and EBSD "Electron Back Scattering Diffraction" can be used for measurement and analysis. In these crystal analyses, the Kikuchi line is generated by electron beam backscatter diffraction that occurs on the surface of the material while scanning by irradiating the material with an electron beam in combination with SEM, using a crystal analysis method based on the electron channeling pattern method (ECP method). A diffraction pattern, that is, an EBSD pattern is measured and analyzed. Details of the crystal orientation analysis method in which the EBSP system is mounted on these FESEMs are described in detail in Kobe Steel Engineering Reports / Vol.52 No.2 (Sep.2002) P66-70 and the like.
これによって、押出材の表層部あるいは軸中心部を測定、解析することで、これらの押出材の各部位の微小領域における、結晶粒径や、半径方向の結晶粒の切片長さ、結晶方位に関する情報が得られる。すなわち、押出材の表層部の再結晶粒の平均結晶粒径(μm)、押出材の軸中心部の半径方向の結晶粒の平均切片長さ(μm)押出方向の<111>方位の結晶粒の平均面積率、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比<001>/<111>が測定できる。 Thus, by measuring and analyzing the surface layer portion or axial center portion of the extruded material, the crystal grain size, the slice length of the crystal grains in the radial direction, and the crystal orientation in the minute region of each part of these extruded materials Information is obtained. That is, the average crystal grain size (μm) of the recrystallized grains in the surface layer portion of the extruded material, the average section length of the crystal grains in the radial direction of the axial center portion of the extruded material (μm), and the <111> orientation crystal grains in the extruded direction The average area ratio of <001> / <111> between the average area ratio of <001> oriented crystal grains and the average area ratio of <111> oriented crystal grains can be measured.
ここで、図2に、本発明で規定している<111>方位や<001>方位と、他の<101>方位との結晶方位の関係を表示する。ここで、図2は逆極点図における単位ステレオ三角形であり、結晶粒毎の材料基準軸方位(押出方向)を表示したものである。アルミニウム合金押出材の全ての結晶粒は、この単位ステレオ三角形内のいずれかの位置に存在する。前記押出方向の<111>方位の面積とは、前記EBSP測定を行った領域において、<111>方位から15°以内の方位の領域(範囲)に存在する結晶粒の面積である。また、前記押出方向の<111>方位の面積率とは、前記EBSP測定を行った領域において、<111>方位から15°以内の方位の領域(範囲)に存在する結晶粒の面積の、測定エリア全体の面積に占める割合である。これは前記<001>方位でも同様である。 Here, FIG. 2 shows the relationship between the <111> orientation and the <001> orientation defined in the present invention and the crystal orientation of other <101> orientations. Here, FIG. 2 is a unit stereo triangle in the inverse pole figure, and displays the material reference axis direction (extrusion direction) for each crystal grain. All the grains of the aluminum alloy extrudate are present at any position within this unit stereo triangle. The area of the <111> orientation in the extrusion direction is the area of crystal grains present in the region (range) of the orientation within 15 ° from the <111> orientation in the region where the EBSP measurement was performed. The area ratio of the <111> orientation in the extrusion direction is a measurement of the area of crystal grains existing in the region (range) of the orientation within 15 ° from the <111> orientation in the region where the EBSP measurement was performed. This is the percentage of the total area. The same applies to the <001> orientation.
公知の事項として、結晶方位の表示方法として、ステレオ投影法を用いて結晶の配向を表示させる場合、一般には標準投影という方法を使用する。アルミニウム合金のような立方晶の場合は、立方晶の標準投影として、投影面の中心に(001)面を持ってきた投影図で結晶方位を表示する。この投影図の中の一部に存在する、三角形の部位「(001)−(011)−(−111)」が単位ステレオ三角形にあたる。なお、この投影図には、他にも「(001)−(0−11)−(1−11)」等も含めて多数の同様な三角形が存在しているが、いずれも結晶学的には等価で全て同じものである。この単位ステレオ三角形を用いて表示しているのが、前記図2の逆極点図である。すなわち、逆極点図とは、結晶軸に関して、試料のある選ばれた方向の相対的な分布を示しており、逆極点図を表すための投影面は結晶の標準投影を用いるが、そのうちの単位ステレオ三角形だけで全てを表示することが可能である。本発明は押出材であり、その押出方向の相対的な分布の表示に、前記逆極点図を使用している。以上の事項は公知であって、例えば「カリティ新版X線回折要論」(松村源太郎訳、株式会社アグネ発行)の2−11ステレオ投影の欄に記載されており、前記図2の逆極点図も、この文献では「逆極図形」と呼んで、9−10の逆極図形の欄(290〜292頁)に説明が記載されている。 As a known matter, when displaying the crystal orientation using the stereo projection method as a crystal orientation display method, a method called standard projection is generally used. In the case of a cubic crystal such as an aluminum alloy, the crystal orientation is displayed as a standard projection of the cubic crystal with a projection drawing having a (001) plane at the center of the projection plane. A triangular portion “(001)-(011)-(− 111)” existing in a part of the projected view corresponds to a unit stereo triangle. In addition, many similar triangles including “(001)-(0-11)-(1-11)” and the like exist in this projection view. Are equivalent and all the same. The inverted pole figure of FIG. 2 is displayed using the unit stereo triangle. In other words, the inverse pole figure shows the relative distribution of a sample in a selected direction with respect to the crystal axis, and the projection plane for representing the inverse pole figure uses the standard projection of the crystal, of which the unit It is possible to display everything with only stereo triangles. The present invention is an extruded material, and the reverse pole figure is used to display the relative distribution in the extrusion direction. The above matters are publicly known, and are described in, for example, the column of 2-11 stereo projection of “Karity New Edition X-ray diffraction theory” (translated by Gentaro Matsumura, published by Agne Co., Ltd.). However, in this document, it is called “reverse polar figure”, and the description is described in the column of 9-10 reverse polar figure (pages 290 to 292).
ここで、押出方向の<001>方位の結晶粒の平均面積率と押出方向の<111>方位の結晶粒の平均面積率との比<001>/<111>は、<001>方位から15°以内の方位の領域に存在する結晶粒の面積率と、<111>方位から15°以内の方位の領域に存在する結晶粒の面積率との比で表される。これらは前記EBSPシステムに付属している解析ソフトで計算される。これらの解析を、押出材の表層部や、軸中心部で行う。 Here, the ratio <001> / <111> between the average area ratio of the <001> orientation crystal grains in the extrusion direction and the average area ratio of the <111> orientation crystal grains in the extrusion direction is 15 from the <001> orientation. It is expressed as a ratio of the area ratio of crystal grains existing in a region with an orientation within ± to the area ratio of crystal grains existing in a region with an orientation within 15 ° from the <111> orientation. These are calculated by analysis software attached to the EBSP system. These analyzes are performed at the surface layer portion of the extruded material and the shaft center portion.
本発明においては、基本的に、これらの結晶面から±15°以下の方位のずれ(傾角)のものは同一の結晶面(方位因子)に属するものとする。また、隣り合う結晶粒の方位差(傾角)が5°以上の結晶粒の境界を結晶粒界と定義する。なお、前記平均結晶粒径も、傾角が5°以上の粒界で測定、算出する。言い換えると、本発明では、±5°以下の方位のずれは同一の結晶粒に属するものと定義し、隣り合う結晶粒の方位差(傾角)が5°以上の結晶粒の境界を結晶粒界と定義した上で、平均結晶粒径を以下の式により算出する。
平均結晶粒径=(Σx)/n(ここで、nは測定した結晶粒の数、xはそれぞれの結晶粒径を示す)
In the present invention, basically, those whose orientation deviation (inclination) is ± 15 ° or less from these crystal planes belongs to the same crystal plane (orientation factor). Further, the boundary between crystal grains in which the orientation difference (tilt angle) between adjacent crystal grains is 5 ° or more is defined as a crystal grain boundary. The average crystal grain size is also measured and calculated at a grain boundary having an inclination angle of 5 ° or more. In other words, in the present invention, an orientation shift of ± 5 ° or less is defined as belonging to the same crystal grain, and a boundary between crystal grains having an orientation difference (tilt angle) of 5 ° or more between adjacent crystal grains is defined as a grain boundary. And the average crystal grain size is calculated by the following formula.
Average crystal grain size = (Σx) / n (where n represents the number of crystal grains measured and x represents each crystal grain size)
押出材の測定箇所は、表層部あるいは軸中心部の各部位から複数サンプリングし、押出方向に平行で、かつ半径方向にも平行な断面において測定した結果を平均化する。この際、上記各部位から複数サンプリングした試料表面は、機械研磨して試料表面から約0.25mmを機械研磨により削り落とし、更に、バフ研磨および電解研磨を行なって表面を調整した試料を用意する。 A plurality of measured portions of the extruded material are sampled from each part of the surface layer portion or the axial center portion, and the results measured in a cross section parallel to the extrusion direction and parallel to the radial direction are averaged. At this time, a plurality of sample surfaces sampled from each of the above parts are mechanically polished to remove about 0.25 mm from the sample surface by mechanical polishing, and further, a sample whose surface is adjusted by buffing and electrolytic polishing is prepared. .
製造方法:
本発明では、押出材のままの状態での組織を、前記した通り、表層部だけでなく、押出材内部の再結晶化も抑制して、微細な押出加工組織(繊維状組織)とし、これによって、人工時効処理後の引張強さで700MPa以上の高強度を得る。このための押出材の好ましい製造方法(熱間押出方法)について、以下に工程順に説明する。
Production method:
In the present invention, as described above, the structure in the state of the extruded material is not only the surface layer part, but also suppresses recrystallization inside the extruded material to form a fine extruded structure (fibrous structure). Thus, a high strength of 700 MPa or more is obtained as the tensile strength after the artificial aging treatment. The preferable manufacturing method (hot extrusion method) of the extruded material for this will be described below in the order of steps.
(溶解、鋳造)
先ず、溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造してビレットとする。
(Melting, casting)
First, in the melting and casting process, a molten aluminum alloy melt-adjusted within the above-mentioned 7000 series component composition range is cast by appropriately selecting a normal melting casting method such as a semi-continuous casting method (DC casting method). And
(均質化熱処理)
熱間押出に先立って、鋳造されたアルミニウム合金ビレット(鋳塊)を均質化熱処理(均熱処理)して、組織の均質化(鋳塊組織中の結晶粒内の偏析をなくすなど)を行う。
(Homogenization heat treatment)
Prior to hot extrusion, the cast aluminum alloy billet (ingot) is subjected to homogenization heat treatment (soaking) to homogenize the structure (such as eliminating segregation in crystal grains in the ingot structure).
