JPS60125354A - Manufacture of superplastic high strength aluminum alloy - Google Patents

Manufacture of superplastic high strength aluminum alloy

Info

Publication number
JPS60125354A
JPS60125354A JP23060783A JP23060783A JPS60125354A JP S60125354 A JPS60125354 A JP S60125354A JP 23060783 A JP23060783 A JP 23060783A JP 23060783 A JP23060783 A JP 23060783A JP S60125354 A JPS60125354 A JP S60125354A
Authority
JP
Japan
Prior art keywords
alloy
cold
sec
aluminum alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23060783A
Other languages
Japanese (ja)
Other versions
JPS6157385B2 (en
Inventor
Hideo Yoshida
英雄 吉田
Teruo Uno
宇野 照生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP23060783A priority Critical patent/JPS60125354A/en
Publication of JPS60125354A publication Critical patent/JPS60125354A/en
Publication of JPS6157385B2 publication Critical patent/JPS6157385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture the titled Al alloy having fine grains by adding a specified amount of Cr or Zr to a precipitation hardening Al alloy, hot and cold working the resulting alloy, heating it to the soln. heat treatment temp., and carrying out cooling, working and heating under specified conditions. CONSTITUTION:0.05-0.35% Cr and/or 0.05-0.25% Zr is added to a precipitation hardening Al alloy contg. about 5.1-8.1% Zn, about 1.8-3.4% Mg, about 1.2- 2.6% Cu and <=about 0.2% Ti. The resulting alloy is hot-worked, cold-worked, and heated to the soln. heat treatment temp. It is cooled at 0.2-0.001 deg.C/sec cooling rate, cold worked at >=60%, and heated to 400-530 deg.C at 1 deg.C/sec heating rate to form grains of <=25mum grain size by recrystallization. Thus, a superplastic high strength Al alloy is manufactured.

Description

【発明の詳細な説明】 本発明は、25μm以下の微細結晶粒をもつ超塑性高力
アルミニウム合金の製造法に関覆る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing superplastic high strength aluminum alloys with fine grains of 25 μm or less.

析出硬化型アルミニウム合金を、通常の製造法である造
填→均質化熱処理→熱間圧延→冷間)1延→溶体化処理
の工程でつくった圧延材料は、結晶粒径が板面で30〜
100μmあり、25μ−以下の結晶粒を得ようとすれ
ば90%より高い冷間加■を与える必要がある。
The rolled material made from precipitation hardening aluminum alloy through the usual manufacturing process of filling → homogenization heat treatment → hot rolling → cold rolling → solution treatment has a crystal grain size of 30 mm on the plate surface. ~
100 .mu.m, and in order to obtain crystal grains of 25 .mu.m or less, it is necessary to apply cold working of more than 90%.

しかしながら、90%より高い加工を冷間圧延で与える
ど、板端面での耳割れが生じたり、仮が圧延方向に直角
に破断したりする。
However, when cold rolling is applied to a higher degree of working than 90%, edge cracks occur at the end face of the plate, or the tentacles break at right angles to the rolling direction.

そのため、例えば特開昭53−132420号公報に見
られるように、低加工度でも微細結晶粒を得る方法が提
案されている。しかしながらこの方法は過時効処理を必
要とする。
Therefore, a method of obtaining fine crystal grains even with a low working degree has been proposed, as seen in, for example, Japanese Patent Application Laid-Open No. 53-132420. However, this method requires overaging treatment.

本発明は以上の従来技術に鑑み、過時効処理を要するこ
となく高加工度においても耳割れ、破断等の欠点を生ず
ることのない超塑性高力アルミニウム合金を得ることを
目的とするもので、その要旨とするところはOro、0
5〜0.35%またはZ r 0.05〜0.25%の
少なくとも一方を含む析出硬化型アルミニウム合金を常
法にしたがって熱間加工および冷間加工し、溶体化処理
温度に加熱後、0.2〜o、ooi℃/ SeCの冷却
速度で冷却し、60%以上の冷問加工を施して、400
〜530℃の温度に1℃/ sec以上の加熱速度で昇
温させ25μ−以下に再結晶化させることを特徴とづる
超短t1高力アルミーニウム合金の製造法である。
In view of the above-mentioned prior art, the present invention aims to obtain a superplastic high-strength aluminum alloy that does not require over-aging treatment and does not suffer from defects such as edge cracking and breakage even under high working conditions. The gist of it is Oro, 0
A precipitation hardening aluminum alloy containing at least one of 5% to 0.35% or 0.05% to 0.25% of Zr is hot worked and cold worked according to a conventional method, heated to a solution treatment temperature, and then Cooled at a cooling rate of .2 to o, ooi°C/SeC and subjected to cold processing of 60% or more to 400
This is a method for producing an ultra-short t1 high-strength aluminum alloy, which is characterized by increasing the temperature to ~530°C at a heating rate of 1°C/sec or more and recrystallizing it to 25μ or less.

まず本発明に用いる析出硬化型アルミニウム合金は7n
 s、i 〜8.1%、M(+ 1.8〜3.4%、C
u 1.2〜2.6%、TiO,2%以下含むものであ
り、それに上記の如<Oro、05〜0.35%または
Z r O,05〜0.25%の少なくとも一方を含む
ものである。各成分組成の限定理由は下記のどおりであ
る。
First, the precipitation hardening aluminum alloy used in the present invention is 7n
s, i ~8.1%, M(+1.8~3.4%, C
U 1.2-2.6%, TiO, 2% or less, and at least one of the above-mentioned <Oro, 05-0.35% or ZrO, 05-0.25%. . The reasons for limiting the composition of each component are as follows.

7n : 5.1%未満では焼戻しによって高い強度が
得られれす、8.1%を越えると応力腐食割れを発生し
やすくなる。
7n: If it is less than 5.1%, high strength cannot be obtained by tempering, but if it exceeds 8.1%, stress corrosion cracking is likely to occur.

Mg: 1.8%未満では焼戻しによって高い強度が得
られず、3.4%を越えると圧延加工性が悪く、また応
力腐食割れを発生しやすくなる。
Mg: If it is less than 1.8%, high strength cannot be obtained by tempering, and if it exceeds 3.4%, rolling workability is poor and stress corrosion cracking is likely to occur.

CO: 1.2%未満では焼戻しによって^い強色がI
¥Iられず、2.6%を越えると圧延加工性が悪く靭性
が【下する。
CO: If it is less than 1.2%, strong color will be produced by tempering.
If it exceeds 2.6%, rolling workability will be poor and toughness will deteriorate.

1”i:0,20%以下の添加は鋳造組織の微細化、鋳
造時の鋳塊割れの防止に有効で あるが、0.20%を越えると巨大な金属間化合物が晶
出する。
1"i: Addition of 0.20% or less is effective in refining the casting structure and preventing cracking of the ingot during casting, but if it exceeds 0.20%, huge intermetallic compounds will crystallize.

C; r : 0.05〜0.35%の添加で、結晶粒
微細化の効果があり、かつ応力腐食割れの 防止に有効である。0605%未満ではこれらの効果が
なく 、 G、35%を越えると巨大な金属間化合物が
晶出するので好 ましくない。
C; r: Addition of 0.05 to 0.35% has the effect of grain refinement and is effective in preventing stress corrosion cracking. If it is less than 0.605%, these effects will not be achieved, and if it exceeds 35%, a huge intermetallic compound will crystallize, which is not preferable.

Z r : 0,05〜0.25%の添加で、結晶粒微
細化の効果があり、かつ応力腐食割れの 防止に有効である。0.05%未満の場合にはこれらの
効果がなく 、0.25%を越えると巨大な金jlli
l化合物が晶出するので好ましくない。
Zr: Addition of 0.05 to 0.25% has the effect of grain refinement and is effective in preventing stress corrosion cracking. If it is less than 0.05%, there will be no effect, and if it exceeds 0.25%, it will be a huge gold mine.
This is not preferred because the compound crystallizes.

本発明においては、かかる組成の合金を熱間圧延あるい
は冷間圧延中に形成された微細な析出相を溶体化処l!
l!温度にまで加熱して固溶させ、その俊0.2〜0.
001℃/ 5e(iの速度で冷却することによつて、
過飽和な溶質原子は冷却中に析出する、ために、室温で
の時効硬化は小さい。このため圧延の場合90%を越え
るような冷間圧延で少耳割れや破断が少なく、圧延が可
能になる。このようにして強加工された材料を1℃/ 
sea以上の加熱速度で昇温させ再結晶化させれば、2
5μm以下の結晶粒をもった材料が得られる。
In the present invention, the fine precipitated phases formed during hot rolling or cold rolling of an alloy having such a composition are subjected to solution treatment.
l! Heating to a temperature of 0.2-0.
By cooling at a rate of 001°C/5e (i,
Age hardening at room temperature is small because supersaturated solute atoms precipitate during cooling. For this reason, in the case of rolling, it is possible to perform rolling with a cold rolling rate of over 90% with fewer edge cracks and fewer breaks. The material that has been strongly processed in this way is
If the temperature is raised at a heating rate higher than sea and recrystallized, 2
A material with crystal grains of 5 μm or less can be obtained.

本発明における上記溶体化処理温度から室温までの玲に
1条件の限定理由は、冷却速度が0.2℃/ Secよ
り遅い場合には粒内、粒界に1μ−以上の板状、棒状、
塊状の粗大な化合物(M相[M(l Zn 1など)を
析出し、又0.2℃/ Secより速い場合には、M相
の析出は全く観察されないか、観察されても1μm以下
である。このように冷却速度の差によって溶質元素の析
出量が異なってくる。冷却速度が速いと焼入れ後、過飽
和の溶′R原子はGPゾーンや析出相を生じやすくなる
。一方冷却速度が遅いと過飽和のwJ賀原子は冷却中に
M相あるいはその他の化合物として粒内、粒界に析出す
る。また焼入れ後もGPゾーンや析出相が生じにくくな
る。
The reason for the limitation of the condition from the solution treatment temperature to room temperature in the present invention is that when the cooling rate is slower than 0.2°C/Sec, plate-like, rod-like,
Precipitation of bulky coarse compounds (M phase [M (l Zn 1, etc.) In this way, the amount of solute elements precipitated differs depending on the cooling rate.If the cooling rate is fast, the supersaturated solute R atoms tend to form a GP zone or a precipitated phase after quenching.On the other hand, if the cooling rate is slow, Supersaturated wJ atoms precipitate in the grains and grain boundaries as M phase or other compounds during cooling. Also, GP zones and precipitated phases are less likely to occur after quenching.

以上のような析出状態の差によって冷間加工のしやすさ
が異なる。0.2℃/ 513C以下のゆっくり冷却し
た方が粗大な析出物を生じてマトリックスの変形抵抗は
小さい。したがって変形が容易である。一方0.2℃/
 SeCよりもはやく冷却するとGPゾーンや微細な析
出物のために変形抵抗は大きく、耳割れや圧鉦割れを生
じやすい。また、0.001℃/ secより遅い場合
には、冷却速度が非常に理くて経淡的にメリットが少な
い。
The ease of cold working differs depending on the difference in precipitation state as described above. Slow cooling below 0.2°C/513C produces coarse precipitates and reduces the deformation resistance of the matrix. Therefore, it is easy to deform. On the other hand, 0.2℃/
If it is cooled more quickly than SeC, the deformation resistance is large due to the GP zone and fine precipitates, and it is easy to cause edge cracks and pressure cracks. Furthermore, if the cooling rate is slower than 0.001°C/sec, the cooling rate is very slow and there is little merit in terms of economics.

冷間加工は加工歪を与えることで、再結晶を容易にする
。冷間加工度が60%未満では25μ−より大きい結晶
粒径となる。水系合金の場合、再結晶粒の大きさは冷間
加工度が大きいほど細かくなる。これは冷同加工度が大
きいほど強加工を受ける領域が多くなり、また同時に転
位密度も増すため、溶質原子はより多くの転位上に析出
しやすくなり、転位の運動が妨げられ、したがって結晶
成長も抑えられ、再結晶粒は小さくなる。
Cold working facilitates recrystallization by imparting processing strain. If the degree of cold working is less than 60%, the grain size will be larger than 25μ. In the case of water-based alloys, the size of recrystallized grains becomes finer as the degree of cold working increases. This is because the higher the degree of cold working, the more regions undergo strong working, and at the same time the dislocation density also increases, so solute atoms tend to precipitate on more dislocations, hindering the movement of dislocations, and thus crystal growth. The recrystallized grains become smaller.

冷間加工後再結晶させるために400〜530℃で加熱
する。300℃以下では再結晶しにくく、300〜40
0℃未満になると転位上に析出した溶質原子が凝集して
化合物を形成しやすくなる。それは溶¥4wt子による
転位の固着作用が少なくなるために、転位が動きやすく
なり、再結晶粒も大ぎくなるためと考えられる。
After cold working, it is heated at 400 to 530°C for recrystallization. It is difficult to recrystallize below 300℃,
When the temperature is lower than 0°C, solute atoms precipitated on dislocations tend to aggregate and form compounds. This is thought to be because the fixing effect of dislocations by the molten metal decreases, making it easier for dislocations to move and recrystallized grains to become larger.

400℃以上になると、加熱速度が速い場合、溶質原子
が凝集する前に再結晶が進行していくものと考えられる
。もちろん、溶体化処理温度以上になれば溶質原子は固
溶する。さらに530℃を越えると合金が溶けるために
再結晶は400〜530℃で実施することが必要である
When the heating rate is high at 400° C. or higher, it is thought that recrystallization proceeds before solute atoms aggregate. Of course, if the temperature exceeds the solution treatment temperature, the solute atoms become solid solution. Furthermore, since the alloy melts when the temperature exceeds 530°C, it is necessary to carry out recrystallization at a temperature of 400 to 530°C.

その際の加熱速度は1℃/ Seeより遅い場合には、
結晶粒粗大化供域の300〜400℃をゆっくり通過す
るために結晶粒が25μ−以上となるが、加熱速度が1
℃/See以上で速ければ速いほど結晶粒は微細になる
If the heating rate is slower than 1°C/See,
Because the crystal grains slowly pass through the grain coarsening region of 300 to 400°C, the grain size becomes 25μ or more, but the heating rate is 1
The faster the speed is above °C/See, the finer the crystal grains will be.

つぎに実施例について説明する。Next, examples will be described.

実施例1[溶体化処理温度からの冷却条件]zn 5.
7%、Mg2.4%、cu t、e%、Cr0.20%
、FeO,05%、Si0.04%を含有するアルミニ
ウム合金を、連続鋳造法により造塊して、300−エリ
のスラブとした。これを470℃で30時間の均質化熱
処理後、表面の偏析層を除去して、400〜450℃で
の熱間圧延により6mm厚の板とした。これを482℃
の溶体化処理温度にまで加熱し、約60分間保持後、冷
却速度を変えて室温まで焼入れした。この熱処理を施し
た板に65%、80%の冷間加工を与え、最終482℃
の温度にまで急速に加熱した。加熱速度は50℃/ S
eCである。10分間保持後水焼入れして板面の結晶粒
径を調べた。
Example 1 [Cooling conditions from solution treatment temperature] zn 5.
7%, Mg2.4%, cut, e%, Cr0.20%
An aluminum alloy containing 0.05% of FeO, and 0.04% of Si was ingot-formed by a continuous casting method to form a 300-element slab. After homogenization heat treatment at 470°C for 30 hours, the surface segregation layer was removed, and a 6 mm thick plate was hot rolled at 400 to 450°C. This is 482℃
The sample was heated to a solution treatment temperature of , and held for about 60 minutes, and then quenched to room temperature by changing the cooling rate. This heat-treated plate was subjected to 65% and 80% cold working to a final temperature of 482°C.
It was rapidly heated to a temperature of . Heating rate is 50℃/S
It is eC. After being held for 10 minutes, it was water quenched and the crystal grain size on the plate surface was examined.

その結果を表1に示す。The results are shown in Table 1.

表 1 実施例2[冷間加工度〕 実施例1に示した合金を8−一厚まで熱間圧延し、さら
に411℃厚まで冷間圧延して、500℃で1時間の溶
体化処理後、0.2.0.005℃/ Seeの冷却速
度で冷却した。この試料を冷間圧延により1,811(
1,411J iml 、O,,6111゜0.4m−
の各板厚まで圧延した。圧下率はそれぞれ55.65.
15.85.90%である。それらの加工材を加熱速度
50℃/ SeCで482℃まで昇温させ、10分間保
持後水焼入れした。水焼入れ後の板面の結晶粒径を表2
に示す。
Table 1 Example 2 [Cold working degree] The alloy shown in Example 1 was hot rolled to a thickness of 8-1, further cold rolled to a thickness of 411°C, and after solution treatment at 500°C for 1 hour. , at a cooling rate of 0.2.0.005°C/See. This sample was cold rolled to 1,811 (
1,411J iml, O,,6111゜0.4m-
The sheets were rolled to various thicknesses. The rolling reduction ratio is 55.65.
It is 15.85.90%. The processed materials were heated to 482°C at a heating rate of 50°C/SeC, held for 10 minutes, and then water quenched. Table 2 shows the grain size of the plate surface after water quenching.
Shown below.

表 2 実施例3[再結晶温度と加熱速度] 実施@1に示した合金をAmm厚さまで無局圧延して4
60℃で1時間溶体化処理後、0.005℃/SeCで
炉台した。この試料に85%の冷間加工を加え0.61
11厚とした。この板を330.380.420.45
0.480℃の各温度まで50℃/ Secの11熱速
度で昇温させた。各温度で30分間保持後水焼入れして
最終温洩120℃で24時間の焼戻しをした。このとき
の結晶粒径と引張強さとの関係を表3に示す。また炉冷
Iを65.85%の冷間加工を与え、1.4−蒙、0.
61厚の板を480℃まで、0.1.0.5.1.10
.50.100℃/SeCの各加熱速度で昇温させ、3
0分間保持後水焼入れした。このときの板面の結晶粒径
を表4に示す。
Table 2 Example 3 [Recrystallization temperature and heating rate] The alloy shown in Example @1 was continuous rolled to a thickness of Amm.
After solution treatment at 60°C for 1 hour, it was furnace-heated at 0.005°C/SeC. This sample was subjected to 85% cold working to yield 0.61
The thickness was 11. This board is 330.380.420.45
The temperature was increased to 0.480°C at a heating rate of 50°C/Sec. After being held at each temperature for 30 minutes, it was water quenched and tempered at a final temperature of 120° C. for 24 hours. Table 3 shows the relationship between crystal grain size and tensile strength at this time. Furthermore, the furnace-cooled I was subjected to 65.85% cold working, and the temperature was 1.4-month, 0.
61 thickness plate up to 480℃, 0.1.0.5.1.10
.. 50. Raise the temperature at each heating rate of 100 ° C / SeC, 3
After holding for 0 minutes, water quenching was performed. Table 4 shows the crystal grain size on the plate surface at this time.

表 3 表 4 実施例4 [6,管への適用] Zn 5.6%、M(12,5%、Cu 1.5%、Q
ro、22%、Feo、12%、Sin、06%を含む
直径o、ammのアルミニウム合金ビレットを造塊して
、470℃で24時間の均質化熱処理した後、偏析層を
除去して、440℃で熱間押出しした。押出しは80m
m径の丸棒で、丸棒の一部は、外径80IIIIl11
内径60IIIIl11肉厚10IlO1の管に成形し
た。
Table 3 Table 4 Example 4 [6. Application to pipes] Zn 5.6%, M (12.5%, Cu 1.5%, Q
An aluminum alloy billet with a diameter of o and am containing ro, 22%, Feo, 12%, and Sin, 06% was formed into an ingot, and after homogenization heat treatment at 470°C for 24 hours, the segregation layer was removed to form a 440 Hot extruded at °C. Extrusion is 80m
m diameter round bar, part of the round bar has an outer diameter of 80IIIl11
It was molded into a tube with an inner diameter of 60IIIl11 and a wall thickness of 10IlO1.

それぞれ長さ200mmにして、480℃で2時間の溶
体化処理を実施して0.01℃/ Secの速度で炉冷
した。これらの試料を冷間静水圧押出機を用いて直径2
5mmの丸棒と外径52.5mm、内径501IllI
11肉厚1,25mo+の管に押出した。いずれも冷間
加工度は約90%である。これらを480℃の温度まで
棒の場合5℃/sec、管の場合50℃/ Secの加
熱速度で昇温させた。480℃で約30分間保持した後
水焼入れして表面の結晶粒径を測定した。この結果棒で
は14μm。
Each piece was made into a length of 200 mm, subjected to solution treatment at 480°C for 2 hours, and then cooled in a furnace at a rate of 0.01°C/Sec. These samples were cut into diameters of 2 mm using a cold isostatic extruder.
5mm round bar, outer diameter 52.5mm, inner diameter 501IllI
11 was extruded into a tube with a wall thickness of 1.25 mo+. In both cases, the degree of cold working is approximately 90%. These were heated to a temperature of 480°C at a heating rate of 5°C/sec for rods and 50°C/sec for tubes. After being held at 480° C. for about 30 minutes, it was water quenched and the crystal grain size on the surface was measured. The result is 14 μm in the bar.

管では8μmの粒径であった。In the tube, the particle size was 8 μm.

実施例5Example 5

Claims (1)

【特許請求の範囲】[Claims] Cr 0.05〜0.35%またはZ r O,05〜
0.25%の少なくとも一方を含む析出硬化型アルミニ
ウム合金を常法にしたがって熱間加■および冷間加工し
、溶体化処理温度に加熱後、0.2〜o、ooi℃/ 
SeCの冷却速度で冷却し、60%以上の冷間加工を施
して、400〜530℃の温度に1℃7 sec以上の
加熱速度で昇温さI!25μm以下に再結晶化さlるこ
とを特徴とする超塑性高力アルミニウム合金の製造法。
Cr 0.05-0.35% or Z r O, 05-
Precipitation hardening aluminum alloy containing at least one of
It was cooled at the cooling rate of SeC, subjected to cold working of 60% or more, and heated to a temperature of 400 to 530°C at a heating rate of 1°C or more for 7 seconds or more. A method for producing a superplastic high-strength aluminum alloy characterized by recrystallization to a size of 25 μm or less.
JP23060783A 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy Granted JPS60125354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23060783A JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23060783A JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Publications (2)

Publication Number Publication Date
JPS60125354A true JPS60125354A (en) 1985-07-04
JPS6157385B2 JPS6157385B2 (en) 1986-12-06

Family

ID=16910401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23060783A Granted JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Country Status (1)

Country Link
JP (1) JPS60125354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259016A (en) * 1987-04-15 1988-10-26 Sky Alum Co Ltd Manufacture of aluminum-alloy material having fine crystalline grain
US6322647B1 (en) * 1998-10-09 2001-11-27 Reynolds Metals Company Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom
JP2013542319A (en) * 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 7XXX aluminum alloy and method for producing the same
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266213A (en) * 1990-03-15 1991-11-27 Mitsubishi Electric Corp Magnetic head driver for magnetic recording/reproducing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259016A (en) * 1987-04-15 1988-10-26 Sky Alum Co Ltd Manufacture of aluminum-alloy material having fine crystalline grain
US6322647B1 (en) * 1998-10-09 2001-11-27 Reynolds Metals Company Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom
JP2013542319A (en) * 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 7XXX aluminum alloy and method for producing the same
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength

Also Published As

Publication number Publication date
JPS6157385B2 (en) 1986-12-06

Similar Documents

Publication Publication Date Title
EP0157600B1 (en) Aluminum lithium alloys
US4618382A (en) Superplastic aluminium alloy sheets
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
US4797165A (en) Aluminum-lithium alloys having improved corrosion resistance and method
US5135713A (en) Aluminum-lithium alloys having high zinc
EP0325937B1 (en) Aluminum-lithium alloys
US4921548A (en) Aluminum-lithium alloys and method of making same
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
PL203780B1 (en) Aluminium alloy with increased resistance and low quench sensitivity
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP3324444B2 (en) Manufacturing method of extruded aluminum material with excellent bending workability
JPS60125354A (en) Manufacture of superplastic high strength aluminum alloy
EP0695375B1 (en) Improvements in or relating to the production of extruded aluminium-lithium alloys
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
EP0266741B1 (en) Aluminium-lithium alloys and method of producing these
JPH04353A (en) Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same
JPH0366387B2 (en)
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPH0588302B2 (en)
JPS61110756A (en) Rolling method of titanium alloy plate
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material
JPS62287034A (en) Superplastic eutectic mg-al alloy
JPS62170462A (en) Manufacture of superplastic aluminum alloy material