JPH02149633A - Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity - Google Patents

Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity

Info

Publication number
JPH02149633A
JPH02149633A JP30451488A JP30451488A JPH02149633A JP H02149633 A JPH02149633 A JP H02149633A JP 30451488 A JP30451488 A JP 30451488A JP 30451488 A JP30451488 A JP 30451488A JP H02149633 A JPH02149633 A JP H02149633A
Authority
JP
Japan
Prior art keywords
wear resistance
thermal expansion
alloy
low thermal
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30451488A
Other languages
Japanese (ja)
Inventor
Jiichi Nagai
滋一 永井
Ichizo Tsukuda
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP30451488A priority Critical patent/JPH02149633A/en
Publication of JPH02149633A publication Critical patent/JPH02149633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title Al alloy having excellent wear resistance and heat conductivity and having low thermal expansion coefficient by adding specific amounts of Ni, Si, Cu, Mg and other metallic elements to Al. CONSTITUTION:The molten metal of an Al alloy of which, by weight, 10 to 30% Ni, 15 to 30% Si, 0.5 to 2% Cu and 0.3 to 2% Mg or furthermore one or more kinds among 0.01 to 1% Cr, 0.01 to 1% Mn, 0.01 to 0.5% Zr, 0.01 to 0.1% V, 0.01 to 1% Ti, 0.01 to 5% Zn and 0.01 to 5% Fe is poured into a mold heated to the liquidus of the Al alloy +100 deg.C and is cooled to solidify under pressure into a billet. The billet is extruded into a round bar or the like, which is subjected to solution heat treatment, is thereafter water-cooled and is successively subjected to aging treatment, by which the Al alloy material having excellent wear resistance and heat conductivity and having low thermal expansion coefficient can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えばシリンダー、ベーン、その地熱膨張
係数が小さく耐摩耗性および熱伝導性の要求される自動
車用部品や各種機械部品等に使用される耐摩耗性及び熱
伝導性に優れた低熱膨張アルミニウム合金に関する。
[Detailed Description of the Invention] Industrial Application Fields The present invention is used for, for example, cylinders, vanes, automobile parts and various mechanical parts that have a small geothermal expansion coefficient and are required to have wear resistance and thermal conductivity. This invention relates to a low thermal expansion aluminum alloy with excellent wear resistance and thermal conductivity.

従来の技術 従来、この種のアルミニウム合金としては、耐摩耗性を
向上させるための元素としてSiを添加したAQ−3L
系アルミニウム合金が良く知られているところであり、
一般に多く用いられている。
Conventional technology Conventionally, this type of aluminum alloy was AQ-3L, which added Si as an element to improve wear resistance.
aluminum alloys are well known,
Commonly used.

発明が解決しようとする課題 ところが、耐摩耗性の向上のために、Siの添加量を増
加すると、耐摩耗性が向上し、熱膨張係数が低下する反
面、鋳造性、切削性および鍛造性が低下するという問題
があり、自ずからその添加量に制約を受けるものであっ
た。
Problems to be Solved by the Invention However, when increasing the amount of Si added to improve wear resistance, the wear resistance improves and the coefficient of thermal expansion decreases, but the castability, machinability, and forgeability deteriorate. There is a problem that the amount of addition is naturally limited.

この発明はこのような事情に鑑み、耐摩耗性等の機械的
性質に優れ、かつ熱伝導性や低熱膨張性等の物理的性質
に優れ、かつ押出性の良好なアルミニウム合金を提供す
ることを目的としてなされたものである。
In view of these circumstances, the present invention aims to provide an aluminum alloy that has excellent mechanical properties such as wear resistance, excellent physical properties such as thermal conductivity and low thermal expansion, and has good extrudability. It was done for a purpose.

課題を解決するだめの手段 而して、この発明は鋭意研究の結果、Siによる硬質粒
子のほかに、Al3Ni金属間化合物を分散させたもの
とし、同時にCu及びMgを共存させることによって、
耐摩耗性及び熱膨張性の充分な改善をはかりつ\、同時
に熱伝導性、鋳造性、切削性および鍛造性の改善をはか
りうることを見出し、かNる知見に基づいて完成し得た
ものである。
As a means to solve the problem, this invention was developed as a result of intensive research, and by dispersing Al3Ni intermetallic compound in addition to hard particles of Si, and at the same time coexisting Cu and Mg,
It was discovered that it was possible to sufficiently improve wear resistance and thermal expansion properties, and at the same time improve thermal conductivity, castability, machinability, and forgeability, and was able to complete it based on this knowledge. It is.

即ち、この発明の第1は、 Ni : 10〜30% Si:15〜30% Cu:0.5〜2% Mg:0.3〜2% を含有し、残部へΩ及び不可避不純物からなる耐摩耗性
及び熱伝導性に優れた低熱膨張アルミニウム合金である
That is, the first aspect of the present invention contains Ni: 10 to 30%, Si: 15 to 30%, Cu: 0.5 to 2%, Mg: 0.3 to 2%, and the remainder is resistant to Ω and unavoidable impurities. A low thermal expansion aluminum alloy with excellent wear resistance and thermal conductivity.

モして又、第2の発明は、上記第1発明の必須含有元素
5iSNi、CuおよびM gのほかに、 Cr:0.01〜1% Mn  :  0. 01〜1% Zr:0.01〜0、5% V:0,01〜0.1% Ti:0.01〜1% Z’n  :  0. 01〜5% Fe:0.01〜5% のうちの1種または2種以上 を含有し、残部へρ及び不可避不純物からなる耐摩耗性
及び熱伝導性に優れた低熱膨張アルミニウム合金である
Furthermore, the second invention provides, in addition to the essential elements 5iSNi, Cu and Mg of the first invention, Cr: 0.01-1% Mn: 0. 01-1% Zr: 0.01-0.5% V: 0.01-0.1% Ti: 0.01-1% Z'n: 0. It is a low thermal expansion aluminum alloy containing one or more of the following: 0.01-5% Fe: 0.01-5%, and the remainder consisting of ρ and unavoidable impurities, and has excellent wear resistance and thermal conductivity.

なお、この明細書において、「96」はいずれも「重量
96」を示すものである。
In this specification, "96" indicates "weight 96".

上記合金添加元素の意義とその含有量の限定理由は次の
とおりである。
The significance of the above-mentioned alloy additive elements and the reason for limiting their content are as follows.

即ち、Niは、Al3Ni金属間化合物を形成して合金
中に分散し、主として耐摩耗性の向上および熱膨張係数
の低下に寄与するものであり、その含有量が10%未満
では上記効果に乏しく、30%をこえて過多に含有する
と、粗大な金属間化合物を生成し、切削性を劣化する。
That is, Ni forms an Al3Ni intermetallic compound and is dispersed in the alloy, which mainly contributes to improving wear resistance and lowering the coefficient of thermal expansion, and if its content is less than 10%, the above effects are poor. If the content exceeds 30%, coarse intermetallic compounds are formed and machinability is deteriorated.

特に好ましい含有量は、12〜25%程度である。A particularly preferable content is about 12 to 25%.

Stは耐摩耗性および強度を向上させると共に、熱膨張
係数を低下させるものであり、15%未満では用途によ
っては充分な効果が得られず、30%を超えると切削性
、とくに切削工具寿命が劣化する。特に好ましい含有量
は、20〜25%程度である。
St improves wear resistance and strength as well as lowers the coefficient of thermal expansion. If it is less than 15%, sufficient effects may not be obtained depending on the application, and if it exceeds 30%, the machinability, especially the life of the cutting tool, may be reduced. to degrade. A particularly preferable content is about 20 to 25%.

Cu及びMgは、いずれも強度を高めるためのものであ
り、Cuが0.5%未満、およびMgが0.3%未満で
はこの効果が少なく、逆にCuおよびMgが2%を超え
る場合には、押出加工性が低下する。特に好ましい含有
量は、CUにおいて1.0〜1.5%、Mgにおいて0
゜5〜1.5%程度である。
Both Cu and Mg are used to increase strength, and when Cu is less than 0.5% and Mg is less than 0.3%, this effect is small, and conversely, when Cu and Mg are more than 2%, In this case, extrusion processability deteriorates. Particularly preferable contents are 1.0 to 1.5% in CU and 0 in Mg.
It is about 5 to 1.5%.

Cr、Mn、Zr、V、Ti、ZnSFeは、いずれも
合金の機械的性質の改善に効果を有するものであり、こ
の発明においてはこの添加効果の点で相互に均等物とし
て評価しうるちのである。いずれもその個々の含有量が
0.01%より少ないときは、上記効果の実現に不十分
てあり、逆に規定値をこえて過多に含有(Cr、M n
 ST l : 1%超、Zr:0.5%超、V:0.
1%超、Zn、Fe:5%超)シテも、上記効果が飽和
し、他に格別有益な効果を奏しない。
Cr, Mn, Zr, V, Ti, and ZnSFe all have the effect of improving the mechanical properties of the alloy, and in this invention, they are evaluated as equivalent to each other in terms of the effect of addition. be. If the individual content of any of them is less than 0.01%, it is insufficient to realize the above effect, and conversely, if the content exceeds the specified value and is excessively contained (Cr, Mn
ST l: more than 1%, Zr: more than 0.5%, V: 0.
If the content is more than 1%, Zn, Fe: more than 5%), the above effects are saturated and no other particularly beneficial effects are produced.

ところで、本発明合金は加圧凝固法により好適に製造さ
れるものである。この加圧凝固法を説明すると次のとお
りである。即ち、本発明合金を溶解し、その溶湯を加圧
凝固用金型に注湯して加圧凝固せしめることにより、欠
陥のない結晶粒の均一かつ微細なビレットの作成を行う
ものである。加圧凝固用金型は、これに押出機のコンテ
ナを利用するものとしても良い。即ち、アルミニウム合
金溶湯を直接コンテナに注入し、ステムで加圧しつつ凝
固させるものとしても良い。もちろん、この場合、上記
コンテナの前面は盲ダイスを付設して塞ぎ、加圧凝固中
の溶湯の吹き出しを防ぐものとすることが必要である。
Incidentally, the alloy of the present invention is suitably manufactured by a pressure solidification method. This pressure coagulation method will be explained as follows. That is, by melting the alloy of the present invention and pouring the molten metal into a pressure solidification mold and solidifying it under pressure, a billet with uniform and fine crystal grains without defects is created. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly poured into the container and solidified while being pressurized by the stem. Of course, in this case, it is necessary to close the front surface of the container with a blind die to prevent the molten metal from blowing out during pressurized solidification.

また上記注湯に際しては前記金型を予め300〜350
℃程度に加熱しておくものとすることが望ましい。これ
によりビレットに一層微細な組織を得ることを可能にす
る。即ち300℃程度未満であると、注湯後前記アルミ
ニウムの凝固が直ぐに開始してしまい、加圧凝固による
効果が十分に達成され難い。一方、350℃を越える高
温に加熱しておくと、冷却速度が遅くなり、晶出物が成
長して上記微細化効果を十分に達成し難いものとなる傾
向がみられる。注湯後すぐさま前記金型内の溶湯を加圧
ピストンにより加圧し、凝固を進行せしめることによっ
てビレットを作成する。即ち加圧凝固法によってビレッ
トを作成する。この際の加圧力は50A9f/cn1以
上であれば良く、望ましくは500〜1000に3f/
al程度とするのが良い。この加圧力の大小はビレット
の品質にさして大きな影響を与えるものではない。しか
しながら、50に9f/d未満では加圧凝固法による鋳
造割れ防止および結晶粒の微細化効果に不十分であり、
反面例えば150ONgf/cdを超えるような高圧を
付加しても、それに要するエネルギーの増大に見合う効
果の比例的向上を見ることができないためむしろ無益で
ある。このように、所定の加圧状態下においてアルミニ
ウム合金を凝固させることにより、鋳造割れを生じさせ
ることなく、かつ晶出物の小さなビレットを作成し得る
In addition, when pouring the metal, prepare the mold with a diameter of 300 to 350.
It is desirable to heat it to about ℃. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300° C., solidification of the aluminum will start immediately after pouring, making it difficult to fully achieve the effect of pressure solidification. On the other hand, if it is heated to a high temperature exceeding 350° C., the cooling rate slows down, and crystallized substances tend to grow, making it difficult to sufficiently achieve the above-mentioned refinement effect. Immediately after pouring the molten metal, the molten metal in the mold is pressurized by a pressurizing piston to advance solidification, thereby creating a billet. That is, a billet is created by a pressure coagulation method. The pressing force at this time should be 50A9f/cn1 or more, preferably 3f/cn1 in the range of 500 to 1000.
It is preferable to set it to about al. The magnitude of this pressing force does not significantly affect the quality of the billet. However, if it is less than 50 to 9 f/d, the effect of preventing casting cracks and refining crystal grains by the pressure solidification method is insufficient;
On the other hand, even if a high pressure of more than 150 ONgf/cd is applied, for example, it is rather useless because the effect cannot be proportionally improved commensurate with the increase in energy required. In this way, by solidifying the aluminum alloy under a predetermined pressurized state, a small billet of crystallized material can be created without causing casting cracks.