但し、押出材のままの状態での組織を、前記した通り、表層部だけでなく、押出材内部の再結晶化も抑制して、微細な押出加工組織(繊維状組織)とするためには、均熱条件として、2段或いは2回均熱工程で行うことが好ましい。2段均熱とは、1回目(1段目)の均熱処理後にビレットを、室温まで冷却することなく、再加熱するかあるいは冷却して2回目(2段目)の均熱温度とした上で2回目の均熱処理を行い、そのままの温度で押出を開始するか、さらに押出開始温度まで冷却するものである。また、2回均熱とは、1回目の均熱処理後にビレットを一旦室温あるいは室温近くまで冷却し、その後再加熱して2回目の均熱温度とした上で2回目の均熱処理を行い、そのままの温度で押出を開始するか、さらに押出開始温度まで冷却するものである。ちなみに、通常の熱間押出前の均熱は1段或いは1回均熱工程で行われる。 However, as described above, in order to obtain a fine extruded structure (fibrous structure) by suppressing the recrystallization inside the extruded material as well as the surface layer portion as described above, As the soaking condition, it is preferable to carry out in two or two soaking steps. Two-stage soaking means that after the first (first stage) soaking process, the billet is reheated or cooled to room temperature without cooling to room temperature, and the second (second stage) soaking temperature is reached. Then, the second soaking process is performed, and the extrusion is started at the same temperature or further cooled to the extrusion start temperature. In the second soaking, after the first soaking, the billet is once cooled to room temperature or near room temperature, then reheated to the second soaking temperature, and then the second soaking is performed. Extrusion is started at a temperature of 1 or further cooled to the extrusion start temperature. Incidentally, normal soaking before hot extrusion is performed in one step or once in the soaking step.
2段或いは2回均熱工程では、1段目或いは1回目の均熱工程で、遷移元素系の化合物を分散させて押出・溶体化処理後の結晶粒組織を微細化することを狙い、2段目或いは2回目の均熱工程においては、Zn、Mg、Cuの固溶を促進し、人工時効処理時の強度向上を狙う。 In the two-stage or two-time soaking process, the aim is to refine the crystal grain structure after extrusion / solution treatment by dispersing the transition element compound in the first or first soaking process. In the step or the second soaking step, the solid solution of Zn, Mg, and Cu is promoted, and the strength is improved during the artificial aging treatment.
1段目或いは1回目の均熱温度を400〜450℃に制御することで、Zr系化合物や、Mn、Cr、Scからなる化合物を微細に分散させ、押出後や溶体化後の結晶粒組織を微細化する。400℃未満では十分な微細化効果が得られない。450℃を超えると、これらの化合物が粗大化するため、微細化効果が低下する。好ましくは400〜440℃、1段目或いは1回目の均熱時の保持時間は1〜8時間程度とする。 By controlling the soaking temperature in the first stage or the first time to 400 to 450 ° C., the Zr compound and the compound composed of Mn, Cr, Sc are finely dispersed, and the crystal grain structure after extrusion or solution treatment To refine. If the temperature is less than 400 ° C., a sufficient fine effect cannot be obtained. If it exceeds 450 ° C., these compounds are coarsened, so the effect of miniaturization is reduced. Preferably, the holding time at 400-440 ° C., first stage or first soaking is about 1-8 hours.
2段目或いは2回目の均熱温度を450℃〜固相線温度に制御することで、Zn、Mg、Cuの固溶を促進し、溶体化後の人工時効処理時の強度を向上させる。450℃未満ではこれらの元素の固溶が十分に得られず強度が増大しない。また、固相線温度を超えると部分溶融が起こり、機械的特性が劣化するために上限は固相線温度以下とする。好ましくは470℃〜固相線温度。2段目或いは2回目の均熱時の保持時間は1〜8時間程度とする。 By controlling the soaking temperature at the second stage or the second time from 450 ° C. to the solidus temperature, the solid solution of Zn, Mg, Cu is promoted and the strength at the time of artificial aging treatment after solution treatment is improved. If it is less than 450 degreeC, the solid solution of these elements cannot fully be obtained and intensity | strength does not increase. Further, when the solidus temperature is exceeded, partial melting occurs and the mechanical properties deteriorate, so the upper limit is made below the solidus temperature. Preferably it is 470 degreeC-solidus temperature. The holding time at the second or second soaking is about 1 to 8 hours.
(熱間押出)
押出材のままの状態での組織を、表層部だけでなく、押出材内部の再結晶化も抑制するためには、再結晶温度未満の300〜400℃の範囲の低い押出温度(ビレットの押出開始温度と押出加工中の温度)で押出を行うことが好ましい。押出温度を、300〜400℃の範囲とすることで、Zn含有量が7質量%を超えるような7000系アルミニウム合金の、押出材の表層部だけでなく、内部の再結晶化も抑制して、微細な押出加工組織(繊維状組織)とすることができる。
(Hot extrusion)
In order to suppress not only the surface layer portion but also the recrystallization inside the extruded material, the structure in the state of the extruded material remains as low as 300 to 400 ° C. below the recrystallization temperature (billet extrusion). Extrusion is preferably carried out at the starting temperature and the temperature during extrusion. By setting the extrusion temperature in the range of 300 to 400 ° C., not only the surface layer portion of the extruded material of the 7000 series aluminum alloy whose Zn content exceeds 7 mass%, but also suppressing internal recrystallization. A fine extruded structure (fibrous structure) can be obtained.
この押出温度が400℃を超えると、押出時の温度が上昇し、Zn含有量が7質量%を超えるような7000系アルミニウム合金では、押出後に直ちに高温での再結晶が起こり、押出材の表層部や内部に粗大な再結晶組織が形成され、耐食性の劣化や強度の低下をもたらす。一方で、押出温度は低いほど良いが、低温側では変形抵抗が増大して押出が困難になるため、300℃程度を下限とする。好ましくは320〜380℃とする。 When this extrusion temperature exceeds 400 ° C., the temperature at the time of extrusion rises, and in a 7000 series aluminum alloy whose Zn content exceeds 7% by mass, recrystallization at a high temperature occurs immediately after extrusion, and the surface layer of the extruded material A coarse recrystallized structure is formed in the part and inside, resulting in a deterioration in corrosion resistance and a decrease in strength. On the other hand, the lower the extrusion temperature, the better. However, since the deformation resistance increases on the low temperature side and extrusion becomes difficult, the lower limit is about 300 ° C. Preferably it is set as 320-380 degreeC.
また、押出速度としては、押出時の加工発熱を押さえ、押出時の前記再結晶を抑制するために5m/分以下とすることが好ましい。より好ましくは1m/分以下とする。 Further, the extrusion speed is preferably 5 m / min or less in order to suppress processing heat generation during extrusion and suppress the recrystallization during extrusion. More preferably, it is 1 m / min or less.
これら熱間押出後の冷却については、放冷を含めてその手段や冷却速度を問わないが、押出工程の効率からは、強制的に空冷さらには水冷することが好ましい。 As for the cooling after the hot extrusion, any means and cooling rate including cooling can be used, but it is preferable to forcibly cool by air or water for the efficiency of the extrusion process.
押出方法としては、直接押出あるいは間接押出でも良いが、前記押出条件にて、焼き付きが多く発生する場合には静水圧押出で行うことが好ましい。 As the extrusion method, direct extrusion or indirect extrusion may be used. However, when a lot of seizure occurs under the above-described extrusion conditions, it is preferable to carry out by hydrostatic extrusion.
直接押出や、間接押出は、静水圧押出に比べれば効率的ではあるが、押出材表層部(表面部)の再結晶粒層が、押出材内部の比較的細かい、押出方向に伸長した繊維状結晶粒(押出加工)組織に比して、粒状の粗大な結晶粒になりやすい問題がある。また、本発明のように、Zn含有量が7質量%を超えるような7000系アルミニウム合金を押出する場合には、直接押出あるいは間接押出の場合には、再結晶温度域未満の押出加工はかなり困難がある。 Direct extrusion and indirect extrusion are more efficient than hydrostatic extrusion, but the recrystallized grain layer on the surface of the extruded material (surface) is relatively fine inside the extruded material. Compared to the crystal grain (extrusion process) structure, there is a problem that the grains tend to be coarse grains. In addition, when extruding a 7000 series aluminum alloy having a Zn content exceeding 7% by mass as in the present invention, in the case of direct extrusion or indirect extrusion, extrusion processing below the recrystallization temperature range is considerably performed. There are difficulties.
これは、たとえ、押出素材であるビレットを再結晶温度域未満の低い加熱温度としても、直接押出あるいは間接押出では、その押出機の構造上、ビレットがコンンテナ壁面やダイスと接触して押し出されるために摩擦熱が生じ、この結果、押出中の温度は必然的に再結晶温度域となる。このため、必然的に特許文献1自身で問題とするような粗大な再結晶(粒)層が押出材の表層部にできやすいことによる。 This is because even if the billet, which is an extrusion material, has a low heating temperature lower than the recrystallization temperature range, in direct extrusion or indirect extrusion, the billet is extruded in contact with the container wall or die due to the structure of the extruder. As a result, frictional heat is generated, and as a result, the temperature during extrusion inevitably falls within the recrystallization temperature range. For this reason, it is because the coarse recrystallized (grain) layer which inevitably causes a problem in Patent Document 1 itself is easily formed on the surface layer portion of the extruded material.
これに対して、熱間静水圧押出は、コンテナとビレットの間に潤滑剤を入れ、この潤滑剤の中に、押出用のビレットが浮いている状態を作り、ステム(ダミーブロック付き)によって押し出す。このため、ビレットは、この潤滑剤の作用によって、直接押出や間接押出と違って、コンテナやダイスと直接接触しない。すなわち、ビレットが直接接触するのは、ダイスの厚みの約5mm程度を通過する間だけである。この結果、摩擦や摩擦熱も軽減され、メタルフローも均一に近くなる。この結果、Zn含有量が高い、本発明のような7000系アルミニウム合金のビレットであっても、再結晶温度未満の低温でも押出加工が可能であり、押出材の表層部や内部の再結晶粒層を抑制(微細化)することが可能となる。 On the other hand, in hot isostatic pressing, a lubricant is put between the container and the billet, and a state in which the billet for extrusion floats in this lubricant is pushed out by a stem (with a dummy block). . For this reason, the billet does not come into direct contact with the container or the die, unlike direct extrusion or indirect extrusion, due to the action of the lubricant. That is, the billet is in direct contact only while it passes through about 5 mm of the die thickness. As a result, friction and frictional heat are reduced, and the metal flow becomes nearly uniform. As a result, even a billet of a 7000 series aluminum alloy like the present invention having a high Zn content can be extruded even at a low temperature lower than the recrystallization temperature, and the recrystallized grains in the surface layer part and inside of the extruded material The layer can be suppressed (miniaturized).
このため、熱間静水圧押出による押出材は、再結晶粒層を含めて、あるいは再結晶粒層が存在していても、表層部から内部までの組織の均一性が図れる。この結果、線棒あるいは線棒製品の素材としても、抽伸性や伸線性あるいは加工性、成形性が著しく向上する。また、本発明のように再結晶粒層を抑制すれば、微細な押出加工組織であることによって、アルミニウム合金製ボルトなどの線棒製品に要求される耐へたり性などの基本特性も保証できる。 For this reason, the extruded material by hot isostatic pressing includes the recrystallized grain layer, or even if there is a recrystallized grain layer, the structure from the surface layer to the inside can be made uniform. As a result, the drawability, drawability, workability, and formability of the wire rod or wire rod product are significantly improved. In addition, if the recrystallized grain layer is suppressed as in the present invention, the basic characteristics such as sag resistance required for wire rod products such as aluminum alloy bolts can be ensured by the fine extruded structure. .
押出材の製品加工と熱処理
以上の熱間押出後の押出材は、更に前記各用途の部材の製品形状に加工される。例えば押出材を冷間でさらに加工するために、この加工前に焼鈍処理を行っても良い。具体的に、押出材を細径化するために、抽伸により伸線加工する場合には、抽伸加工前の押出材に、あるいは抽伸加工中に、焼鈍処理を行っても良い。
Product processing and heat treatment of extruded material The extruded material after hot extrusion described above is further processed into the product shape of the member for each application. For example, in order to further process the extruded material cold, an annealing treatment may be performed before this processing. Specifically, in order to reduce the diameter of the extruded material, when drawing is performed by drawing, an annealing treatment may be performed on the extruded material before drawing or during drawing.
そして、このような製品加工の完了前あるいは製品加工の完了後に溶体化および焼入れ処理を行い、更に、人工時効処理を行って強度を向上させる。 Then, before completion of such product processing or after completion of product processing, solution treatment and quenching treatment are performed, and further, artificial aging treatment is performed to improve the strength.
前記溶体化処理は、好ましくは450℃以上、固相線温度以下で、より好ましくは480℃以上、固相線温度以下で、保持時間は1〜4時間の範囲で行う。この溶体化処理後、直ちに10℃/秒以上の冷却速度で急冷処理(焼入れ処理)を行う。溶体化後の冷却はミスト冷却或いは水冷で行うか、室温〜100℃までの温湯に焼き入れる。これらの条件を外れると製品の機械的な特性を低下させる可能性がある。 The solution treatment is preferably performed at 450 ° C. or higher and a solidus temperature or lower, more preferably 480 ° C. or higher and a solidus temperature or lower, and the holding time is in the range of 1 to 4 hours. Immediately after the solution treatment, rapid cooling (quenching) is performed at a cooling rate of 10 ° C./second or more. Cooling after solution treatment is performed by mist cooling or water cooling, or by quenching in warm water from room temperature to 100 ° C. Exceeding these conditions may reduce the mechanical properties of the product.
前記人工時効硬化処理は、この種7000系アルミニウム合金押出材の一般的な人工時効条件(T6、T7)で行えば良い。言い換えると、このような一般的な人工時効条件で引張強さが700MPa以上の高強度が出る点が本発明の利点でもある。目安としては、100〜200℃での人工時効処理を12〜36時間(hr)行う。 The artificial age hardening treatment may be performed under the general artificial aging conditions (T6, T7) of this kind 7000 series aluminum alloy extruded material. In other words, it is an advantage of the present invention that a high strength with a tensile strength of 700 MPa or more is obtained under such general artificial aging conditions. As a standard, artificial aging treatment at 100 to 200 ° C. is performed for 12 to 36 hours (hr).
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
次に、本発明の実施例を説明する。表1に示す組成のZn−Mg−Cu系である7000系アルミニウム合金を鋳造後、表2に示す、均熱処理条件、押出開始温度および押出速度によって熱間静水圧押出を施して、共通して15mmφの断面が円形な線棒材を製造した。ここで、全ての発明例は前記した2段均熱あるいは2回均熱にて均熱処理を行い、熱間静水圧押出を未再結晶領域にて行った。一方、比較例は、組成、均熱、熱間静水圧押出などの条件を種々変えてつくり分けた。 Next, examples of the present invention will be described. After casting a 7000 series aluminum alloy that is a Zn-Mg-Cu system having the composition shown in Table 1, hot isostatic pressing is performed according to the soaking conditions, extrusion start temperature and extrusion speed shown in Table 2, in common. A wire rod material having a circular cross section of 15 mmφ was produced. Here, in all the inventive examples, soaking was performed by the above-described two-stage soaking or two-time soaking, and hot isostatic pressing was performed in an unrecrystallized region. On the other hand, the comparative example was made by changing various conditions such as composition, soaking, and hot isostatic pressing.
この押出材の押出されたままの状態での組織として、表層部の再結晶粒の平均結晶粒径(μm)、押出材の軸中心部における結晶粒の半径方向の平均切片長さ(μm)、押出方向の<111>方位の結晶粒の平均面積率、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比<001>/<111>を測定した。これらの結果を表3に示す。 As the structure of the extruded material in the extruded state, the average crystal grain size (μm) of the recrystallized grains in the surface layer portion, the average section length (μm) in the radial direction of the crystal grains in the axial center portion of the extruded material The average area ratio of <111> oriented crystal grains in the extrusion direction, and the ratio <001> / <111> between the average area ratio of <001> oriented crystal grains and the average area ratio of <111> oriented crystal grains It was measured. These results are shown in Table 3.
この組織の測定は前記した測定方法により行った。具体的には、前記TSL社製EBSP測定・解析システム(OIM)を搭載した、日本電子社製SEM(JEOL JSM 6500F)を用いた。各例とも、押出材の長手方向の任意の箇所から採取した試験片5個について、押出されたままの状態での図1に示す押出材軸中心部を通る押出方向に平行な断面の組織における表層部と内部の軸中心部との組織を各々測定して、これらの測定値を平均化した。各試験片の測定領域は各々押出軸方向に400μm、半径方向に800μmの領域とし、測定ステップ間隔も共通して2.0μmとした。 This tissue was measured by the measurement method described above. Specifically, a JEM SEM (JEOL JSM 6500F) equipped with the TSL EBSP measurement / analysis system (OIM) was used. In each example, five test pieces taken from arbitrary positions in the longitudinal direction of the extruded material were used in the structure having a cross section parallel to the extrusion direction passing through the central portion of the extruded material shaft shown in FIG. The structures of the surface layer part and the inner shaft center part were measured, and these measured values were averaged. The measurement area of each test piece was 400 μm in the direction of the extrusion axis and 800 μm in the radial direction, and the measurement step interval was also set to 2.0 μm.
この押出された線棒材を、その表層部(表面部)の再結晶粒層を除去することなく、前記各用途の部材への製品加工後の調質を模擬して、480℃×3時間の溶体化処理および溶体化処理終了直後に40℃の水に焼き入れて10分保持して室温まで冷却する焼入れ処理を行った。その後、更に120℃×24時間の人工時効処理した。 The extruded wire rod material is simulated at 480 ° C. for 3 hours by tempering the product after being processed into the member for each application without removing the recrystallized grain layer of the surface layer portion (surface portion). Immediately after the completion of the solution treatment and the solution treatment, quenching was performed by quenching in water at 40 ° C., holding for 10 minutes, and cooling to room temperature. Thereafter, artificial aging treatment was further performed at 120 ° C. for 24 hours.
そして、この人工時効処理後の押出材の、機械的特性、耐食性などの諸特性を評価した。これらの結果も表3に示す。 And various characteristics, such as a mechanical characteristic and corrosion resistance, of the extrusion material after this artificial aging treatment were evaluated. These results are also shown in Table 3.
機械的性質:
前記調質した押出材の機械的性質は、各々試験片を採取して、引張試験機を用いて、5mm/分のクロスヘッド速度で、常温中で、破断まで引張試験を行った。応力―歪速度より、引張強さ(MPa)、0.2%耐力(MPa)を測定した。伸び(%)は前記引張試験時の引張試験前後のケガキ線の間隔(引張試験前の間隔10mm)より算出した。なお、これらの測定値は、各例とも3本の試験片の各測定値の平均値とした。
mechanical nature:
As for the mechanical properties of the tempered extruded material, test pieces were collected and subjected to a tensile test using a tensile tester at a crosshead speed of 5 mm / min at room temperature until breakage. From the stress-strain rate, tensile strength (MPa) and 0.2% yield strength (MPa) were measured. Elongation (%) was calculated from the spacing of the marking lines before and after the tensile test during the tensile test (interval of 10 mm before the tensile test). In addition, these measured values were made into the average value of each measured value of three test pieces in each example.
耐食性:
前記耐食性を評価するために、前記調質した押出材のJIS−W1103法の4.4.3項に記載の方法に準じた腐食試験を行った。すなわち、腐食試験条件は、まず、93℃のエッチング溶液(70%濃硝酸50ml、48%、ふっ化水素酸5ml、蒸留水945mlの組成)に1分間浸漬後、蒸留水で洗浄し、乾燥させた。その後、30℃の腐食促進液(NaClを57g、30%過酸化水素水10mlを蒸留水で1lに希釈したもの) に6時間浸漬した。そして、試験片平行断面を、エッチング溶液(70%濃硝酸2.5ml、濃塩酸1.5ml、48%ふっ化水素酸1.0ml、蒸留水95.0mlの組成) に10秒間浸漬後、蒸留水で洗浄して乾燥した。この試験片平行断面の腐食状況を200倍の金属顕微鏡により観察した。腐食の観察は、前記顕微鏡視野内において、他の孔食腐食や全面腐食などと区別した上で、耐食性が良くない表3の比較例○との比較で、耐食性を判断した。即ち、この比較例○に比して、腐食の程度が大きい場合を×、小さい場合を○と評価した。
Corrosion resistance:
In order to evaluate the corrosion resistance, the tempered extruded material was subjected to a corrosion test in accordance with the method described in Section 4.4.3 of JIS-W1103 method. That is, the corrosion test conditions were as follows. First, after immersing in an etching solution at 93 ° C. (composition of 70% concentrated nitric acid 50 ml, 48%, hydrofluoric acid 5 ml, distilled water 945 ml), washed with distilled water and dried. It was. Thereafter, it was immersed in a corrosion accelerating solution at 30 ° C. (57 g of NaCl, 10 ml of 30% hydrogen peroxide solution diluted to 1 liter with distilled water) for 6 hours. Then, the test specimen parallel section was immersed in an etching solution (composition of 70% concentrated nitric acid 2.5 ml, concentrated hydrochloric acid 1.5 ml, 48% hydrofluoric acid 1.0 ml, distilled water 95.0 ml) for 10 seconds, followed by distillation. Washed with water and dried. The corrosion state of this test piece parallel cross section was observed with a 200-fold metal microscope. In the observation of the corrosion, the corrosion resistance was judged by comparing with the comparative example (circle) in Table 3 in which the corrosion resistance was not good after distinguishing it from other pitting corrosion and general corrosion in the microscope field of view. That is, compared with this comparative example (circle), the case where the degree of corrosion was large evaluated as x, and the case where it was small was evaluated as (circle).
表1〜表3まで同じ通し番号である1〜12の各発明例は、表1の通りアルミニウム合金は本発明成分組成範囲内である(但し、表1の合金番号11は欠番である)。また、表2の通り、特定温度範囲での2段均熱あるいは2回均熱にて均熱処理を行い、熱間静水圧押出を未再結晶領域にて行う、好ましい製造条件にて製造されている(但し、表2の番号11は欠番である)。この結果、表3の通り、表層部や内部を含めて再結晶化が抑制され、微細な押出加工組織(繊維状組織)となっている。この結果、引張強さが700MPa以上で伸びが7%以上である特性を有する。また、耐食性にも優れている(但し、表3の番号11は欠番である)。 In Tables 1 to 3, the invention numbers 1 to 12 having the same serial numbers are as shown in Table 1, and the aluminum alloy is in the composition range of the present invention (however, alloy number 11 in Table 1 is a missing number) . Moreover, as shown in Table 2, it is produced under preferable production conditions in which soaking is performed by two-stage soaking or twice soaking in a specific temperature range, and hot isostatic pressing is performed in an unrecrystallized region. (However, number 11 in Table 2 is a missing number) . As a result, as shown in Table 3, recrystallization is suppressed including the surface layer portion and the inside, and a fine extruded structure (fibrous structure) is formed. As a result, the tensile strength is 700 MPa or more and the elongation is 7% or more. Moreover, it is excellent also in corrosion resistance (however, the number 11 in Table 3 is a missing number) .
これに対して、表1〜表3まで同じ通し番号である13〜24の各比較例は、表1の通りアルミニウム合金は本発明成分組成範囲から外れている。
比較例13はZnが下限から外れる。
比較例14はZnが上限から外れる。
比較例15はMgが下限から外れる。
比較例16はMgが上限から外れる。
比較例17はCuが下限から外れる。
比較例18はCuが上限から外れる。
比較例19はZrが下限から外れる。
比較例20はZrが上限から外れる。
比較例21はMnが上限から外れる。
比較例22はCrが上限から外れる。
比較例23はScが上限から外れる。
比較例24はAgが上限から外れる。
On the other hand, in each comparative example of 13 to 24, which is the same serial number from Table 1 to Table 3, as shown in Table 1, the aluminum alloy is out of the composition range of the present invention.
In Comparative Example 13, Zn deviates from the lower limit.
In Comparative Example 14, Zn deviates from the upper limit.
In Comparative Example 15, Mg deviates from the lower limit.
In Comparative Example 16, Mg deviates from the upper limit.
In Comparative Example 17, Cu deviates from the lower limit.
In Comparative Example 18, Cu deviates from the upper limit.
In Comparative Example 19, Zr deviates from the lower limit.
In Comparative Example 20, Zr deviates from the upper limit.
In Comparative Example 21, Mn deviates from the upper limit.
In Comparative Example 22, Cr deviates from the upper limit.
In Comparative Example 23, Sc deviates from the upper limit.
In Comparative Example 24, Ag deviates from the upper limit.
このため、これら比較例は、好ましい製造方法で製造されているものの、表3の通り、鋳造割れが発生して製造できないものや、表層部や内部を含めて再結晶化が抑制されておらず、引張強さが700MPa未満となるか、或いは引張強度は増大しているものの、伸びや耐食性が劣化したりして、総合的な評価で劣っている。 For this reason, although these comparative examples are manufactured by a preferable manufacturing method, as shown in Table 3, recrystallization is not suppressed including those that cannot be manufactured due to occurrence of casting cracks, and the surface layer portion and the inside. Although the tensile strength is less than 700 MPa or the tensile strength is increased, the overall evaluation is inferior because the elongation and the corrosion resistance are deteriorated.
また、表1〜表3まで同じ通し番号である25〜29の各比較例は、表1の通りアルミニウム合金は本発明成分組成範囲内であるものの、表2の通り、好ましい製造条件から外れて製造されている。この結果、表3の通り、表層部や内部を含めて再結晶化が抑制されておらず、引張強さが700MPa未満となっている。
比較例25は1回しか均熱処理していない。
比較例26、27は2段均熱あるいは2回均熱だが、いずれかの均熱処理温度が好適条件から外れて、高すぎるか、低すぎる。
比較例25〜29は、組成に対して押出開始温度が高すぎ、熱間静水圧押出が再結晶領域にて行われている。
Moreover, each comparative example of 25-29 which is the same serial number from Table 1 to Table 3 is manufactured out of the preferable manufacturing conditions as shown in Table 2, although the aluminum alloy is within the composition range of the present invention as shown in Table 1. Has been. As a result, as shown in Table 3, recrystallization including the surface layer portion and the inside is not suppressed, and the tensile strength is less than 700 MPa.
In Comparative Example 25, the heat treatment was performed only once.
Comparative Examples 26 and 27 are two-stage soaking or two-time soaking, but one of the soaking temperatures deviates from the preferred condition and is too high or too low.
In Comparative Examples 25 to 29, the extrusion start temperature is too high for the composition, and hot isostatic pressing is performed in the recrystallization region.
本発明によれば、押出材の表層部や内部再結晶化が抑制され、引張強さで700MPa以上の高強度な7000系アルミニウム合金押出材を提供できる。このため、本発明は、軽量化された前記各用途の部材として、好適に用いることができる。 ADVANTAGE OF THE INVENTION According to this invention, the surface layer part and internal recrystallization of an extrusion material are suppressed, and the high strength 7000 series aluminum alloy extrusion material with a tensile strength of 700 Mpa or more can be provided. For this reason, this invention can be used suitably as a member of each said use reduced in weight.
Claims (3)
The aluminum alloy extruded material according to claim 1 or 2, wherein the aluminum alloy extruded material further contains Ag: 0.01 to 0.2% by mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012285869A JP5830006B2 (en) | 2012-12-27 | 2012-12-27 | Extruded aluminum alloy with excellent strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012285869A JP5830006B2 (en) | 2012-12-27 | 2012-12-27 | Extruded aluminum alloy with excellent strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014125676A JP2014125676A (en) | 2014-07-07 |
JP5830006B2 true JP5830006B2 (en) | 2015-12-09 |
Family
ID=51405420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012285869A Expired - Fee Related JP5830006B2 (en) | 2012-12-27 | 2012-12-27 | Extruded aluminum alloy with excellent strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5830006B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109468558A (en) * | 2019-01-08 | 2019-03-15 | 合肥工业大学 | A kind of extruding and heat treatment process of aerospace 7xxx line aluminium alloy |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6501109B2 (en) * | 2015-02-05 | 2019-04-17 | アイシン軽金属株式会社 | Aluminum alloy and material, and method of manufacturing extruded material |
JP6690914B2 (en) * | 2015-10-06 | 2020-04-28 | 昭和電工株式会社 | Aluminum alloy extruded material |
WO2017126413A1 (en) * | 2016-01-21 | 2017-07-27 | 株式会社神戸製鋼所 | Machine component, method for producing same, and extruded material |
CN108884525B (en) | 2016-03-30 | 2020-07-10 | 爱信轻金属株式会社 | High-strength aluminum alloy extruded material having excellent corrosion resistance and good quenching properties, and method for producing same |
KR102540017B1 (en) * | 2016-07-13 | 2023-06-05 | 후루카와 덴끼고교 가부시키가이샤 | Aluminum alloy materials and conductive members using the same, battery members, fastening components, spring components and structural components |
CN114657425A (en) * | 2016-07-13 | 2022-06-24 | 古河电气工业株式会社 | Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component using same |
JP2018031026A (en) * | 2016-08-22 | 2018-03-01 | 株式会社神戸製鋼所 | Machine component and extrusion material |
JP2018080355A (en) * | 2016-11-14 | 2018-05-24 | 株式会社神戸製鋼所 | Aluminum alloy extrusion material |
CN107190186A (en) * | 2017-05-31 | 2017-09-22 | 佛山科学技术学院 | A kind of novel ultra-high-strength/tenacity aluminum alloy and preparation method thereof |
CN107245616A (en) * | 2017-05-31 | 2017-10-13 | 佛山科学技术学院 | A kind of 600MPa grades of low-quenching sensitive ultra-high-strength aluminum alloy and preparation method thereof |
JP7018332B2 (en) * | 2018-02-24 | 2022-02-10 | アイシン軽金属株式会社 | Manufacturing method of bent molded products using aluminum alloy |
CA3125048A1 (en) * | 2019-06-03 | 2021-02-18 | Novelis Inc. | Ultra-high strength aluminum alloy products and methods of making the same |
JP7483976B2 (en) | 2022-04-28 | 2024-05-15 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60125354A (en) * | 1983-12-08 | 1985-07-04 | Sumitomo Light Metal Ind Ltd | Manufacture of superplastic high strength aluminum alloy |
JPH0635624B2 (en) * | 1985-05-10 | 1994-05-11 | 昭和アルミニウム株式会社 | Manufacturing method of high strength aluminum alloy extruded material |
JP4753240B2 (en) * | 2005-10-04 | 2011-08-24 | 三菱アルミニウム株式会社 | High-strength aluminum alloy material and method for producing the alloy material |
JP5111005B2 (en) * | 2007-07-31 | 2012-12-26 | 株式会社神戸製鋼所 | Manufacturing method of high fatigue strength Al alloy |
JP5083816B2 (en) * | 2007-11-08 | 2012-11-28 | 住友軽金属工業株式会社 | Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material |
JP2010196089A (en) * | 2009-02-24 | 2010-09-09 | Kobe Steel Ltd | Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process |
-
2012
- 2012-12-27 JP JP2012285869A patent/JP5830006B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109468558A (en) * | 2019-01-08 | 2019-03-15 | 合肥工业大学 | A kind of extruding and heat treatment process of aerospace 7xxx line aluminium alloy |
CN109468558B (en) * | 2019-01-08 | 2020-11-10 | 合肥工业大学 | Extrusion and heat treatment process of 7xxx series aluminum alloy for aerospace |
Also Published As
Publication number | Publication date |
---|---|
JP2014125676A (en) | 2014-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5830006B2 (en) | Extruded aluminum alloy with excellent strength | |
JP5421613B2 (en) | High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof | |
JP5610582B2 (en) | Aluminum alloy material for high pressure hydrogen gas storage container | |
JP6368087B2 (en) | Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member | |
WO2015146654A1 (en) | Forged aluminum alloy material and method for producing same | |
JP5723192B2 (en) | Aluminum alloy forging and method for producing the same | |
JP5385025B2 (en) | Aluminum alloy wire rod for high-strength bolt excellent in formability and manufacturing method thereof, high-strength flange bolt and manufacturing method thereof | |
JP6165687B2 (en) | Aluminum alloy plate | |
WO2014046047A1 (en) | Aluminum alloy plate for automobile part | |
JP6022882B2 (en) | High strength aluminum alloy extruded material and manufacturing method thereof | |
JP2013227652A (en) | Aluminum alloy forged material for automobile and method for manufacturing the same | |
JP2017155251A (en) | Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor | |
WO2016204043A1 (en) | High strength aluminum alloy hot-forged material | |
WO2015141647A1 (en) | Aluminum alloy sheet for structural material | |
JP2011144396A (en) | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance | |
JP2015189993A (en) | Aluminium alloy forging | |
JP2004084058A (en) | Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging | |
JP6223670B2 (en) | Aluminum alloy sheet for automobile parts | |
JP6223669B2 (en) | Aluminum alloy sheet for automobile parts | |
JP2017133097A (en) | Mechanical member and manufacturing method and extrusion material | |
JP2001020047A (en) | Stock for aluminum alloy forging and its production | |
WO2018088351A1 (en) | Aluminum alloy extruded material | |
KR101159410B1 (en) | Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof | |
JP2007092125A (en) | Aluminum alloy, aluminum alloy bar, method for manufacturing aluminum alloy ingot for forging, and forged and formed article | |
WO2017126413A1 (en) | Machine component, method for producing same, and extruded material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5830006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |