JPH0332403B2 - - Google Patents

Info

Publication number
JPH0332403B2
JPH0332403B2 JP59052005A JP5200584A JPH0332403B2 JP H0332403 B2 JPH0332403 B2 JP H0332403B2 JP 59052005 A JP59052005 A JP 59052005A JP 5200584 A JP5200584 A JP 5200584A JP H0332403 B2 JPH0332403 B2 JP H0332403B2
Authority
JP
Japan
Prior art keywords
alloy
particles
extrusion
aluminum alloy
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59052005A
Other languages
Japanese (ja)
Other versions
JPS60196219A (en
Inventor
Ichiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP5200584A priority Critical patent/JPS60196219A/en
Priority to CA000462172A priority patent/CA1239811A/en
Priority to DE8484305971T priority patent/DE3469187D1/en
Priority to EP84305971A priority patent/EP0141501B1/en
Priority to CH86485A priority patent/CH665223A5/en
Publication of JPS60196219A publication Critical patent/JPS60196219A/en
Priority to US06/894,470 priority patent/US4737206A/en
Publication of JPH0332403B2 publication Critical patent/JPH0332403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、特に耐摩耗性、切削性、高温強
度、加工性に優れた過共晶シリコン−アルミニウ
ム合金、特にAl−Si−Cu系の過共晶シリコン−
アルミニウム金押出材の製造方法に関する。 なお、この明細書において合金成分についての
「%」はいずれも「重量%」を示すものである。 従来の技術 従来、高温特性に優れたアルミニウム合金展伸
材として、Si11.0〜13.5%を含有したA4032合金
が知られている。このA4032合金展伸材は、耐熱
性、耐摩耗性に優れ、熱膨脹係数が小さい等の特
性があるが、本来この合金は鍛造用のものであつ
て、鍛造加工を経てはじめて上記の性質が得られ
るものであり、合金素材自体では上記特性を具備
せず、また切削性の点でも格別優れているものと
はいい難い。このため、その用途もピストンやシ
リンダーヘツド等の極く限られた分野に使用され
るにすぎなかつた。 而して、特に耐摩耗性が強く要求されるような
用途には、一般的にアルミニウム合金鋳物が使わ
れている。斯る耐摩耗性に優れたアルミニウム合
金鋳物としては、Siを10〜24%程度含有したAl
−Si系の例えばAC3A、AC8A〜C、AC9A〜B
等の合金が良く知られている。ところが、これら
の合金は、鋳物合金であるが故に、製品形状に制
約を受け、展伸材のように自由な製品形状を求め
ることが困難で、これが為にまた用途が限られる
という難点があつた。のみならず、これらの合金
材料は、鋳造によつて製造されるものであるため
に、それに含まれる主要な耐摩耗性向上要素であ
る切晶Si粒子及び共晶Si粒子がいずれも比較的粗
大でかつ異形を呈し、またその分布も不均一なも
のである。例えば初晶Si粒子は、粒径略150μにも
達する多きなものを含んで全体的に粗大であり、
共晶Si粒子も長さ略30μm程度のものを含んで針
状を呈し、しかもそれらがいずれも不均一に分布
する。このため、耐摩耗性、切削性のいずれにお
いても多きな満足度を得ることができなかつた。
初晶Si粒子の粒径は、改良処理によつて僅かに小
さくすることができるが、それでも100μ程度以
下の大きさにすることができるにとどまり、共晶
Si粒子の改良は不可能であるし、それ以上に、不
均一な分布状態を補正することができないため、
耐摩耗性に大きなばらつきを有するものしか得る
ことができなかつた。 一方、上記のような問題点の認識から、従来、
初晶及び共晶Si晶出粒子を微細化することについ
て種々研究がなされてきた。その1つの成果とし
て、例えば特公昭53−20242号公報等に示される
ように、鋳造時における溶湯の冷却速度を50℃/
secと極めて急速なものとすることにより、晶出
物の成長を抑え、初晶Si、共晶Siの各粒子径を極
めて微細なものとなしうることが提案されてい
る。即ち、この先行技術によれば、初晶Si粒子を
最大径において40μを越えないものとし、共晶Si
粒子を最大長において大半が20μをこえないもの
とすることが報告されている。 発明が解決しようとする課題 ところが、本発明者の研究によれば、合金組織
中に特に初晶Si粒子を可及的微小なものとするこ
とは、これによつて必ずしも合金の耐摩耗性を比
例的に向上することにはならないことを見出し
た。即ち、合金の耐摩耗性は、いうまでもなく晶
出Si粒子の個々が摩擦時の面圧を受け止めること
によつて実現されるものであるところ、マトリツ
クス中でSi粒子が過度に微細であると却つて摩擦
時の面圧を受け止める力が低下し、結果的に耐摩
耗性の向上に所期するほどには寄与し得ないもの
となることが、多くの実験結果から推認しうるに
至つた。 そこで、この発明は、このような知見から出発
し、耐摩耗性の向上に最大限に寄与しうる初晶Si
粒子及び共晶Si粒子の粒径分布状態を知ることに
ついて種々研究を行つた。然るところ、初晶Si粒
子は、最大径で80μ以下であり、しかも40〜80μ
程度の粒径範囲にその比較的多くが分布すること
により、最も優れた耐摩耗性が得られ、一方共晶
Si粒子は、針状結晶を破壊して可及的小さい粒状
のものとして均一に分布することにより、最も優
れた切削性を確保しうることを見出し得た。 従つて、この発明の主要な目的の1つは、合金
中に含む初晶Si粒子及び共晶Si粒子を上記のよう
な粒径範囲に制御しうるような過共晶シリコン−
アルミニウム合金の製造方法を提供すことにあ
る。 このような目的は、過共晶シリコン−アルミニ
ウム合金をいつたん鋳造し、次いでこの鋳塊を、
特定の押出条件を採用して押出し加工するものと
なすことによつてはじめて達成され得る。従来、
過共晶シリコン−アルミニウム合金の押出しは、
それ自体の変形抵抗が極めて大きいために一般的
には著しく困難とされ不適なものとされていた。
そして又、仮に押出し加工を行う場合にも、合金
の流動性を高めるために可及的押出温度を高く
し、かつ押出し速度を遅くしなければならないも
のと考えられていた。ところがこのような常識的
な押出し条件に従つて押出し加工を行うときは、
アルミニウム合金中の初晶Siおよび共晶Siの各粒
子の状態を前記のような好ましい範囲に制御する
ことができないし、また押出品に著しい表面割
れ、肌荒れ等の欠陥を生じて、到底実用に適する
材料を得ることはできない。 そこで、この発明の更に具体的な目的は、耐摩
耗性、切削性に優れた過共晶シリコン−アルミニ
ウム合金材料を得るための、該合金鋳塊の最好適
な押出し条件を掲示することにある。この押出し
条件は、従来の常識的な考え方からいえば、これ
とは全く逆に、押出温度を低く保持しながら、押
出速度を早くするものである。 課題を解決するための手段 上記において、この発明は、過共晶範囲にSiを
含有する過共晶シリコン−アルミニウム合金、特
にSi12〜30%3Cu0.3〜7.0%を含み、または更に
Mg0.3〜2.0%を含有して、残部がアルミニウム
及び不可避不純物からなる合金を用い、該合金を
ビレツトに鋳造したのち押出し加工することを必
須工程とし、しかも上記押出しを、 ベアリング長さ:5〜15mmのダイスを用いて、
かつ ビレツト温度:350〜420℃ 押出ラム速度:0.03〜0.2m/min 押比:10〜40 の条件で行うことを特徴とする耐摩耗性アルミニ
ウム合金押出材の製造方法を提供するものであ
る。 この発明に用いる過共晶シリコン−アルミニウ
ム合金は、Siを過共晶組成範囲に含有するもので
あり、好適な組成として、例えばSi12〜30%、
Cu0.3〜7.0%を含み、または更にMg0.3〜2.0%を
含有し、残部がアルミニウム及び不可避不純物か
らなるものが挙げられる。上記の各成分元素以外
にも、有意義性のある各種の添加物が不可避不純
物としての含有量をこえて含まれることが許容さ
れる。例えばNi、Fe、Mnをそれぞれ0.5〜3.0%
の範囲で1種または2種以上含有することも好ま
しい。 上記の各合金成分の意義は次のとおりである。 Siは、周知のとおり耐摩耗性の向上成分として
有効なものであり、これが12%未満では耐摩耗性
に劣るものとなる一方、逆に30%をこえて過多に
含有されると、鋳造が困難になる。アルミニウム
−シリコンの2元系合金における共晶点は、シリ
コン11.7%に存するが、第3元素が加わると共晶
点は遷移する。従つてこの発明に係る合金に於て
は、少なくとも12%以上の過共晶範囲にSiを含有
することを要するものである。最も好適なSi含有
量は、16〜20%程度の範囲である。 Cu及びMgは、いずれも合金の強度の向上に寄
与するものであり、0.3%未満ではその効果が不
十分である。しかしCuが7%をこえるときは、
耐食性が著しく悪くなる。またMgが2%をこえ
る場合は、上記の効果を格別増大せず、むしろ粗
大な晶出物を生成して機械的性質を劣化する。実
験結果から得られた最も好適なCuの含有量は、
概ね4〜6%程度であり、またMgの含有量は
0.45〜0.65%程度である。 上記のような各成分のほかに、有意義性のある
各種の添加物を含むことも許容される。たとえ
ば、SrおよびPの含有が許容される。これらの
元素はいずれも鋳造時に初晶Si粒子を微細化する
微細化剤として作用するものである点で均等物で
あり、いずれか少なくとも一方を含有すれば足る
が、それぞれ0.005%未満では上記効果に乏しく、
0.1%をこえても格別効果の増大を望めない。 更に他の任意的添加元素として用いうるものと
してNi、Fe、Mnを挙げることができる。これら
は、いずれも合金の耐久性の向上に有効に寄与す
るものであり、この作用の面からいずれも均等物
であつて、少なくとも1種または2種以上を含有
すれば足りるが各成分が0.5%未満では上記の効
果の実現性に乏しく、逆に3%をこえると切削性
が著しく悪くなる欠点を派生する。 上記のような成分範囲をもつこの発明に係る合
金押出材は、その組織を特定範囲に制御して製造
するために、鋳造後所定の押出し工程を経て製造
されるものである。即ち、先ず、上記のアルミニ
ウム合金を従来の常法に従う溶解鋳造によりアル
ミニウム合金鋳塊に製作する。この鋳造工程によ
つて得られる鋳塊に含まれる初晶Si粒子は、上記
Srおよび(または)Pの添加によりある程度微
細化されたものとなしうるが、それでもなおその
粒径は、100μm以上にも達するものを含んで全
体として未だ相当に大きいものである。また、共
晶Si粒子も、粒径30μm程度のものを含む全体と
してかなり大きいものであり、かつその形態も針
状を呈するものである。 そこで、この発明は、これらの比較的粗大な初
晶及び共晶Si粒子を含む鋳塊を更に熱間にて押出
し加工する。ここに、この熱間押し加工は、ベア
リング長さを5〜15mmに形成した押出ダイスを用
いて行い、かつ、ビレツト温度:350〜420℃、押
出ラム速度:0.03〜0.2m/min、押比:10〜40の
条件に設定して行うことが必要であり、かゝる条
件で押出加工を行うことにより、鋳塊中に含む粗
大な初晶Si粒子の一部を破壊し、そのほとんどす
べての粒系が10〜80μmの範囲で、かつ40μm以
上の粒子が比較的多くの割合を占める範囲に微細
化し、かつその分布を均一化せしめると共に、共
晶Si粒子も、針状結晶を長さ方向に分断して形状
を粒状化し、またこれをほとんどすべてが粒径
15μm以下の範囲で、かつ10μm以下の粒子が比
較的多くの割合を占める範囲に微細化せしめたも
のとすることができる。 ところで、上記押出条件の限定理由は次のとお
りである。 先ず、押出しに使用するダイスの形状も押出製
品の良否に重大な影響をもつ。従来、アルミニウ
ム合金展伸材の押出しに普通使用されているダイ
スは、ベアリング長さが3mm程度のものである
が、この発明の被加工物とするような過共晶シリ
コン−アルミニウム合金の場合、上記のようなダ
イスでは、押出品に著しい表面割れを発生する傾
向がみられ、良好な製品を得ることができない。
従つて、ベアリング長さが5mm以上のダイスを用
いることが必要である。しかしベアリング長さが
15mmを越えるような場合には、押出し抵抗が大と
なる不利益を生むだけで格別の利点を享受するこ
とはできない。従つて、ダイスはベアリング長さ
5〜15mmの範囲のものを用いるべきであり、最も
好適には6〜12mm程度のものを用いるのが良い。 ビレツト温度は、これが350℃未満では変形抵
抗の過大のために押出し操作が困難なものとな
り、逆に420℃を越える高温では、押出成形物に
表面割れを生じ、表面状態の良好な製品を得るこ
とができない。最も好ましいビレツト温度の範囲
は380〜400℃である。 ラム速度は、押比ないし押出速度との関係で調
整されるものであるが、0.03m/min未満の遅い
速度では、合金中の初晶及び共晶のSi粒子を好適
範囲に微細化する効果が不充分なものとなる。逆
に0.2m/minをこえると押出品に著しい割れを
発生する。最好適なラム速度は、0.05〜0.15m/
min程度である。 更に、押比は、10未満では押出し加工の効果が
充分に得られず、合金の組織の改良効果が得られ
ない、逆に押比が40をこえると、合金の変形抵抗
が大きいことと相俟つて円滑な押出し操作が困難
になる。好適な押比範囲は概略20〜30程度であ
る。 発明の効果 上述のようなこの発明の製造方法によれば、耐
摩耗性、切削性、加工性において、従来展伸材と
して既知のA4032等の耐摩耗性合金に較べてはも
ちろん、前記耐摩耗性鋳物用合金に較べても一層
優れた性能を有し、しかも耐摩耗性にばらつきの
少ないアルミニウム合金押出材を得ることができ
る。更には、押出し加工によつて製造されるもの
であるから、合金鋳物では製作が困難であるよう
な種々の形状にも容易に製作することが可能であ
るし、鋳物と違つて伸びがあることにより加工
性、鍛造性にも一層優れたものとなる等の多くの
利点が実現される。 実施例 次に、この発明の実施例を比較例と対比して示
す。 Si18%、Cu4.5%、Mg0.5%、Sr0.04%を含有
し、残部アルミニウム及び不可避不純物からなる
過共晶シリコン−アルミニウム合金を先ず半連続
鋳造によつて直径120mmのビレツトに製造した。
この鋳造したままの状態で、その鋳塊に含む初晶
Si粒子の粒径は概ね10〜100μmの範囲に属し、共
晶Si粒子の粒径は概ね30μm以下でかつ針状を呈
するものであつた。 次いで、このビレツトを、495℃×8時間の均
質化処理後、大気中で常温で冷却したのち、第1
表に示す各種押出条件で直径30mmの丸棒に押出し
た。
Industrial Application Field The present invention is directed to a hypereutectic silicon-aluminum alloy, particularly an Al-Si-Cu based hypereutectic silicon alloy, which has excellent wear resistance, machinability, high-temperature strength, and workability.
This invention relates to a method for producing aluminum gold extrusions. In this specification, all "%" regarding alloy components indicate "% by weight". BACKGROUND ART Conventionally, A4032 alloy containing 11.0 to 13.5% Si is known as a wrought aluminum alloy material with excellent high-temperature properties. This A4032 alloy wrought material has excellent heat resistance, wear resistance, and low coefficient of thermal expansion, but this alloy was originally intended for forging, and the above properties can only be obtained through forging. The alloy material itself does not have the above characteristics, and it is difficult to say that it has particularly excellent machinability. For this reason, it was only used in extremely limited fields such as pistons and cylinder heads. Therefore, aluminum alloy castings are generally used for applications where particularly high wear resistance is required. Aluminum alloy castings with excellent wear resistance include Al containing approximately 10 to 24% Si.
-Si type e.g. AC3A, AC8A~C, AC9A~B
These alloys are well known. However, since these alloys are cast alloys, there are restrictions on the product shape, and it is difficult to obtain a product shape as free as wrought materials, which also limits their uses. Ta. Moreover, since these alloy materials are manufactured by casting, the truncated Si particles and eutectic Si particles, which are the main elements that improve wear resistance, are both relatively coarse. It is large and irregularly shaped, and its distribution is uneven. For example, primary Si particles are generally coarse, with many particles reaching approximately 150 μm in diameter.
The eutectic Si particles also have a needle shape, including ones with a length of about 30 μm, and all of them are unevenly distributed. For this reason, it was not possible to obtain a high degree of satisfaction in either wear resistance or machinability.
Although the particle size of primary Si particles can be slightly reduced through improved processing, it is still only possible to reduce the size to about 100μ or less, and eutectic
It is impossible to improve the Si particles, and moreover, it is impossible to correct the uneven distribution state.
Only products with large variations in wear resistance could be obtained. On the other hand, due to the recognition of the problems mentioned above,
Various studies have been conducted on the refinement of primary and eutectic Si crystallized particles. As one result, for example, as shown in Japanese Patent Publication No. 53-20242, the cooling rate of molten metal during casting was increased to 50℃/
It has been proposed that the growth of crystallized substances can be suppressed and the particle diameters of primary Si and eutectic Si can be made extremely fine by making the crystallization extremely rapid. That is, according to this prior art, the maximum diameter of the primary Si particles does not exceed 40μ, and the eutectic Si particles
It has been reported that most of the particles do not exceed 20μ in maximum length. Problems to be Solved by the Invention However, according to the research of the present inventor, making the primary Si particles in the alloy structure as small as possible does not necessarily reduce the wear resistance of the alloy. It was found that there was no proportional improvement. In other words, the wear resistance of the alloy is, of course, achieved by the individual crystallized Si particles absorbing the surface pressure during friction, but if the Si particles are too fine in the matrix, On the contrary, it can be inferred from many experimental results that the ability to absorb surface pressure during friction decreases, and as a result, it cannot contribute to the improvement of wear resistance as much as expected. Ivy. Therefore, based on this knowledge, this invention developed primary crystal Si that can contribute to the maximum improvement of wear resistance.
Various studies were conducted to understand the particle size distribution of particles and eutectic Si particles. However, primary Si particles have a maximum diameter of 80μ or less, and moreover, a diameter of 40 to 80μ.
The best wear resistance is obtained by having a relatively large proportion of them distributed in a range of particle sizes of about
It has been found that Si particles can ensure the best machinability by breaking needle-like crystals and uniformly distributing them as small particles as possible. Therefore, one of the main objects of the present invention is to produce hypereutectic silicon particles that can control the primary Si particles and eutectic Si particles contained in the alloy within the above particle size range.
An object of the present invention is to provide a method for producing an aluminum alloy. For this purpose, a hypereutectic silicon-aluminum alloy is first cast, and then this ingot is
This can only be achieved by using specific extrusion conditions for extrusion processing. Conventionally,
Extrusion of hypereutectic silicon-aluminum alloy is
Since the deformation resistance itself is extremely high, it has generally been considered extremely difficult and unsuitable.
Furthermore, even if extrusion processing were to be carried out, it was thought that the extrusion temperature would have to be as high as possible and the extrusion speed should be slowed down in order to improve the fluidity of the alloy. However, when extruding according to such common-sense extrusion conditions,
It is not possible to control the state of each particle of primary Si and eutectic Si in the aluminum alloy within the above-mentioned preferred range, and the extruded product has significant defects such as surface cracks and rough skin, making it impossible to put it into practical use. Suitable materials cannot be obtained. Therefore, a more specific object of the present invention is to present the most suitable extrusion conditions for an alloy ingot in order to obtain a hypereutectic silicon-aluminum alloy material with excellent wear resistance and machinability. be. This extrusion condition is completely contrary to the conventional common sense concept, and is to increase the extrusion speed while keeping the extrusion temperature low. Means for Solving the Problems In the above, the present invention provides a hypereutectic silicon-aluminum alloy containing Si in the hypereutectic range, particularly containing 12-30% Si, 0.3-7.0% Cu, or further
Using an alloy containing 0.3 to 2.0% Mg, with the balance consisting of aluminum and unavoidable impurities, the essential steps are casting the alloy into a billet and extruding it, and the above extrusion is carried out.Bearing length: 5 Using ~15mm dice,
The present invention provides a method for manufacturing a wear-resistant aluminum alloy extruded material, characterized in that the process is carried out under the following conditions: billet temperature: 350-420°C, extrusion ram speed: 0.03-0.2 m/min, and pressing ratio: 10-40. The hypereutectic silicon-aluminum alloy used in this invention contains Si in a hypereutectic composition range, and suitable compositions include, for example, 12 to 30% Si;
Examples include those containing 0.3 to 7.0% Cu, or further containing 0.3 to 2.0% Mg, with the remainder consisting of aluminum and inevitable impurities. In addition to the above-mentioned component elements, it is permissible for various meaningful additives to be included in amounts exceeding the amount of unavoidable impurities. For example, Ni, Fe, and Mn are each 0.5 to 3.0%.
It is also preferable to contain one or more types within the range of . The significance of each of the above alloy components is as follows. As is well known, Si is effective as a component for improving wear resistance, and if it is less than 12%, the wear resistance will be poor. On the other hand, if it is contained in excess of 30%, casting will be impaired. It becomes difficult. The eutectic point in the aluminum-silicon binary alloy exists at 11.7% silicon, but when a third element is added, the eutectic point shifts. Therefore, the alloy according to the present invention must contain at least 12% Si in the hypereutectic range. The most suitable Si content is in the range of about 16 to 20%. Both Cu and Mg contribute to improving the strength of the alloy, and if it is less than 0.3%, the effect is insufficient. However, when Cu exceeds 7%,
Corrosion resistance deteriorates significantly. Moreover, when Mg exceeds 2%, the above-mentioned effects are not particularly enhanced, but rather coarse crystallized substances are formed and the mechanical properties are deteriorated. The most suitable Cu content obtained from the experimental results is
It is approximately 4 to 6%, and the Mg content is
It is about 0.45-0.65%. In addition to the above-mentioned components, it is also permissible to include various meaningful additives. For example, inclusion of Sr and P is allowed. All of these elements are equivalent in that they act as refining agents to refine primary Si particles during casting, and it is sufficient to contain at least one of them, but if each is less than 0.005%, the above effects will not be achieved. lacking in
Even if it exceeds 0.1%, no particular increase in effect can be expected. Furthermore, Ni, Fe, and Mn can be mentioned as other optional additive elements. All of these effectively contribute to improving the durability of the alloy, and in terms of this effect, they are all equivalent, and it is sufficient to contain at least one or two or more of them, but each component should be 0.5 If it is less than 3%, it is difficult to achieve the above effects, and if it exceeds 3%, the machinability becomes extremely poor. The extruded alloy material according to the present invention having the above-mentioned component range is manufactured through a predetermined extrusion process after casting in order to control the structure within a specific range. That is, first, the above aluminum alloy is produced into an aluminum alloy ingot by melting and casting according to a conventional conventional method. The primary Si particles contained in the ingot obtained by this casting process are as described above.
Although it can be made finer to some extent by adding Sr and/or P, the grain size as a whole is still quite large, including some that reach 100 μm or more. Moreover, the eutectic Si particles are also quite large as a whole, including particles with a particle size of about 30 μm, and their morphology is also acicular. Therefore, in the present invention, an ingot containing these relatively coarse primary and eutectic Si particles is further hot extruded. Here, this hot pressing process was performed using an extrusion die with a bearing length of 5 to 15 mm, billet temperature: 350 to 420°C, extrusion ram speed: 0.03 to 0.2 m/min, and extrusion ratio. : It is necessary to carry out the extrusion processing under such conditions. In addition, the eutectic Si particles are refined so that the grain size is in the range of 10 to 80 μm, with a relatively large proportion of particles of 40 μm or more, and the distribution is made uniform. The shape is divided into granules by dividing in the direction, and almost all of this is made into particles with a particle size.
It can be made finer in the range of 15 μm or less and in which particles of 10 μm or less occupy a relatively large proportion. By the way, the reasons for limiting the above extrusion conditions are as follows. First, the shape of the die used for extrusion also has a significant effect on the quality of the extruded product. Conventionally, dies commonly used for extruding aluminum alloy wrought materials have bearing lengths of about 3 mm, but in the case of hypereutectic silicon-aluminum alloys, such as the workpiece of this invention, With the above-mentioned die, there is a tendency for significant surface cracks to occur in the extruded product, making it impossible to obtain a good product.
Therefore, it is necessary to use a die with a bearing length of 5 mm or more. However, the bearing length
If the diameter exceeds 15 mm, the extrusion resistance becomes large, which is a disadvantage and no particular advantage can be enjoyed. Therefore, a die with a bearing length in the range of 5 to 15 mm should be used, most preferably a die in the range of 6 to 12 mm. If the billet temperature is less than 350℃, the extrusion operation becomes difficult due to excessive deformation resistance, whereas if the billet temperature exceeds 420℃, surface cracks will occur in the extruded product, making it difficult to obtain a product with a good surface condition. I can't. The most preferred billet temperature range is 380-400°C. The ram speed is adjusted in relation to the extrusion ratio or extrusion speed, but a slow speed of less than 0.03 m/min has the effect of refining the primary and eutectic Si particles in the alloy to a suitable range. becomes insufficient. On the other hand, if the speed exceeds 0.2 m/min, significant cracking will occur in the extruded product. The optimum ram speed is 0.05-0.15m/
It is about min. Furthermore, if the pressing ratio is less than 10, the effect of extrusion processing will not be sufficient and the effect of improving the structure of the alloy will not be obtained.On the other hand, if the pressing ratio exceeds 40, the deformation resistance of the alloy will be large. As a result, smooth extrusion operation becomes difficult. A suitable pressing ratio range is approximately 20 to 30. Effects of the Invention According to the manufacturing method of the present invention as described above, in terms of wear resistance, machinability, and workability, it is not only compared to wear-resistant alloys such as A4032, which are conventionally known as wrought materials, but also has better wear resistance. It is possible to obtain an aluminum alloy extruded material that has better performance than alloys for steel castings and has less variation in wear resistance. Furthermore, since it is manufactured by extrusion processing, it can be easily manufactured into various shapes that are difficult to manufacture with alloy castings, and unlike castings, it has elongation. As a result, many advantages such as better workability and forgeability are realized. Examples Next, examples of the present invention will be shown in comparison with comparative examples. A hypereutectic silicon-aluminum alloy containing 18% Si, 4.5% Cu, 0.5% Mg, and 0.04% Sr, with the balance being aluminum and unavoidable impurities was first manufactured into a billet with a diameter of 120 mm by semi-continuous casting. .
Primary crystals contained in the ingot in the as-cast state
The particle size of the Si particles was generally in the range of 10 to 100 μm, and the particle size of the eutectic Si particles was approximately 30 μm or less and had an acicular shape. Next, this billet was homogenized at 495°C for 8 hours, cooled in the air at room temperature, and then
It was extruded into a round bar with a diameter of 30 mm under various extrusion conditions shown in the table.

【表】 上記実施例1〜6によつて得られた押出材を供
試片として、その組織を調べたところ、それに含
む初晶Si粒子はすべてが10〜80μの粒径範囲に属
し、しかも40〜80μmの範囲のものが大半を占め
て均一に分布しているものであつた。かつ共晶Si
粒子も微細化され、そのすべてが少なくとも15μ
以下の粒径範囲で、全共晶Si粒子中大半が10μ以
下のもので占められているものであつた。 そして、この実施例1〜6の供試片につき、回
転円板による大越式耐摩耗試験機を用いて耐摩耗
試験(試験条件…摩擦距離:600m、摩擦速度:
2m/min、相手材:FC−30)を行つたところ、
これらの比摩耗量は0.9〜1.1×10-6mm/Kgであつ
た。 これに対し、比較例1〜4のものは、ビレツト
温度が高すぎること、あるいは押出速度が遅す
ぎ、または速すぎることに起因して、表面に著し
い肌荒れを起こし、あるいは材に割れを生じて、
いずれも到底実用に供しうるような押出材を得る
ことができなかつた。即ち、比較例1及び3のも
のでは、押出材に割れが発生し、また比較例2及
び4のものでは、押出材表面に著しい肌荒れを有
するものであつた。
[Table] When the structure of the extruded materials obtained in Examples 1 to 6 was examined, all of the primary Si particles contained therein were in the particle size range of 10 to 80μ. Most of the particles were in the range of 40 to 80 μm and were uniformly distributed. and eutectic Si
The particles are also miniaturized, all of them at least 15μ
Within the following particle size range, the majority of all eutectic Si particles were 10 μm or less. Then, the test pieces of Examples 1 to 6 were tested for wear resistance using an Okoshi type wear tester using a rotating disk (test conditions...friction distance: 600 m, friction speed:
2m/min, mating material: FC-30),
The specific wear amount of these was 0.9 to 1.1×10 −6 mm/Kg. On the other hand, in Comparative Examples 1 to 4, the billet temperature was too high or the extrusion speed was too slow or too fast, resulting in significant roughness on the surface or cracks in the material. ,
In either case, it was not possible to obtain an extruded material that could be put to practical use. That is, in Comparative Examples 1 and 3, cracks occurred in the extruded materials, and in Comparative Examples 2 and 4, the surfaces of the extruded materials had significant roughness.

Claims (1)

【特許請求の範囲】 1 過共晶範囲にSiを含有する過共晶シリコン−
アルミニウム合金を用い、該合金をビレツトに鋳
造したのち押出し加工することを必須工程とし、
しかも上記押出しを、 ベアリング長さ:5〜15mmのダイスを用いて、
かつ ビレツト温度:350〜420℃ 押出ラム速度:0.03〜0.2m/min 押比:10〜40 の条件で行うことを特徴とする耐摩耗性アルミニ
ウム合金押出材の製造方法。 2 Si12〜30%、Cu0.3〜7.0%を含み、残部アル
ミニウム及び不可避不純物からなるアルミニウム
合金を用い、該合金をビレツトに鋳造したのち押
出し加工することを必須工程とし、しかも上記押
出しを、 ベアリング長さ:5〜15mmのダイスを用いて、
かつ ビレツト温度:350〜420℃ 押出ラム速度:0.03〜0.2m/min 押比:10〜40 の条件で行うことを特徴とする耐摩耗性アルミニ
ウム合金押出材の製造方法。 3 Si12〜30%、Cu0.3〜7.0%、Mg0.3〜2.0%を
含み、残部アルミニウム及び不可避不純物からな
るアルミニウム合金を用い、該合金をビレツトに
鋳造したのち押出し加工することを必須工程と
し、しかも上記押出しを、 ベアリング長さ:5〜15mmのダイスを用いて、
かつ ビレツト温度:350〜420℃ 押出ラム速度:0.03〜0.2m/min 押比:10〜40 の条件で行うことを特徴とする耐摩耗性アルミニ
ウム合金押出材の製造方法。
[Claims] 1. Hypereutectic silicon containing Si in the hypereutectic range.
Using an aluminum alloy, the essential process is to cast the alloy into a billet and then extrude it,
Furthermore, the above extrusion can be carried out using a die with a bearing length of 5 to 15 mm.
A method for producing a wear-resistant aluminum alloy extruded material, characterized in that the process is carried out under the following conditions: billet temperature: 350 to 420°C, extrusion ram speed: 0.03 to 0.2 m/min, and pressing ratio: 10 to 40. 2 Using an aluminum alloy containing 12-30% Si, 0.3-7.0% Cu, and the balance consisting of aluminum and unavoidable impurities, an essential step is to cast the alloy into a billet and then extrude it. Length: Using 5-15mm dice,
A method for producing a wear-resistant aluminum alloy extruded material, characterized in that the process is carried out under the following conditions: billet temperature: 350 to 420°C, extrusion ram speed: 0.03 to 0.2 m/min, and pressing ratio: 10 to 40. 3. An aluminum alloy containing 12-30% Si, 0.3-7.0% Cu, and 0.3-2.0% Mg is used, with the balance being aluminum and unavoidable impurities, and the essential steps include casting the alloy into a billet and then extruding it. , Moreover, the above extrusion is carried out using a die with a bearing length of 5 to 15 mm.
A method for producing a wear-resistant aluminum alloy extruded material, characterized in that the process is carried out under the following conditions: billet temperature: 350 to 420°C, extrusion ram speed: 0.03 to 0.2 m/min, and pressing ratio: 10 to 40.
JP5200584A 1983-09-07 1984-03-16 Production of wear resistant alluminum alloy extrudate Granted JPS60196219A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5200584A JPS60196219A (en) 1984-03-16 1984-03-16 Production of wear resistant alluminum alloy extrudate
CA000462172A CA1239811A (en) 1983-09-07 1984-08-30 Extruded aluminum alloys having improved wear resistance and process for preparing same
DE8484305971T DE3469187D1 (en) 1983-09-07 1984-08-31 Extruded aluminum alloys having improved wear resistance and process for preparing same
EP84305971A EP0141501B1 (en) 1983-09-07 1984-08-31 Extruded aluminum alloys having improved wear resistance and process for preparing same
CH86485A CH665223A5 (en) 1984-03-16 1985-02-26 Extruded high silicon-aluminium alloys
US06/894,470 US4737206A (en) 1983-09-07 1986-08-04 Extruded aluminum alloys having improved wear resistance and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200584A JPS60196219A (en) 1984-03-16 1984-03-16 Production of wear resistant alluminum alloy extrudate

Publications (2)

Publication Number Publication Date
JPS60196219A JPS60196219A (en) 1985-10-04
JPH0332403B2 true JPH0332403B2 (en) 1991-05-13

Family

ID=12902704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200584A Granted JPS60196219A (en) 1983-09-07 1984-03-16 Production of wear resistant alluminum alloy extrudate

Country Status (1)

Country Link
JP (1) JPS60196219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637662B2 (en) * 1992-02-25 1997-08-06 ローム株式会社 Method of manufacturing chip-type composite electronic component and method of manufacturing chip-type network resistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647703B2 (en) * 1986-04-08 1994-06-22 株式会社神戸製鋼所 Aluminum alloy with excellent wear resistance
JPH01119806U (en) * 1988-02-08 1989-08-14
JP5010196B2 (en) * 2006-07-18 2012-08-29 株式会社神戸製鋼所 Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109415A (en) * 1976-03-10 1977-09-13 Pechiney Aluminium Hollow articles and production of the same
JPS5637023A (en) * 1979-09-03 1981-04-10 Toshiba Corp Amorphous solid with fixed waste gas
JPS5761814A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Control system of magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109415A (en) * 1976-03-10 1977-09-13 Pechiney Aluminium Hollow articles and production of the same
JPS5637023A (en) * 1979-09-03 1981-04-10 Toshiba Corp Amorphous solid with fixed waste gas
JPS5761814A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Control system of magnetic bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637662B2 (en) * 1992-02-25 1997-08-06 ローム株式会社 Method of manufacturing chip-type composite electronic component and method of manufacturing chip-type network resistor

Also Published As

Publication number Publication date
JPS60196219A (en) 1985-10-04

Similar Documents

Publication Publication Date Title
US3989548A (en) Aluminum alloy products and methods of preparation
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US2915391A (en) Aluminum base alloy
US4737206A (en) Extruded aluminum alloys having improved wear resistance and process for preparing same
JP4764094B2 (en) Heat-resistant Al-based alloy
JPS60208443A (en) Aluminum alloy material
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH0332403B2 (en)
JPS6138254B2 (en)
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0375329A (en) Aluminum alloy and method for its casting
JPS6215626B2 (en)
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
JPH0118980B2 (en)
JPH0116301B2 (en)
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPH0328499B2 (en)
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPS60204854A (en) Aluminum alloy pulley
JPH01268839A (en) Aluminum alloy for working
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances