JPH0557346B2 - - Google Patents

Info

Publication number
JPH0557346B2
JPH0557346B2 JP6534886A JP6534886A JPH0557346B2 JP H0557346 B2 JPH0557346 B2 JP H0557346B2 JP 6534886 A JP6534886 A JP 6534886A JP 6534886 A JP6534886 A JP 6534886A JP H0557346 B2 JPH0557346 B2 JP H0557346B2
Authority
JP
Japan
Prior art keywords
alloy
wear resistance
extrudability
content
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6534886A
Other languages
Japanese (ja)
Other versions
JPS62222039A (en
Inventor
Koichi Oohori
Akira Watabe
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP6534886A priority Critical patent/JPS62222039A/en
Publication of JPS62222039A publication Critical patent/JPS62222039A/en
Publication of JPH0557346B2 publication Critical patent/JPH0557346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は耐摩耗性および押出性にすぐれたア
ルミニウム合金に関するものである。 〔従来の技術〕 一般に、アルミニウムは硬度が低くて耐摩耗性
に劣るので、その硬度を上げて耐摩耗性を向上さ
せるために従来種々の合金成分がアルミニウムに
添加されており、例えば、JIS H4140に規定され
る4032のアルミニウム合金においては1.10〜13.5
重量%という多量のSiを添加して、アルミニウム
中に硬質のSi粒子を分散させ、それの耐摩耗性を
高めている。 〔発明が解決しようとする問題点〕 しかしながら、上記の高Si含有アルミニウム合
金は、耐摩耗性にはすぐれているものの、押出性
に劣るので、特にポートホール押出によつてパイ
プ等を製造するのは困難であり、またSi粒子の硬
度が非常に高いところから、このようなアルミニ
ウム合金の切削加工に際しては、バイトの摩耗が
激しく、さらに仕上面でこのSi粒子が脱落して切
削面の粗度が低下し、概して機械加工性にも劣る
上に、Al中に分散している多量のSi粒子によつ
て耐食性も損われるという問題があつた。 〔研究に基づく知見事項〕 本発明者等は、上述のような状況に鑑みて種々
研究を重ねた結果、 (1) 前記高Si含有Al合金中のSi含有量を1.6〜4.9
重量%と減らして、Mg含有量を1.9〜7.6重量
%と増大させると、そのSi含有量の減少によつ
てAl合金の押出性と耐食性が向上するととも
に、そのSiの大部分はMg2Siなる金属間化合物
を形成し、このMg2SiがAl中に分散して、前
記Si含有量の減少に伴う耐摩耗性の低下を阻止
すること、 (2) 前記のようなSiおよびMgを含むAl合金中に
Mnを0.5〜1.5重量%含有させると、このMnは
後述のFeも含めてAl−(Mn,Fe)−Si系金属間
化合物(α相)を形成し、このα相はAl中に
分散してAl合金の耐摩耗性を向上させること、 すなわち、前記(1)で述べたことと合わせる
と、高Si含有Al合金中に分散しているSi粒子
の量を減らすことによつて、このAl合金の押
出性と耐食性が向上し、一方、その中でMgを
増量し、かつMnを添加することによつて、
Mg2SiおよびAl−(Mn,Fe)−Si系化合物が形
成し、これらの金属間化合物はAl中に分散し
て前記Si粒子の減少によつて起る筈の耐摩耗性
の低下を補う結果、このように改変したAl合
金は前記高Si含有Al合金に匹敵する耐摩耗性
を保持しながら押出性にもすぐれたものとなる
こと、 (3) 上記のような量のSi,MgおよびMnを含む
Al合金中に、さらにFe:0.3〜1.0%、Cr:0.03
〜0.25%、Zr:0.05〜0.25%およびV:0.03〜
0.25%(%はすべて重量%、以下も特にことわ
らなければ%はすべて重量%を意味する)のう
ちの1種または2種以上を添加すると、これら
の成分は、前記Mnと同様に、AlおよびSiと結
合して前記Al−(Mn,Fe)−Si系金属間化合物
を形成し、これらの化合物はAl中に分散して、
上記Al合金の耐摩耗性を一層向上させること、 (4) 前記量のSi,MgおよびMnを含むAl合金、
またはこれにさらに前記量のFe,Cr,Zrおよ
びVのうちの1種または2種以上を含有させた
Al合金に、Cu:0.05〜0.5%およびZn:0.25〜
1.5%のうちの1種または2種を添加すると、
これらのAl合金の強度を高めること、 を見出した。 〔問題点を解決するための手段〕 この発明は、上記知見に基づいて発明されたも
ので、耐摩耗性と押出性にすぐれ、かつ切削加工
時にバイトの摩耗や硬質粒子の脱落が少ないアル
ミニウム合金を提供することを目的とし、 Mg:1.9〜7.6%、 Si:1.6〜4.9%、 Mn:0.5〜1.5%、 を含有し、さらに、必要に応じて Fe:0.3〜1.0%、 Cr:0.03〜0.25%、 Zr:0.05〜0.25%、 V:0.03〜0.25%、 のうちの1種または2種以上、および Cu:0.05〜0.5%、 Zn:0.25〜1.5%、 のうちの1種または2種を含有し、そして残りが
Alおよび不可避不純物からなる成分組成を有す
ることを特徴とする、耐摩耗性および押出性にす
ぐれたアルミニウム合金、 に係わるものである。 つぎに、この発明において成分組成範囲を上記
のとおりに限定した理由を述べる。 (1) Mg Mg成分には、Al中に固溶してAl合金の強度を
高め、もつてAl合金の押出時における変形抵抗
を大きくする作用があるが、Siと共存することに
よりその大部分はMg2Siとなる金属間化合物を形
成するため、その押出性を害うことがなく、この
Mg2SiはAl合金の耐摩耗性の向上に寄与する。 この発明のAl合金においては、それに含有さ
せるMg量を1.9〜7.6%としているので、後述の
Si含有量:1.6〜4.9%と合わせると、Mg2Si量と
しては3〜12%となり、若干の過剰SiがMg2Si以
外の形で含まれることになる。このMg2Si含有量
が3%未満では十分な耐摩耗性を得ることができ
ず、一方それが12%を越えると、初晶の形でMg2
Siが晶出し、これがAl合金の押出性や切削性を
害うことから、Mg含有量は、このMg2Si含有
量:3〜12%に対応する上記の1.9〜7.6%に定め
た。 (2) Si Si成分は、上述のようにMgと結合してMg2Si
なる金属間化合物を形成し、このMg2Si粒子は
Al合金に耐摩耗性を付与するとともに、遊離の
Si粒子のようにAl合金の耐食性を損うことがな
く、またこのようなMg2Siを形成した上でさらに
余つたSi成分はAl,Mn、あるいはさらに後述の
Fe,Cr,Zr,Vのうちのいずれか1種以上と結
合して、例えばAl−(Mn,Fe)−Si系の金属間化
合物(α相)を形成し、このα相もAl中に分散
して合金の耐摩耗性を向上させる。 したがつて、Mgの項で述べたMg2Si量と、こ
のα相を形成させるのに必要なSi量、さらに遊離
のSi粒子を形成させないSi量を考慮して、この発
明ではSi含有量を1.6〜4.9%と定めた。 (3) Mn Mn成分は、上述のように、AlおよびSiと結合
して、耐摩耗性の向上に寄与するα相の形成に役
立つ成分であるが、その含有量が0.5%未満では
耐摩耗性の向上に効果がなく、またそれが1.5%
を越えると、巨大な初晶化合物を形成してAl合
金の切削性や伸び等に悪影響を及ぼすことから、
その含有量を0.5〜1.5%と定めた。 (4) Fe,Cr,ZrおよびV Fe,Cr,ZrおよびV成分は、いずれもMnと同
様にAlおよびSiと結合して金属間化合物を形成
し、もつてAl合金の耐摩耗性を一層向上させる
作用があるので、必要に応じて添加されるが、そ
の含有量がそれぞれ0.3、0.03、0.05および0.03%
未満では前記耐摩耗性を一層向上させる作用が得
られず、一方それが、Feについて1.0%、Cr,
Zr,Vについて0.25%をそれぞれ越えると、いず
れも巨大な初晶化合物を形成して合金の切削性と
伸びを悪化させることから、これら成分の含有量
を、それぞれFeについては0.3〜1.0%、Crおよび
Vについて0.03〜0.25%、そしてZrについては
0.05〜0.25%と定めた。 (5) CuおよびZn CuおよびZn成分は、Al中に固溶してその強度
を高める作用があるので、必要に応じてこの発明
の合金中に含有されるが、これらの含有量がCu
で0.05%未満、Zrで0.25%未満になると上記作用
に十分な効果が得られず、一方それが、Cuにつ
いて0.5%を越えるとAl合金の耐食性が損われ、
そしてZnについて1.5%を越えると、切削時にそ
のAl合金の表面仕上り性が悪化することから、
これら成分の含有量を、それぞれCuについては
0.05〜0.5%、そしてZnについては0.25〜1.5%と
定めた。 なお、この発明のAl合金においては、それの
鋳造後に、鋳造組織の均質化、Mg,Si成分等の
固溶、Mg2Si化合物の球状化およびAl−(Mn,
Fe)−Si系化合物の微細な析出を促進して、この
Al合金に所望の耐摩耗性、押出性および強度を
確実に付与するためには均質化処理を施す必要が
あり、この均質化処理の温度が400℃未満では前
記効果が十分に得られず、一方それが575℃を越
えると部分的な共晶融解を生ずる虞れがあること
から、この温度は一般に400〜575℃でなければな
らない。 また、この発明のAl合金を押出しによつて
種々の部材に加工する場合、この押出加工を350
〜550℃以外の温度で実施すると、押出時に表面
クラツクが発生し、そして押出加工度が75%未満
であると、鋳塊中の巣、ピンホールなどの鋳造欠
陥の圧着が十分に達成されないために、これらの
欠陥が押出後に残留して、製品の機械的性質や切
削加工後における表面性状が劣化するの、この押
出加工は350〜550℃の温度および75%以上の押出
加工度において遂行する必要がある。 〔実施例〕 ついで、比較例と対比しながら、この発明を実
施例によつて説明する。 それぞれ第1表に示される成分組成を有する本
発明Al合金1〜13、この発明の範囲から外れた
組成を有する比較Al合金1〜8(外れた成分を第
1表中※印で示す)、および前記JIS4032の高Si含
有Al合金に相当する従来Al合金の溶湯から、い
ずれも直径:200mmのビレツトを鋳造した後、こ
れらのビレツトに、温度:560℃に6時間保持の
均質化処理を施し、ついで温度:500℃において
各ビレツトを直径:36mmの丸棒に押出した。つぎ
に、これらの丸棒を引張矯正した後、温度:530
℃に1時間保持して溶体化し、ついで水焼入れし
てから、温度:180℃に8時間保持するT6処理を
施した。 上記の押出時において、押出製品の表面に割れ
を生じさせないで丸棒を押出すことができる最大
押出速度を測定し、これによつて前記各合金の押
出性を評価した。 また、前記本発明Al合金、比較Al合金および
従来Al合金の耐摩耗性を評価するために、これ
らの合金からなる前記各丸棒から、試験片とし
て、接触面において4mmの直径を有する円柱状の
ピンを切り出し、これらのピンを、ピン・デイス
ク タイプの摩耗試験機を用い、接触圧力:300
g/mm2、摩擦速度:1250m/minの条件で回転し
つつある相手材のFC25鋳鉄製デイスクに100分間
押しつけて各ピンの摩耗量を測定した。
[Industrial Application Field] This invention relates to an aluminum alloy with excellent wear resistance and extrudability. [Prior Art] In general, aluminum has low hardness and poor wear resistance, so various alloying components have been conventionally added to aluminum to increase its hardness and improve its wear resistance. For example, JIS H4140 1.10 to 13.5 for 4032 aluminum alloys specified in
By adding a large amount of Si (by weight%), hard Si particles are dispersed in the aluminum, increasing its wear resistance. [Problems to be solved by the invention] However, although the above-mentioned high-Si content aluminum alloy has excellent wear resistance, it has poor extrudability, so it is particularly difficult to manufacture pipes etc. by porthole extrusion. Furthermore, since the hardness of the Si particles is extremely high, when cutting such aluminum alloys, the tool wear is severe, and the Si particles fall off on the finished surface, resulting in roughness of the cut surface. In addition to this, there was a problem that the machinability was generally poor, and the corrosion resistance was also impaired due to the large amount of Si particles dispersed in the Al. [Findings based on research] In view of the above-mentioned circumstances, the present inventors have conducted various studies and found that (1) the Si content in the high Si-containing Al alloy is 1.6 to 4.9;
When the Mg content is increased from 1.9 to 7.6% by weight, the extrudability and corrosion resistance of the Al alloy improves due to the decrease in Si content, and most of the Si is converted to Mg 2 Si. (2) to form an intermetallic compound containing Si and Mg as described above, and to disperse this Mg 2 Si in Al to prevent a decrease in wear resistance due to a decrease in the Si content; in Al alloy
When 0.5 to 1.5% by weight of Mn is contained, this Mn forms an Al-(Mn, Fe)-Si intermetallic compound (α phase) including Fe, which will be described later, and this α phase is dispersed in Al. In other words, in combination with the above (1), by reducing the amount of Si particles dispersed in high-Si content Al alloy, The extrudability and corrosion resistance of the alloy are improved, while by increasing the amount of Mg and adding Mn,
Mg 2 Si and Al-(Mn,Fe)-Si based compounds are formed, and these intermetallic compounds are dispersed in Al to compensate for the decrease in wear resistance that would occur due to the reduction of the Si particles. As a result, the Al alloy modified in this way has excellent extrudability while maintaining wear resistance comparable to the high-Si content Al alloy. (3) The above-mentioned amounts of Si, Mg and Contains Mn
In addition, Fe: 0.3 to 1.0%, Cr: 0.03 in Al alloy
~0.25%, Zr: 0.05~0.25% and V: 0.03~
When one or more of 0.25% (all % means weight %, unless otherwise specified, all % means weight %), these components, like the above-mentioned Mn, and Si to form the Al-(Mn, Fe)-Si based intermetallic compound, and these compounds are dispersed in Al,
further improving the wear resistance of the Al alloy; (4) an Al alloy containing the amounts of Si, Mg, and Mn;
or further contains one or more of Fe, Cr, Zr and V in the above amounts.
Al alloy, Cu: 0.05~0.5% and Zn: 0.25~
When one or two of 1.5% is added,
We have discovered that the strength of these Al alloys can be increased. [Means for Solving the Problems] This invention was invented based on the above knowledge, and is an aluminum alloy that has excellent wear resistance and extrudability, and has less wear of the cutting tool and less shedding of hard particles during cutting. Contains Mg: 1.9~7.6%, Si: 1.6~4.9%, Mn: 0.5~1.5%, and further contains Fe: 0.3~1.0%, Cr: 0.03~ as necessary. 0.25%, Zr: 0.05-0.25%, V: 0.03-0.25%, one or more of the following, and Cu: 0.05-0.5%, Zn: 0.25-1.5%, one or two of the following. and the rest
The present invention relates to an aluminum alloy with excellent wear resistance and extrudability, characterized by having a composition consisting of Al and inevitable impurities. Next, the reason for limiting the component composition range as described above in this invention will be described. (1) Mg The Mg component has the effect of increasing the strength of the Al alloy by forming a solid solution in the Al alloy, thereby increasing the deformation resistance during extrusion of the Al alloy, but by coexisting with Si, most of the forms an intermetallic compound that becomes Mg 2 Si, so it does not impair its extrudability;
Mg 2 Si contributes to improving the wear resistance of Al alloys. In the Al alloy of this invention, the amount of Mg contained in it is 1.9 to 7.6%, so the following
When combined with the Si content: 1.6% to 4.9%, the Mg 2 Si content becomes 3% to 12%, and some excess Si is included in a form other than Mg 2 Si. If the Mg 2 Si content is less than 3%, sufficient wear resistance cannot be obtained, while if it exceeds 12%, Mg 2
Since Si crystallizes and impairs the extrudability and machinability of the Al alloy, the Mg content was set at the above 1.9 to 7.6%, which corresponds to the Mg 2 Si content: 3 to 12%. (2) Si As mentioned above, the Si component combines with Mg to form Mg 2 Si
This Mg 2 Si particle forms an intermetallic compound called
In addition to imparting wear resistance to Al alloys, free
Unlike Si particles, it does not impair the corrosion resistance of the Al alloy, and after forming Mg 2 Si, the remaining Si component can be mixed with Al, Mn, or the following.
It combines with any one or more of Fe, Cr, Zr, and V to form, for example, an Al-(Mn, Fe)-Si-based intermetallic compound (α phase), and this α phase is also contained in Al. Disperses to improve the wear resistance of the alloy. Therefore, in this invention, the Si content is determined by considering the Mg 2 Si amount mentioned in the Mg section, the Si amount necessary to form this α phase, and the Si amount that does not form free Si particles. was set at 1.6% to 4.9%. (3) Mn As mentioned above, the Mn component is a component that combines with Al and Si and helps form the α phase that contributes to improving wear resistance, but if its content is less than 0.5%, the wear resistance No effect on sexual improvement, and it is only 1.5%
If the
Its content was set at 0.5-1.5%. (4) Fe, Cr, Zr and V Fe, Cr, Zr and V components, like Mn, all combine with Al and Si to form intermetallic compounds, thereby further improving the wear resistance of the Al alloy. It is added as necessary because it has an improving effect, but its content is 0.3%, 0.03%, 0.05% and 0.03% respectively.
If it is less than 1.0% for Fe, Cr,
If Zr and V exceed 0.25%, they will form huge primary crystal compounds and deteriorate the machinability and elongation of the alloy. 0.03-0.25% for Cr and V, and for Zr
It was set at 0.05-0.25%. (5) Cu and Zn Cu and Zn components are solid dissolved in Al and have the effect of increasing its strength, so they are contained in the alloy of this invention as necessary, but these contents are
If it is less than 0.05% for Cu and less than 0.25% for Zr, sufficient effect will not be obtained for the above action, while on the other hand, if it exceeds 0.5% for Cu, the corrosion resistance of the Al alloy will be impaired.
When Zn exceeds 1.5%, the surface finish of the Al alloy deteriorates during cutting.
The content of these components is
0.05 to 0.5%, and 0.25 to 1.5% for Zn. In addition, in the Al alloy of the present invention, after casting, the casting structure is homogenized, Mg, Si components, etc. are dissolved, Mg 2 Si compounds are spheroidized, and Al-(Mn,
This process promotes fine precipitation of Fe)-Si compounds.
In order to reliably impart the desired wear resistance, extrudability and strength to the Al alloy, it is necessary to perform homogenization treatment, and if the temperature of this homogenization treatment is less than 400°C, the above effects will not be sufficiently obtained. On the other hand, if it exceeds 575°C, there is a risk of partial eutectic melting, so this temperature should generally be between 400 and 575°C. In addition, when processing the Al alloy of this invention into various parts by extrusion, this extrusion process is performed at 350°C.
If it is carried out at a temperature other than ~550℃, surface cracks will occur during extrusion, and if the degree of extrusion is less than 75%, the compression of casting defects such as cavities and pinholes in the ingot will not be sufficiently crimped. In addition, these defects remain after extrusion and deteriorate the mechanical properties of the product and the surface quality after cutting. This extrusion process is carried out at a temperature of 350-550℃ and an extrusion degree of more than 75%. There is a need. [Example] Next, the present invention will be explained by referring to an example while comparing with a comparative example. Invention Al alloys 1 to 13 having the component compositions shown in Table 1, Comparative Al alloys 1 to 8 having compositions outside the scope of the present invention (deviating components are indicated by * in Table 1), After casting billets with a diameter of 200 mm from the molten metal of a conventional Al alloy corresponding to the JIS 4032 high-Si content Al alloy, these billets were subjected to a homogenization treatment at a temperature of 560°C for 6 hours. Then, each billet was extruded into a round bar with a diameter of 36 mm at a temperature of 500°C. Next, after tensile straightening these round bars, the temperature: 530
It was held at 180°C for 1 hour for solution treatment, then water quenched, and then subjected to T6 treatment at 180°C for 8 hours. During the above extrusion, the maximum extrusion speed at which a round bar could be extruded without causing cracks on the surface of the extruded product was measured, and the extrudability of each of the alloys was evaluated based on this. In addition, in order to evaluate the wear resistance of the present invention Al alloy, the comparative Al alloy, and the conventional Al alloy, test pieces were prepared from the round bars made of these alloys, each having a cylindrical shape having a diameter of 4 mm at the contact surface. These pins were tested using a pin/disc type abrasion tester at a contact pressure of 300
The amount of wear on each pin was measured by pressing it against a rotating FC25 cast iron disk for 100 minutes at a friction speed of 1250 m/min.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1表に示された結果から、本発明Al合金1
〜13ではいずれも最大押出速度が大きい上に摩耗
量が少なく、かつバイト摩耗も少ないのに対し
て、比較Al合金1ではMgとSi少な過ぎるために
摩耗量が多く、比較Al合金2ではSiが十分存在
していてもMg量が少な過ぎるのでやはり耐摩耗
性に劣り、比較Al合金3ではMgが多過ぎるため
に押出性が劣る上にバイト摩耗が著しく、比較
Al合金4ではSi量が少なすぎるために摩耗量が
多く、比較Al合金5ではSi量が多過ぎるために
バイト摩耗が激しく、比較Al合金6ではMgとSi
が多過ぎるために押出性が著しく悪い上にバイト
摩耗が激しく、比較Al合金7ではMnが不足して
いるために耐摩耗性が低く、そして比較Al合金
8ではMnが多過ぎるためにバイト摩耗が激しい
ことがわかる。 以上述べた説明から明らかなように、この発明
によると、すぐれた押出性ばかりでなく、従来の
高Si含有Al合金に匹敵するか、またはそれ以上
のすぐれた耐摩耗性もそなえ、したがつてこのよ
うな特性が特に要求される空圧シリンダや油圧シ
リンダ等の摺動部品の素材として適したAl合金
を提供することできる。
From the results shown in Table 1, the present invention Al alloy 1
~13 all have high maximum extrusion speeds, low wear, and small bite wear, whereas Comparative Al Alloy 1 has too much Mg and Si, so the wear is large, and Comparative Al Alloy 2 has too much Si. Even if there is a sufficient amount of Mg, the wear resistance is still poor because the amount of Mg is too small. Comparative Al alloy 3 has too much Mg, so extrudability is poor and tool wear is significant.
In Al alloy 4, the amount of wear is large because the amount of Si is too small, in comparative Al alloy 5, the amount of Si is too large, resulting in severe bite wear, and in comparison Al alloy 6, the amount of wear is large due to the amount of Si.
Comparative Al alloy 7 has low wear resistance due to a lack of Mn, and comparative Al alloy 8 has too much Mn, resulting in severe tool wear. It can be seen that it is intense. As is clear from the above description, the present invention not only has excellent extrudability but also has excellent wear resistance that is comparable to or better than conventional high-Si content Al alloys. It is possible to provide an Al alloy suitable as a material for sliding parts such as pneumatic cylinders and hydraulic cylinders that particularly require such properties.

Claims (1)

【特許請求の範囲】 1 Mg:1.9〜7.6% Si:1.6〜4.9%、 Mn:0.5〜1.5%、 を含有し、そして残りがAlおよび不可避不純物
からなる成分組成(以上重量%)を有することを
特徴とする、耐摩耗性および押出性にすぐれたア
ルミニウム合金。 2 Mg:1.9〜7.6%、 Si:1.6〜4.9%、 Mn:0.5〜1.5%、 を含有し、さらに Fe:0.3〜1.0%、 Cr:0.03〜0.25%、 Zr:0.05〜0.25%、 V:0.03〜0.25%、 のうちの1種または2種以上を含有し、そして残
りがAlおよび不可避不純物からなる成分組成
(以上重量%)を有することを特徴とする、耐摩
耗性および押出性にすぐれたアルミニウム合金。 3 Mg:1.9〜7.6%、 Si:1.6〜4.9%、 Mn:0.5〜1.5%、 を含有し、さらに Cu:0.05〜0.5%、 Zn:0.25〜1.5%、 のうちの1種または2種を含有し、そして残りが
Alおよび不可避不純物からなる成分組成(以上
重量%)を有することを特徴とする、耐摩耗性お
よび押出性にすぐれたアルミニウム合金。 4 Mg:1.9〜7.6%、 Si:1.6〜4.9%、 Mn:0.5〜1.5%、 を含有し、さらに Fe:0.3〜1.0%、 Cr:0.03〜0.25% Zr:0.05〜0.25%、 V:0.03〜0.25%、 のうちの1種または2種以上、および Cu:0.05〜0.5%、 Zn:0.25〜1.5%、 のうちの1種または2種を含有し、そして残りが
Alおよび不可避不純物からなる成分組成(以上
重量%)を有することを特徴とする、耐摩耗性お
よび押出性にすぐれたアルミニウム合金。
[Scope of Claims] 1 Contains the following: Mg: 1.9 to 7.6%, Si: 1.6 to 4.9%, Mn: 0.5 to 1.5%, and the remainder is Al and unavoidable impurities (weight %). An aluminum alloy with excellent wear resistance and extrudability. 2 Contains Mg: 1.9 to 7.6%, Si: 1.6 to 4.9%, Mn: 0.5 to 1.5%, and further contains Fe: 0.3 to 1.0%, Cr: 0.03 to 0.25%, Zr: 0.05 to 0.25%, V: 0.03 to 0.25%, containing one or more of the following, and the remainder consisting of Al and unavoidable impurities (weight %), and has excellent wear resistance and extrudability. Aluminum alloy. 3 Contains Mg: 1.9 to 7.6%, Si: 1.6 to 4.9%, Mn: 0.5 to 1.5%, and further contains one or two of Cu: 0.05 to 0.5%, Zn: 0.25 to 1.5%, contains and the rest
An aluminum alloy with excellent wear resistance and extrudability, characterized by having a composition (weight %) consisting of Al and unavoidable impurities. 4 Contains Mg: 1.9-7.6%, Si: 1.6-4.9%, Mn: 0.5-1.5%, and further contains Fe: 0.3-1.0%, Cr: 0.03-0.25% Zr: 0.05-0.25%, V: 0.03 ~0.25%, one or two or more of the following, Cu: 0.05~0.5%, Zn: 0.25~1.5%, containing one or two of the following, and the rest:
An aluminum alloy with excellent wear resistance and extrudability, characterized by having a composition (weight %) consisting of Al and unavoidable impurities.
JP6534886A 1986-03-24 1986-03-24 Aluminum alloy excellent in wear resistance and extrudability Granted JPS62222039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6534886A JPS62222039A (en) 1986-03-24 1986-03-24 Aluminum alloy excellent in wear resistance and extrudability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6534886A JPS62222039A (en) 1986-03-24 1986-03-24 Aluminum alloy excellent in wear resistance and extrudability

Publications (2)

Publication Number Publication Date
JPS62222039A JPS62222039A (en) 1987-09-30
JPH0557346B2 true JPH0557346B2 (en) 1993-08-23

Family

ID=13284356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6534886A Granted JPS62222039A (en) 1986-03-24 1986-03-24 Aluminum alloy excellent in wear resistance and extrudability

Country Status (1)

Country Link
JP (1) JPS62222039A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110545A (en) * 1989-02-24 1992-05-05 Golden Aluminum Company Aluminum alloy composition
JP5482787B2 (en) * 2009-03-31 2014-05-07 日立金属株式会社 Al-Mg-Si aluminum alloy for casting having excellent proof stress and cast member comprising the same
CN111809086B (en) * 2019-04-12 2021-12-07 比亚迪股份有限公司 Die-casting aluminum alloy and preparation method and application thereof
CN110184512A (en) * 2019-07-15 2019-08-30 中南大学 A kind of selective laser fusing Al alloy powder and its method for preparing eutectic reinforced aluminium alloy
CN114592148B (en) * 2022-03-11 2022-10-11 中南大学 High-strength and high-toughness Al-Mg for additive manufacturing 2 Si-Zn alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPS62222039A (en) 1987-09-30

Similar Documents

Publication Publication Date Title
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH04176836A (en) Aluminum alloy excellent in wear resistance
JPH0557346B2 (en)
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
JPH07145440A (en) Aluminum alloy forging stock
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP3654695B2 (en) Wear resistant aluminum alloy
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JP2743709B2 (en) Aluminum alloy for extrusion and forging
JPH0734169A (en) Wear resistant aluminum alloy excellent in strength
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP3684245B2 (en) Aluminum alloy for cold forging
JPS6215626B2 (en)
JPH02149632A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPS6227543A (en) Wear-resisting aluminum alloy stock
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPS62222040A (en) Aluminum alloy excellent in wear resistance and cold forgeability
JP2004238739A (en) Wear resistant aluminum alloy
JPH0332403B2 (en)
KR960005232B1 (en) Cu-al alloy composition