上記加圧凝固法により作成したビレットは、次にこれを
押出加工して所期するアルミニウム合金材とする。ここ
に、ビレットは一旦冷却された固相状態のものを用いて
も良いが、好ましくは前記加圧凝固の進行により、ビレ
ットの温度が押出し加工に適する温度、例えば液相温度
の約1/2程度にまで低下し半溶融状態となった時点で
加圧凝固工程を終了し、すぐさまそのまま押出機のコン
テナに装填して押出しを開始するものとなすことが奨励
される。このような手順を採用することにより、押出し
加工に際してのビレットの加熱工程を省くことが可能と
なり、その加熱に要するエネルギーおよび時間を節約し
、合金押出し材の製造能率の向上および製造コストの低
減の利益を享受しうる。
The billet produced by the above pressure solidification method is then extruded to form the desired aluminum alloy material. Here, the billet may be used in a solid state that has been cooled once, but preferably, the temperature of the billet is adjusted to a temperature suitable for extrusion processing, for example, about 1/2 of the liquidus temperature, by the progress of the pressure solidification. It is recommended that the pressurized solidification process be completed when the temperature has decreased to a certain degree and the mixture has reached a semi-molten state, and that the extruder be immediately loaded into the container of the extruder and extrusion be started. By adopting such a procedure, it is possible to omit the billet heating step during extrusion processing, saving the energy and time required for heating, improving the manufacturing efficiency of alloy extrusions, and reducing manufacturing costs. can enjoy benefits.

発明の効果 この発明に係るアルミニウム合金は、下記の実施例の参
酌によって明らかなように、その合金組成の限定事項の
範囲からそのいずれか1以上が逸脱する比較合金に較べ
て、St含有量が制限されているにもかかわらず耐摩耗
性、熱伝導性および低熱膨張性の点につき更に改善する
効果を実現し得るものである。
Effects of the Invention As is clear from the following examples, the aluminum alloy according to the present invention has a lower St content than a comparative alloy in which one or more of the alloy compositions deviates from the range of the limitations of the alloy composition. Despite the limitations, it is possible to achieve the effect of further improving wear resistance, thermal conductivity, and low thermal expansion.

実施例 第1表に示す本発明合金及び比較合金のそれぞれについ
て、その溶湯を液相温度+100℃に加熱した加圧凝固
用金型に注湯し、1000Kyf/adの加圧下で凝固
させてビレットを作成し、このビレットを押出温度49
0℃にて直径121!1mの丸棒に押出加工し、490
℃×6時間の溶体化処理後水冷し、200℃×12時間
の時効処理を施したものを供試材とした。
Examples For each of the present invention alloy and comparative alloy shown in Table 1, the molten metal is poured into a pressure solidification mold heated to the liquidus temperature +100°C, and solidified under a pressure of 1000 Kyf/ad to form a billet. and extrude this billet at a temperature of 49
Extruded into a round bar with a diameter of 121!1m at 0℃,
A sample material was obtained by solution treatment at 6 hours at ℃, cooling with water, and aging treatment at 200 ℃ for 12 hours.

そして、この各供試材につき、耐摩耗性、熱伝導率及び
熱膨張係数を調べた。その結果を第2表に示す。
The abrasion resistance, thermal conductivity, and coefficient of thermal expansion of each sample material were then examined. The results are shown in Table 2.

なお、耐摩耗性の試験は、回転円板による大越式摩耗試
験機を用いて、負荷荷重:2.1に9、摩擦距離:60
0m、摩擦速度:3.67m/S1相手材: FC−3
0(J I S) 、試験面:エメリペーパー1200
番仕上げ、の試験条件で摩擦した場合の供試材の比摩耗
量を測定することによって評価した。
The abrasion resistance test was conducted using an Okoshi type abrasion tester with a rotating disk, load: 2.1 to 9, friction distance: 60
0m, friction speed: 3.67m/S1 mating material: FC-3
0 (JIS), test surface: Emery Paper 1200
The evaluation was made by measuring the specific wear amount of the sample material when it was rubbed under the test conditions of 1.

〔以下余白〕[Margin below]

上記第2表の結果に示されるように、本発明合金は、比
較合金に較べ、耐摩耗性を一段と向上しつ\、熱伝導率
および低熱膨張性のいずれも併せて改善しうるちのであ
ることを確認し得た。
As shown in the results in Table 2 above, the alloy of the present invention has much improved wear resistance, as well as improved thermal conductivity and low thermal expansion, compared to the comparative alloy. I was able to confirm that.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)Ni:10〜30% Si:15〜30% Cu:0.5〜2% Mg:0.3〜2% を含有し、残部Al及び不可避不純物からなる耐摩耗性
及び熱伝導性に優れた低熱膨張アルミニウム合金。
(1) Contains Ni: 10-30% Si: 15-30% Cu: 0.5-2% Mg: 0.3-2%, with the remainder being Al and inevitable impurities, which has good wear resistance and thermal conductivity. Superior low thermal expansion aluminum alloy.
(2)Ni:10〜30% Si:15〜30% Cu:0.5〜2% Mg:0.3〜2% を含有し、かつ、 Cr:0.01〜1% Mn:0.01〜1% Zr:0.01〜0.5% V:0.01〜0.1% Ti:0.01〜1% Zn:0.01〜5% Fe:0.01〜5% のうちの1種または2種以上 を含有し、残部Al及び不可避不純物からなる耐摩耗性
及び熱伝導性に優れた低熱膨張アルミニウム合金。
(2) Contains Ni: 10-30% Si: 15-30% Cu: 0.5-2% Mg: 0.3-2%, and Cr: 0.01-1% Mn: 0.01 -1% Zr: 0.01-0.5% V: 0.01-0.1% Ti: 0.01-1% Zn: 0.01-5% Fe: 0.01-5% A low thermal expansion aluminum alloy with excellent wear resistance and thermal conductivity, containing one or more of these, the remainder being Al and unavoidable impurities.
JP30451488A 1988-11-30 1988-11-30 Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity Pending JPH02149633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30451488A JPH02149633A (en) 1988-11-30 1988-11-30 Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30451488A JPH02149633A (en) 1988-11-30 1988-11-30 Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity

Publications (1)

Publication Number Publication Date
JPH02149633A true JPH02149633A (en) 1990-06-08

Family

ID=17933950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30451488A Pending JPH02149633A (en) 1988-11-30 1988-11-30 Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity

Country Status (1)

Country Link
JP (1) JPH02149633A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409661A (en) * 1991-10-22 1995-04-25 Toyota Jidosha Kabushiki Kaisha Aluminum alloy
US5374295A (en) * 1992-03-04 1994-12-20 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5464463A (en) * 1992-04-16 1995-11-07 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
US5614036A (en) * 1992-12-03 1997-03-25 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JPH11500787A (en) Aluminum alloy composition and manufacturing method
CN115961186A (en) Die-casting aluminum alloy material and preparation method and application thereof
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2008025003A (en) Casting aluminum alloy, and casting of the aluminum alloy
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH02149632A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0457738B2 (en)
JP4145454B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
JPH02149629A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPS61259830A (en) Production of wear resistant aluminum alloy extrudate having excellent machineability
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH0557346B2 (en)
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility