JPS6157385B2 - - Google Patents

Info

Publication number
JPS6157385B2
JPS6157385B2 JP23060783A JP23060783A JPS6157385B2 JP S6157385 B2 JPS6157385 B2 JP S6157385B2 JP 23060783 A JP23060783 A JP 23060783A JP 23060783 A JP23060783 A JP 23060783A JP S6157385 B2 JPS6157385 B2 JP S6157385B2
Authority
JP
Japan
Prior art keywords
sec
temperature
cold
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23060783A
Other languages
Japanese (ja)
Other versions
JPS60125354A (en
Inventor
Hideo Yoshida
Teruo Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP23060783A priority Critical patent/JPS60125354A/en
Publication of JPS60125354A publication Critical patent/JPS60125354A/en
Publication of JPS6157385B2 publication Critical patent/JPS6157385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、25μm以下の微細結晶粒をもつ超塑
性高力アルミニウム合金の製造法に関する。 析出硬化型アルミニウム合金を、通常の製造法
である造塊→均質化熱処理→熱間圧延→冷間圧延
→溶体化処理の工程でつくつた圧延材料は、結晶
粒径が板面で30〜100μmあり、25μm以下の結
晶粒を得ようとすれば90%より高い冷間加工を与
える必要がある。 しかしながら、90%より高い加工を冷間圧延で
与えると、板端面での耳割れが生じたり、板が圧
延方向に直角に破断したりする。 そのため、例えば特開昭53−132420号公報に見
られるように、低加工度でも微細結晶粒を得る方
法が提案されている。しかしながらこの方法は過
時効処理を必要とする。 本発明は以上の従来技術に鑑み、過時効処理を
要することなく高加工度においても耳割れ、破断
等の欠点を生ずることのない超塑性高力アルミニ
ウム合金を得ることを目的とするもので、その要
旨とするところはCr0.05〜0.35%またはZr0.05〜
0.25%の少なくとも一方を含む析出硬化型アルミ
ニウム合金を常法にしたがつて熱間加工および冷
間加工し、溶体化処理温度に加熱後、0.2〜0.001
℃/secの冷却速度で冷却し、60%以上の冷間加工
を施して、400〜530℃の温度に1℃/sec以上の加
熱速度で昇温させ25μm以下に再結晶化させるこ
とを特徴とする超塑性高力アルミニウム合金の製
造法である。 まず本発明に用いる析出硬化型アルミニウム合
金はZn5.1〜8.1%、Mg1.8〜3.4%、Cu1.2〜2.6
%、Ti0.2%以下含むものであり、それに上記の
如くCr0.05〜0.35またはZr0.05〜0.25%の少なく
とも一方を含むものである。各成分組成の限定理
由は下記のとおりである。 Zn:5.1%未満は焼戻しによつて高い強度が得ら
れれず、8.1%を越えると応力腐食割れを発生
しやすくなる。 Mg:1.8%未満では焼戻しによつて高い強度が得
られず、3.4%を越えると圧延加工性が悪く、
また応力腐食割れを発生しやすくなる。 Cu:1.2%未満では焼戻しによつて高い強度が得
られず、2.6%を越えると圧延加工性が悪く靭
性が低下する。 Ti:0.20%以下の添加は鋳造組識の微細化、鋳造
時の鋳塊割れの防止に有効であるが、0.20%を
越えると巨大な金属間化合物が晶出する。 Cr:0.05〜0.35%の添加で、結晶粒微細化の効果
があり、かつ応力腐食割れの防止に有効であ
る。0.05%未満ではこれらの効果がなく、0.35
%を越えると巨大な金属間化合物が晶出するの
で好ましくない。 Zr:0.05〜0.25%の添加で、結晶粒微細化の効果
があり、かつ応力腐食割れの防止に有効であ
る。0.05%未満の場合にはこれらの効果がな
く、0.25%を越えると巨大な金属間化合物が晶
出するので好ましくない。 本発明においては、かかる組成の合金を熱間圧
延あるいは冷間圧延中に形成された微細な析出相
を溶体化処理温度にまで加熱して固溶させ、その
後0.2〜0.001℃/secの速度で冷却することによつ
て、過飽和な溶質原子は冷却中に析出するため
に、室温での時効硬化は小さい。このため圧延の
場合90%を越えるような冷間圧延でも耳割れや破
断が少なく、圧延が可能になる。このようにして
強加工された材料を、1℃/sec以上の加熱速度で
昇温させ再結晶化させれば、25μm以下の結晶粒
をもつた材料が得られる。 本発明における上記溶体化処理温度から室温ま
での冷却条件の限定理由は、冷却速度が0.2%/se
cより遅い場合には粒内、粒界に1μm以上の板
状、棒状、塊状の粗大な化合物(M相[Mg
Nn2]など)を析出し、又0.2℃/secより速い場合
には、M相の析出は全く観察されないか、観察さ
れても1μm以下である。このように冷却速度の
差によつて溶質元素の析出量が異なつてくる。冷
却速度が速いと焼入れ後、過飽和の溶質原子は
GPゾーンや析出相を生じやすくなる。一方冷却
速度が遅いと過飽和の溶質原子は冷却中にM相あ
るいはその他の化合物として粒内、粒界に析出す
る。また焼入れ後もGPゾーンや析出相が生じに
くくなる。 以上のような析出状態の差によつて冷間加工の
しやすさが異なる。0.2℃/sec以下のゆつくり冷
却した方が粗大な析出物を生じてマトリツクスの
変形抵抗は小さい。したがつて変形が容易であ
る。一方0.2℃/secよりもはやく冷却するとGPゾ
ーンや微細な析出物のために変形抵抗は大きく、
耳割れや圧延割れを生じやすい。また、0.001℃/
secより遅い場合には、冷却速度が非常に遅くて
経済的にメリツトが少ない。 冷間加工は加工歪を与えることで、再結晶を容
易にする。冷間加工度が66%未満では25μmより
大きい結晶粒径となる。本系合金の場合、再結晶
粒の大きさは冷間加工度が大きいほど細かくな
る。これは冷間加工度が大きいほど強加工を受け
る領域が多くなり、また同時に転位密度も増すた
め、溶質原子はより多くの転位上に析出しやすく
なり、転位の運動が妨げられ、したがつて結晶成
長も抑えられ、再結晶粒は小さくなる。 冷間加工後再結晶させるために400〜530℃で加
熱する。300℃以下では再結晶しにくく、300〜
400℃未満になると転位上に析出した溶質原子が
凝集して化合物を形成しやすくなる。それは溶質
原子による転位の固着作用が少なくなるために、
転位が動きやすくなり、再結晶粒も大きくなるた
めと考えられる。400℃以上になると、加熱速度
が速い場合、溶質原子が凝集する前に再結晶が進
行していくものと考えられる。もちろん、溶体化
処理温度以上になれば溶質原子は固溶する。さら
に530℃を越えると合金が溶けるために再結晶は
400〜530℃で実施することが必要である。 その際の加熱速度は1℃/secより遅い場合に
は、結晶粒粗大化領域の300〜400℃をゆつくり通
過するために結晶粒が25μm以上となるが、加熱
速度が1℃/sec以上で速ければ速いほど結晶粒は
微細になる。 つぎに実施例について説明する。 実施例 1 [溶体化処理温度からの冷却条件] Zn5.7%、Mg2.4%、Cu1.6%、Cr0.20%、
Fe0.05%、Si0.04%を含有するアルミニウム合金
を、連続鋳造法により造塊して、300mm厚のスラ
ブとした。これを470℃で30時間の均質化熱処理
後、表面の偏析層を除去して、400〜450℃での熱
間圧延により6mm厚の板とした。これを482℃の
溶体化処理温度にまで加熱し、約60分間保持後、
冷却速度を変えて室温まで焼入れした。この熱処
理を施した板に65%、80%の冷間加工を与え、最
後482℃の温度にまで急速に加熱した。加熱速度
は50℃/secである。10分間保持後水焼入れして板
面の結晶粒径を調べた。その結果を表1に示す。
The present invention relates to a method for producing a superplastic high-strength aluminum alloy having fine grains of 25 μm or less. Rolled materials made from precipitation-hardening aluminum alloys through the usual manufacturing process of ingot formation → homogenization heat treatment → hot rolling → cold rolling → solution treatment have crystal grain sizes of 30 to 100 μm on the plate surface. If you want to obtain crystal grains of 25 μm or less, it is necessary to apply cold working higher than 90%. However, if the cold rolling process is applied to a degree higher than 90%, edge cracks may occur at the edge of the plate, or the plate may break at right angles to the rolling direction. Therefore, a method of obtaining fine crystal grains even with a low working degree has been proposed, as seen in, for example, Japanese Patent Application Laid-Open No. 132420/1983. However, this method requires overaging treatment. In view of the above-mentioned prior art, the present invention aims to obtain a superplastic high-strength aluminum alloy that does not require over-aging treatment and does not suffer from defects such as edge cracking and breakage even under high working conditions. The gist is Cr0.05~0.35% or Zr0.05~
A precipitation hardening aluminum alloy containing at least one of 0.25% and 0.2 to 0.001
It is characterized by being cooled at a cooling rate of ℃/sec, subjected to cold working of 60% or more, and then heated to a temperature of 400 to 530℃ at a heating rate of 1℃/sec or more to recrystallize to 25 μm or less. This is a method for producing superplastic high-strength aluminum alloys. First, the precipitation hardening aluminum alloy used in the present invention has Zn5.1~8.1%, Mg1.8~3.4%, and Cu1.2~2.6%.
%, Ti 0.2% or less, and as mentioned above, at least one of Cr 0.05 to 0.35 or Zr 0.05 to 0.25%. The reasons for limiting the composition of each component are as follows. Zn: If it is less than 5.1%, high strength cannot be obtained by tempering, and if it exceeds 8.1%, stress corrosion cracking is likely to occur. Mg: If it is less than 1.8%, high strength cannot be obtained by tempering, and if it exceeds 3.4%, rolling workability is poor.
Moreover, stress corrosion cracking becomes more likely to occur. Cu: If it is less than 1.2%, high strength cannot be obtained by tempering, and if it exceeds 2.6%, rolling workability is poor and toughness is reduced. Addition of Ti: 0.20% or less is effective in refining the casting structure and preventing cracking of the ingot during casting, but if it exceeds 0.20%, large intermetallic compounds will crystallize. Addition of Cr: 0.05 to 0.35% has the effect of grain refinement and is effective in preventing stress corrosion cracking. Below 0.05%, these effects are absent, and 0.35%
%, it is not preferable because a huge intermetallic compound will crystallize. Zr: Addition of 0.05 to 0.25% has the effect of grain refinement and is effective in preventing stress corrosion cracking. If it is less than 0.05%, these effects will not be obtained, and if it exceeds 0.25%, a huge intermetallic compound will crystallize, which is not preferable. In the present invention, fine precipitated phases formed during hot rolling or cold rolling of an alloy having such a composition are heated to a solution treatment temperature to form a solid solution, and then treated at a rate of 0.2 to 0.001°C/sec. By cooling, supersaturated solute atoms precipitate during cooling, so age hardening at room temperature is small. For this reason, in the case of rolling, even when cold rolling exceeds 90%, there are few edge cracks or breaks, and rolling is possible. By recrystallizing the material that has been strongly processed in this way by raising the temperature at a heating rate of 1° C./sec or more, a material having crystal grains of 25 μm or less can be obtained. The reason for limiting the cooling conditions from the solution treatment temperature to room temperature in the present invention is that the cooling rate is 0.2%/se.
If it is slower than c, coarse compounds (M phase [Mg
Nn 2 ], etc.), and when the rate is faster than 0.2° C./sec, no M phase precipitation is observed, or even if it is observed, it is 1 μm or less. In this way, the amount of solute elements precipitated varies depending on the difference in cooling rate. If the cooling rate is fast, after quenching, the supersaturated solute atoms will
GP zones and precipitated phases are likely to occur. On the other hand, if the cooling rate is slow, supersaturated solute atoms precipitate within the grains or at the grain boundaries as M phase or other compounds during cooling. Furthermore, even after quenching, GP zones and precipitated phases are less likely to form. The ease of cold working differs depending on the difference in precipitation state as described above. Slow cooling at 0.2°C/sec or less produces coarse precipitates and reduces the deformation resistance of the matrix. Therefore, it is easy to deform. On the other hand, when cooling faster than 0.2℃/sec, the deformation resistance becomes large due to the GP zone and fine precipitates.
Easy to cause edge cracks and rolling cracks. Also, 0.001℃/
If it is slower than sec, the cooling rate is very slow and there is little economic benefit. Cold working facilitates recrystallization by imparting processing strain. If the degree of cold working is less than 66%, the grain size will be larger than 25 μm. In the case of this alloy, the size of the recrystallized grains becomes finer as the degree of cold working increases. This is because the higher the degree of cold working, the more regions undergo strong working, and at the same time the dislocation density also increases, so solute atoms tend to precipitate on more dislocations, hindering the movement of dislocations, and thus Crystal growth is also suppressed and recrystallized grains become smaller. After cold working, it is heated at 400-530℃ for recrystallization. It is difficult to recrystallize below 300℃;
When the temperature is lower than 400°C, solute atoms precipitated on dislocations tend to aggregate and form compounds. This is because the fixation of dislocations by solute atoms is reduced.
This is thought to be because dislocations become more mobile and recrystallized grains also become larger. At temperatures above 400°C, if the heating rate is fast, it is thought that recrystallization proceeds before the solute atoms aggregate. Of course, if the temperature exceeds the solution treatment temperature, the solute atoms become solid solution. Furthermore, if the temperature exceeds 530℃, the alloy will melt and recrystallization will not occur.
It is necessary to carry out at 400-530 °C. If the heating rate at that time is slower than 1℃/sec, the crystal grains will slowly pass through the grain coarsening region of 300 to 400℃ and become 25 μm or more, but if the heating rate is slower than 1℃/sec. The faster the speed, the finer the grains will be. Next, examples will be described. Example 1 [Cooling conditions from solution treatment temperature] Zn5.7%, Mg2.4%, Cu1.6%, Cr0.20%,
An aluminum alloy containing 0.05% Fe and 0.04% Si was formed into a 300 mm thick slab by continuous casting. After homogenization heat treatment at 470°C for 30 hours, the surface segregation layer was removed, and a 6 mm thick plate was formed by hot rolling at 400-450°C. After heating this to a solution treatment temperature of 482℃ and holding it for about 60 minutes,
The material was quenched to room temperature by changing the cooling rate. This heat-treated plate was subjected to 65% and 80% cold working, and then rapidly heated to a final temperature of 482°C. The heating rate is 50°C/sec. After holding for 10 minutes, water quenching was performed and the crystal grain size on the plate surface was examined. The results are shown in Table 1.

【表】 実施例 2 [冷間加工度] 実施例1に示した合金を8mm厚まで熱間圧延
し、さらに4mm厚まで冷間圧延して、500℃で1
時間の溶体化処理後、0.2、0.005℃/secの冷却速
度で冷却した。この試料を冷間圧延により1.8
mm、1.4mm、1mm、0.6mm、0.4mmの各板厚まで圧延
した。圧下率はそれぞれ55、65、75、85、90%で
ある。それらの加工材を加熱速度50℃/secで482
℃まで昇温させ、10分間保持後水焼入れした。水
焼入れ後の板面の結晶粒径を表2に示す。
[Table] Example 2 [Cold working degree] The alloy shown in Example 1 was hot rolled to a thickness of 8 mm, further cold rolled to a thickness of 4 mm, and then worked at 500°C.
After solution treatment for hours, it was cooled at a cooling rate of 0.2 and 0.005°C/sec. This sample was cold rolled to 1.8
The sheets were rolled to thicknesses of mm, 1.4 mm, 1 mm, 0.6 mm, and 0.4 mm. The rolling reduction ratios are 55, 65, 75, 85, and 90%, respectively. 482 at a heating rate of 50℃/sec.
The temperature was raised to ℃, held for 10 minutes, and then water quenched. Table 2 shows the grain size of the plate surface after water quenching.

【表】 実施例 3 [再結晶温度と加熱速度] 実施例1に示した合金を4mm厚さまで熱間圧延
して460℃で1時間溶体化処理後、0.005℃/secで
炉令した。この試料に8%の冷間加工を加え0.6
mm厚とした。この板を330、380、420、450、480
℃の各温度まで50℃/secの加熱速度で昇温させ
た。各温度で30分間保持後水焼入れして最終温度
120℃で24時間の焼戻しをした。このときの結晶
粒径と引張強さとの関係を表3に示す。また炉冷
材を65、85%の冷間加工を与え、1.4mm、0.6mm厚
の板を480%まで、0.1、0.5、1、10、50、100
℃/secの各加熱速度で昇温させ、30分間保持後水
焼入れした。このときの板面の結晶粒径を表4に
示す。
[Table] Example 3 [Recrystallization temperature and heating rate] The alloy shown in Example 1 was hot rolled to a thickness of 4 mm, solution treated at 460°C for 1 hour, and then furnace aged at 0.005°C/sec. This sample was subjected to 8% cold working to yield 0.6
mm thickness. This board is 330, 380, 420, 450, 480
The temperature was raised at a heating rate of 50°C/sec to each temperature of 10°C. After being held at each temperature for 30 minutes, water quenching is performed to reach the final temperature.
Tempering was performed at 120°C for 24 hours. Table 3 shows the relationship between crystal grain size and tensile strength at this time. In addition, furnace-cooled materials are subjected to 65% and 85% cold working, and 1.4mm and 0.6mm thick plates are processed to 480%, 0.1, 0.5, 1, 10, 50, and 100%.
The temperature was raised at various heating rates of °C/sec, held for 30 minutes, and then water quenched. Table 4 shows the crystal grain size on the plate surface at this time.

【表】【table】

【表】 実施例 4 [棒、管への適用] Zn5.6%、Mg2.5%、Cu1.5%、Cr0.22%、
Fe0.12%、Si0.06%を含む直径0.8mmのアルミニ
ウム合金ビレツトを造塊して、470℃で24時間の
均質化熱処理した後、偏析層を除去して、440℃
で熱間押出しした。押出しは80mm径の丸棒で、丸
棒の一部は、外径80mm、内径60mm、肉厚10mmの管
に成形した。 それぞれ長さ200mmにして、480℃で2時間の溶
体化処理を実施して0.01℃/secの速度で炉冷し
た。これらの試料を冷間静水圧押出機を用いて直
径25mmの丸棒と外径52.5mm、内径50mm、肉厚1.25
mmの管に押出した。いずれも冷間加工度は約90%
である。これらを480℃の温度まで棒の場合5℃/
sec、管の場合50℃/secの加熱速度で昇温させ
た。480℃で約30分間保持した後水焼入れして表
面の結晶粒径を測定した。この結果棒では14μ
m、管では8μmの粒径であつた。 実施例 5 Zn、Mg、Cu、Ti、Cr、Zrの添加量を変えた
合金を30×175×175mmの型に鋳込み、470℃で24
時間の均質化処理を施した。その後、偏析層を除
去して450℃で4mm厚まで冷間圧延した。この材
料を480℃で30分間溶体化処理して、0.01℃/sec
の冷却速度で焼入れした後、0.4mm厚さまで冷間
加工した。これらを482℃まで100℃/secの加熱速
度で昇温して、10分間保持後水焼入れして、板面
の結晶粒径と、120℃で24時間の焼戻し後の引張
強さを測定した。ただしMg3.4%以上、Cu2.6%
以上のものは圧延加工性が悪いために結晶粒は測
定していない。なお、耐応力腐食割れ性を比較す
るために、焼戻し処理した材料から圧延方向に沿
つて幅20mm、長さ100mmの試験片を切出し、内半
径5mmにU字形に曲げ、クロム酸混合液で30分間
煮沸して、割れの発生を比較した。なお、引張強
さについては54Kg/mm以上を合格とした。この結
果を表5に示す。
[Table] Example 4 [Application to rods and pipes] Zn5.6%, Mg2.5%, Cu1.5%, Cr0.22%,
An aluminum alloy billet with a diameter of 0.8 mm containing 0.12% Fe and 0.06% Si is formed into ingots, subjected to homogenization heat treatment at 470℃ for 24 hours, the segregation layer removed, and then heated to 440℃.
Hot extruded. A round bar with a diameter of 80 mm was extruded, and part of the round bar was formed into a tube with an outer diameter of 80 mm, an inner diameter of 60 mm, and a wall thickness of 10 mm. Each piece was made to have a length of 200 mm, and solution treatment was performed at 480°C for 2 hours, followed by furnace cooling at a rate of 0.01°C/sec. Using a cold isostatic extruder, these samples were made into round bars with a diameter of 25 mm, an outer diameter of 52.5 mm, an inner diameter of 50 mm, and a wall thickness of 1.25 mm.
Extruded into mm tube. In both cases, the degree of cold working is approximately 90%.
It is. These are heated to a temperature of 480℃ for rods at 5℃/
sec, and in the case of tubes, the temperature was raised at a heating rate of 50°C/sec. After being held at 480°C for about 30 minutes, it was water quenched and the surface crystal grain size was measured. This result bar is 14μ
m, the particle size was 8 μm in the tube. Example 5 Alloys with varying addition amounts of Zn, Mg, Cu, Ti, Cr, and Zr were cast into a 30 x 175 x 175 mm mold and heated at 470℃ for 24 hours.
A time homogenization process was performed. Thereafter, the segregation layer was removed and cold rolled at 450°C to a thickness of 4 mm. This material was solution-treated at 480℃ for 30 minutes to produce a 0.01℃/sec
After quenching at a cooling rate of , it was cold worked to a thickness of 0.4 mm. These were heated to 482℃ at a heating rate of 100℃/sec, held for 10 minutes, and then water quenched, and the crystal grain size on the plate surface and the tensile strength after tempering at 120℃ for 24 hours were measured. . However, Mg3.4% or more, Cu2.6%
The crystal grains were not measured for the above materials because they had poor rolling workability. In order to compare the stress corrosion cracking resistance, a test piece with a width of 20 mm and a length of 100 mm was cut from the tempered material along the rolling direction, bent into a U-shape with an inner radius of 5 mm, and heated with a chromic acid mixture for 30 minutes. The samples were boiled for a minute and the occurrence of cracks was compared. In addition, regarding tensile strength, 54Kg/mm or more was considered to be a pass. The results are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 Cr0.05〜0.35%またはZr0.05〜0.25%の少な
くとも一方を含む析出硬化型アルミニウム合金を
常法にしたがつて熱間加工および冷間加工し、溶
体化処理温度に加熱後、0.2〜0.001℃/secの冷却
速度で冷却し、60%以上の冷間加工を施して、
400〜530℃の温度に1℃/sec以上の加熱速度で昇
温させ25μm以下に再結晶化させることを特徴と
する超塑性高力アルミニウム合金の製造法。
1 A precipitation hardening aluminum alloy containing at least one of 0.05 to 0.35% Cr or 0.05 to 0.25% Zr is hot-worked and cold-worked according to a conventional method, heated to a solution treatment temperature, and then Cooled at a cooling rate of 0.001°C/sec and subjected to over 60% cold working,
A method for producing a superplastic high-strength aluminum alloy, which comprises raising the temperature to a temperature of 400 to 530°C at a heating rate of 1°C/sec or more and recrystallizing it to a size of 25 μm or less.
JP23060783A 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy Granted JPS60125354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23060783A JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23060783A JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Publications (2)

Publication Number Publication Date
JPS60125354A JPS60125354A (en) 1985-07-04
JPS6157385B2 true JPS6157385B2 (en) 1986-12-06

Family

ID=16910401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23060783A Granted JPS60125354A (en) 1983-12-08 1983-12-08 Manufacture of superplastic high strength aluminum alloy

Country Status (1)

Country Link
JP (1) JPS60125354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266213A (en) * 1990-03-15 1991-11-27 Mitsubishi Electric Corp Magnetic head driver for magnetic recording/reproducing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652016B2 (en) * 1987-04-15 1997-09-10 スカイアルミニウム株式会社 Method for producing aluminum alloy material having fine crystal grains
US6322647B1 (en) * 1998-10-09 2001-11-27 Reynolds Metals Company Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom
RU2013115468A (en) * 2010-09-08 2014-10-20 Алкоа Инк. IMPROVED ALUMINUM-LITHIUM ALLOYS AND METHODS FOR PRODUCING THEM
JP5830006B2 (en) * 2012-12-27 2015-12-09 株式会社神戸製鋼所 Extruded aluminum alloy with excellent strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266213A (en) * 1990-03-15 1991-11-27 Mitsubishi Electric Corp Magnetic head driver for magnetic recording/reproducing

Also Published As

Publication number Publication date
JPS60125354A (en) 1985-07-04

Similar Documents

Publication Publication Date Title
EP0157600B1 (en) Aluminum lithium alloys
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
US4618382A (en) Superplastic aluminium alloy sheets
US5882449A (en) Process for preparing aluminum/lithium/scandium rolled sheet products
US20070209739A1 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake-hardenability and hemmability
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JP3101280B2 (en) Manufacturing method of Al-based alloy and Al-based alloy product
US5135713A (en) Aluminum-lithium alloys having high zinc
JPS623225B2 (en)
JPH05501588A (en) Method for producing plate or strip material with improved cold rolling properties
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPS6157385B2 (en)
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPH0340104B2 (en)
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH04353A (en) Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same
JPH0588302B2 (en)
JP2652016B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPS61110756A (en) Rolling method of titanium alloy plate
JPS62170462A (en) Manufacture of superplastic aluminum alloy material
JPS62199755A (en) Manufacture of aluminum alloy material for forming
JPH0586468B2 (en)