JPH02225635A - Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness - Google Patents

Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness

Info

Publication number
JPH02225635A
JPH02225635A JP4417889A JP4417889A JPH02225635A JP H02225635 A JPH02225635 A JP H02225635A JP 4417889 A JP4417889 A JP 4417889A JP 4417889 A JP4417889 A JP 4417889A JP H02225635 A JPH02225635 A JP H02225635A
Authority
JP
Japan
Prior art keywords
alloy
toughness
thermal expansion
wear resistance
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4417889A
Other languages
Japanese (ja)
Inventor
Yasuo Kobayashi
保夫 小林
Michihiro Yoda
道広 与田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP4417889A priority Critical patent/JPH02225635A/en
Publication of JPH02225635A publication Critical patent/JPH02225635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the Al-Si alloy member having low thermal expansion coefficient and having excellent wear resistance and toughness by subjecting powder or foil obtd. by rapidly solidifying an Al-Si series alloy having specified compsn. from the melting state to hot forming at a specified temp. CONSTITUTION:The molten metal of an Al-Si series alloy having the compsn. contg., by weight, 18 to 28% Si, 0.5 to 3.5% Cu, 0.2 to 2.0% Mg and at least one kind among 0.03 to 0.40% Ti, 0.03 to 0.40% V, 0.03 to 0.40% Zr, 0.03 to 1.00% Cr and 0.3 to 2.5% Ni, satisfying <0.40% Ti+V+Zr, contg. <0.6% Fe and <0.3% Mn as impurities and the balance Al is rapidly cooled at 10<2> deg.C/sec cooling rate to solidify into the shape of powder or foil. As it is or after once subjected to preforming, the Al-Si alloy having the shape of powder or foil is subjected to hot forming such as forging, extruding and die forming at <=550 deg.C, by which the lightweight Al alloy member having high density and low thermal expansion coefficient and having excellent wear resistance and toughness can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、急冷凝固粉末冶金法によりll製されたア
ルミニウム合金凝固体を熱間成形して、熱膨張率が低く
、耐摩耗性に優れ、且つ、高い靭性を有する。所定形状
のAl1−5i合金部材を製造する方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Field of Application] This invention hot-forms an aluminum alloy solidified body produced by a rapid solidification powder metallurgy method, and has a low coefficient of thermal expansion and excellent wear resistance. , and has high toughness. The present invention relates to a method of manufacturing an Al1-5i alloy member having a predetermined shape.

[従来の技術] 近年、急冷凝固粉末冶金法によって製造された新種の合
金の各方面への応用が期待されている。
[Prior Art] In recent years, new types of alloys produced by rapid solidification powder metallurgy are expected to be applied in various fields.

急冷凝固粉末冶金法によれば、従来困難とされていた含
有合金元素の均一な固溶および金属間化合物のlI細細
分化化可能となり、さらに、極微細結晶組織が得られる
場合もあるなど、合金の持つ特性を大幅に向上させる。
Rapid solidification powder metallurgy enables uniform solid solution of contained alloying elements and fine fragmentation of intermetallic compounds, which was previously considered difficult, and in some cases, ultrafine crystal structures can be obtained. Significantly improves the properties of the alloy.

また、急冷凝固粉末冶金法によれば従来不可能であった
ような組成の合金も実用に供し得る。
Further, by using the rapid solidification powder metallurgy method, it is possible to put into practical use alloys with compositions that were previously impossible.

このような急冷凝固粉末冶金法によって製造される、ア
ルミニウム合金の1つに、Al−3i合金がある。Al
1−9i合金は、広く鋳造用合金として、また一部展伸
用合金として用いられてきた。上述したAM−5i合金
の特徴は、熱膨張率が低いこと。
One of the aluminum alloys manufactured by such a rapid solidification powder metallurgy method is Al-3i alloy. Al
The 1-9i alloy has been widely used as a casting alloy and partly as a drawing alloy. The above-mentioned AM-5i alloy is characterized by a low coefficient of thermal expansion.

耐摩耗性および高温強度に優れることにある。これらの
特性は、急冷凝固粉末冶金法の急冷凝固過程において、
アルミニウム地中に晶出分散するSi粒子によってもた
らされる。そして、これらの特性をさらに向上させるた
めには、S1含有量を増大させることが必要である。し
かしながら、従来の鋳造法においては合金の凝固速度が
遅いため、 Si含有量の増加に従って、初晶S1粒子
の粗大化を生じ、かえって、上述した諸特性の劣化を招
く問題があった。これに対して、急冷凝固粉末冶金法の
登場により、初晶Si粒子の粗大化を抑制することは充
分可能となった。さらに、急冷凝固粉末冶金法が登場し
たことによって、従来のAl−3i合金へあまり含有さ
れなかったFaおよび訃などの遷移金属元素を、合金の
熱膨張率の低下、耐摩耗性および耐高温強度性の向上を
目的として、数−t0%乃至ユ0帆%あるいはこれ以上
含有した、Al−5i合金が、近年1種々提案されてい
る。
It has excellent wear resistance and high temperature strength. These characteristics are achieved in the rapid solidification process of the rapid solidification powder metallurgy method.
It is brought about by Si particles crystallized and dispersed in aluminum ground. In order to further improve these properties, it is necessary to increase the S1 content. However, in the conventional casting method, the solidification rate of the alloy is slow, so as the Si content increases, the primary crystal S1 particles become coarser, which leads to the deterioration of the above-mentioned properties. On the other hand, with the advent of rapid solidification powder metallurgy, it has become possible to sufficiently suppress the coarsening of primary Si particles. Furthermore, with the advent of the rapid solidification powder metallurgy method, transition metal elements such as Fa and Fe, which were not included in conventional Al-3i alloys, have been added to reduce the coefficient of thermal expansion of the alloy, improve wear resistance and high temperature resistance. In recent years, various types of Al-5i alloys have been proposed containing several to 0% or more of Al-5i for the purpose of improving properties.

[発明が解決しようとする課題] しかるに、これらの急冷凝固粉末冶金法により製造した
An−5i−遷移金属元素合金を、従来の鋳造法によっ
て製造されたAl−5i合金の主たる用途の1つである
1例えばレシプロ内燃機関のピストンに適用した場合、
前記レシプロ内燃機関の運転中に機械的衝撃および熱衝
撃を受けた場合においては、しばしばその部材に亀裂を
生じ、あるいは前記部材が破壊に至ることが問題となっ
ている。また、素材自体の特性においても、例えば。
[Problems to be Solved by the Invention] However, the An-5i-transition metal element alloy produced by these rapid solidification powder metallurgy methods is one of the main uses of the Al-5i alloy produced by the conventional casting method. For example, when applied to the piston of a reciprocating internal combustion engine,
When the reciprocating internal combustion engine is subjected to mechanical shock and thermal shock during operation, there is a problem in that the members often crack or even break. Also, in terms of the characteristics of the material itself, for example.

引張り試験における破断伸び、あるいはシャルピー試験
の衝撃値などにおいて、急冷凝固粉末冶金法により製造
されたAfl−5i合金が、従来の鋳造方法によって製
造された合金を下回ることもしばしば生じている。
In terms of elongation at break in a tensile test or impact value in a Charpy test, Afl-5i alloys produced by rapid solidification powder metallurgy are often lower than alloys produced by conventional casting methods.

従って、この発明の目的は、急冷凝固粉末冶金法による
An−5i合金の製造方法において、S1含有量を適正
とすることは勿論のこと、その他の遷移金属元素等の添
加元素の種類および含有量を厳密に調整し、さらに、急
冷凝固粉末冶金法に特有の粉末表面の酸化皮膜による部
材特性への悪影響を最小限に抑えることにより、熱膨張
率が低く。
Therefore, it is an object of the present invention to not only optimize the S1 content but also to control the type and content of additional elements such as other transition metal elements in a method for manufacturing An-5i alloy by rapid solidification powder metallurgy. The coefficient of thermal expansion is low by strictly controlling the oxidation film on the powder surface, which is unique to the rapid solidification powder metallurgy method, and minimizing the adverse effects on component properties caused by the oxide film on the powder surface.

耐摩耗性に優れ、且つ、高い靭性を有するA Q −3
i合金部材の製造方法を提供することにある。
AQ-3 with excellent wear resistance and high toughness
An object of the present invention is to provide a method for manufacturing an i-alloy member.

[11題を解決するための手段] 発明者らは、前述の問題、目的に沿って急冷凝固粉末冶
金法によるAfi−3i合金の組成および固化成形技術
について鋭意研究を重ね、以下の発明に到達した。
[Means for Solving Problem 11] The inventors have conducted intensive research on the composition and solidification molding technology of Afi-3i alloy by rapid solidification powder metallurgy in accordance with the above-mentioned problems and objectives, and have arrived at the following invention. did.

この発明は。This invention.

Si : 18〜28 wtJ、 Cu : 0.5〜3.5@tJ、 Mg : 0.2〜2.0vtJ。Si: 18-28 wtJ, Cu: 0.5~3.5@tJ, Mg: 0.2-2.0vtJ.

下記からなる群から選んだ、少なくとも1つの元素: Ti : 0.03〜0.40wt、%、V:0.03
〜0,40wt、%、 Zr : 0.03〜0.40vtJ、Cr : 0.
03〜1.00wt.%、および、Ni : 0.3〜
2.5 wt、%、但し、Ti、VおよびZrの合計量
は、 0.40wt、%以下、および。
At least one element selected from the group consisting of: Ti: 0.03 to 0.40wt, %, V: 0.03
~0.40wt, %, Zr: 0.03~0.40vtJ, Cr: 0.
03~1.00wt. % and Ni: 0.3~
2.5 wt, %, provided that the total amount of Ti, V and Zr is 0.40 wt, % or less, and.

残り:Aiおよび不可避的不純物からなる10合金を溶
製し、 次いで、前記アルミニウム合金を、101℃/sec以
上の冷却速度によって急冷凝固して、粉末または薄片状
の凝固体を調製し。
Remaining: 10 alloys consisting of Al and unavoidable impurities were melted, and then the aluminum alloy was rapidly solidified at a cooling rate of 101° C./sec or more to prepare powder or flaky solidified bodies.

次いで、前記凝固体を、そのまま、または、予備成形し
、少なくとも1度は550℃以下の温度において熱間成
形し、かくして、所定形状の合金部材を得ることに特徴
を有するものであり、さらに、詳しくいえば、 不可避的不純物として、 Fs : 0,6wt、%未満、および。
Next, the solidified body is either as it is or preformed, and hot-formed at least once at a temperature of 550° C. or lower, thereby obtaining an alloy member of a predetermined shape, and further, Specifically, as an unavoidable impurity, Fs: less than 0.6 wt%, and.

Mn : 0.3wt.%未満 に規制することに特徴を有するものである。Mn: 0.3wt. %less than It is characterized by the fact that it is regulated.

この発明において、Al1−Si合金の化学成分組成範
囲を、上述のように限定した理由について以下に述べる
In this invention, the reason why the chemical composition range of the Al1-Si alloy is limited as described above will be described below.

(1)Si: SlはAllと共晶する関係にある。Al中に含有され
たSiの大半はSi粒子としてl地中に晶出する。
(1) Si: Sl has a eutectic relationship with All. Most of the Si contained in Al crystallizes in the ground as Si particles.

Slの共晶組成は約12wt、%Siであり、これを上
回って含有されたSiは初晶Siとして、他のSlは共
晶SiとしてA】地中に晶出する。初晶Siは共晶Si
と比べて粗大化しやすく、且つ、初晶S1の形状は鋭角
的、または針状となる場合もあり、この場合の初晶S上
は合金製造時の凝固速度および冷却速度が遅い場合には
、Afl−Si合金の靭性を低下させる。
The eutectic composition of Sl is approximately 12 wt, %Si, and the Si contained in excess of this crystallizes as primary Si, and the other Sl crystallizes as eutectic Si in the ground. Primary Si is eutectic Si
In addition, the shape of the primary crystal S1 may be acute-angled or acicular, and in this case, if the solidification rate and cooling rate of the primary crystal S during alloy production are slow, Decreases the toughness of Afl-Si alloy.

急冷凝固粉末冶金法によってAl−Si合金を製造する
場合においても、初晶Siは共晶Siよりも粒子径が大
きいが、初晶Siの粒子径を約20μ園を超えない値と
することは容易である。Si粒子はAl地と比較して熱
膨張率が低く、高い硬度を有する。
Even when producing an Al-Si alloy by the rapid solidification powder metallurgy method, the particle size of primary Si is larger than that of eutectic Si, but the particle size of primary Si must not exceed about 20 μm. It's easy. Si particles have a lower coefficient of thermal expansion and higher hardness than Al base.

さらに、急冷凝固粉末冶金法によって製造されるAn−
Si合金は、金属間化合物が微細分散化される。かくし
て、急冷凝固粉末冶金法によって製造されたAl1−S
i合金は、熱膨張率が低く、且つ、耐摩耗性および高温
強度に優れている。
Furthermore, An-
In the Si alloy, intermetallic compounds are finely dispersed. Thus, Al1-S produced by rapid solidification powder metallurgy method
i-alloy has a low coefficient of thermal expansion and is excellent in wear resistance and high temperature strength.

本発明において、Si含有量の下限は、従来の鋳造用^
Q−3i合金との比較において定められた。
In the present invention, the lower limit of the Si content is lower than that for conventional casting^
Established in comparison with Q-3i alloy.

すなわち、 Afl −12wtJSi合金は、I進用
、特にピストン用の合金として広く用いられている0次
に、Al −17wt、%SL合金は、耐摩耗性を有す
る鋳造用の合金として、一部の用途に用いられている。
That is, the Afl-12wtJSi alloy is widely used as an alloy for I-progress, especially pistons, and the Al-17wt%SL alloy is used as an alloy for casting with wear resistance. It is used for a purpose.

さらに、An−23wt 、%St合金は、靭性が低過
ぎる難点が有るものの、鋳造用の合金として特殊な用途
に少量使用されている0本発明においては、これらの鋳
造合金と熱膨張率がほぼ同等または低率となるように、
Siの含有量を18wt、%以上と限定した。 Si含
有量の増加に比例して1合金の熱膨張率は低下するが、
一方、Si含有量が28wt、lを超えると、合金の靭
性は急速に低下する。従って、 Si含有量は、18〜
28vtJの範囲内に限定すべきである。但し1合金の
靭性は、その他の同時添加元素の含有量によっても大き
く低下する場合があるので、この場合には、Si含有量
を28wt、%よりも少なくすることが好ましい。
Furthermore, although An-23wt and %St alloys have the disadvantage of too low toughness, they are used in small quantities for special purposes as casting alloys. so that the rate is the same or lower.
The content of Si was limited to 18 wt.% or more. The coefficient of thermal expansion of one alloy decreases in proportion to the increase in Si content, but
On the other hand, when the Si content exceeds 28 wt.l, the toughness of the alloy rapidly decreases. Therefore, the Si content is 18~
It should be limited within the range of 28vtJ. However, since the toughness of the first alloy may be greatly reduced depending on the content of other simultaneously added elements, in this case, it is preferable to reduce the Si content to less than 28 wt.%.

(2)Cu: 純2元のAn−Si合金は、急冷凝固粉末冶金法によっ
て製造しても、十分な強度を得ることは不可能であり、
前記合金に実用的な強度を付与するには、他に添加元素
を必要とする。 Cuは合金の固溶硬化、および、合金
に適当な焼入れ、焼戻しからなる熱処理を施すことによ
り、前記合金の時効による析出硬化をもたらす作用があ
る。一方、Cuは、Afi  および他の添加元素と金
属間化合物を形成して粗大に晶出すると、合金の靭性を
低下させる0本発明において、Cu含有量が0,5wt
、1未満では、上述した作用に所望の効果が得られず、
十分な強度が得られない、一方、Cu含有量が3.5w
t、%を超えると、合金の靭性の低下が著しい、従って
(2) Cu: Even if a pure binary An-Si alloy is produced by rapid solidification powder metallurgy, it is impossible to obtain sufficient strength.
Other additive elements are required to impart practical strength to the alloy. Cu has the effect of causing solid solution hardening of the alloy and precipitation hardening of the alloy due to aging by subjecting the alloy to heat treatment consisting of appropriate quenching and tempering. On the other hand, when Cu forms an intermetallic compound with Afi and other additive elements and coarsely crystallizes, it reduces the toughness of the alloy.In the present invention, the Cu content is 0.5wt.
, less than 1, the desired effect cannot be obtained in the above-mentioned action,
Sufficient strength cannot be obtained; on the other hand, Cu content is 3.5w
If it exceeds t,%, the toughness of the alloy will decrease significantly, therefore.

Cu含有量は0.5〜3.5wt、%の範囲内に限定す
べきである。
The Cu content should be limited within the range of 0.5-3.5 wt.%.

(3)Mg: Mgは固溶硬化により、Al2−Si合金の強度を増加
させる作用を有している。さらに、M、はCUと同時に
Al1−Si合金中に添加することにより、時効による
析出硬化を増大させ、Afl−Si合金の強度を増加さ
せる作用を有している。一方、Mgは特にSlと金属間
化合物を形成して晶出し1合金の靭性を低下させる。 
さらに、 Mgを含有する^悲合金を溶融したときは、
溶湯表面が酸化されやすく、前記溶湯表面に酸化アルミ
ニウム皮膜および酸化マグネシウム皮膜が形成する。急
冷凝固粉末冶金法によって、^a8合金材を製造する過
程において、Al 合金の溶製中、保持中、および急冷
凝固中の微細液滴または液流の表面に、上述した酸化物
皮膜が形成されると、急冷強固によって得られた。
(3) Mg: Mg has the effect of increasing the strength of the Al2-Si alloy through solid solution hardening. Furthermore, by adding M to the Al1-Si alloy at the same time as CU, M has the effect of increasing precipitation hardening due to aging and increasing the strength of the Afl-Si alloy. On the other hand, Mg forms an intermetallic compound especially with Sl and reduces the toughness of the crystallized alloy No. 1.
Furthermore, when a tragic alloy containing Mg is melted,
The surface of the molten metal is easily oxidized, and an aluminum oxide film and a magnesium oxide film are formed on the molten metal surface. In the process of manufacturing the ^a8 alloy material by the rapid solidification powder metallurgy method, the above-mentioned oxide film is formed on the surface of fine droplets or liquid streams during melting, holding, and rapid solidification of the Al alloy. Then, it was obtained by quenching and hardening.

凝固粉末、薄片およびリボンなどの凝固体の表面に上述
の酸化物が残留する。残留した酸化物は。
The above-mentioned oxides remain on the surface of coagulated bodies such as coagulated powders, flakes and ribbons. The remaining oxide.

前記凝固体を固化成形することにり、そのまま固化成形
された合金部材中の介在物となり、合金部材の靭性を著
しく低下させる。上述した。酸化皮膜の形成は、溶湯の
温度、雰囲気およびMg含有量などの因子の影響を受け
る。従って、これらの因子は厳密に調整される必要があ
る1本発明において、Mg含有量が0.2wt.%未満
では、上述した作用に所望の効果が得られず、十分な強
度が得られない、一方、Kg含有量が2.Out、%を
超えると、金属間化合物の晶出および酸化物の増加によ
って、合金の靭性の低下が著しい、従って、にg含有量
は0.2〜2.Owt、%の範囲内に限定すべきである
When the solidified material is solidified and molded, it becomes an inclusion in the solidified and molded alloy member, significantly reducing the toughness of the alloy member. As mentioned above. The formation of an oxide film is influenced by factors such as the temperature of the molten metal, the atmosphere, and the Mg content. Therefore, these factors need to be strictly controlled. In the present invention, when the Mg content is 0.2 wt. If the Kg content is less than 2.0%, the desired effect described above will not be obtained and sufficient strength will not be obtained. If the content exceeds Out,%, the toughness of the alloy will decrease significantly due to the crystallization of intermetallic compounds and the increase in oxides. It should be limited within the range of Owt, %.

(4)  Tl+ V、 Zr、 Cr:Ti、 V、
 Zrおよびcrは、いずれもAlにはほとんど固溶せ
ず、Alと金属間化合物を形成して粗大に晶出する場合
が多い。 しかしながら、Ti 、 V 、 Zrおよ
びCrをいずれも比較的少量含有し、即ち、Tj、。
(4) Tl+V, Zr, Cr:Ti, V,
Zr and cr are hardly dissolved in Al, and often form intermetallic compounds with Al to coarsely crystallize. However, it contains relatively small amounts of Ti, V, Zr and Cr, ie, Tj.

VおよびZrにおいては各々約0.2wt.Z以下、 
Crにおいては約0.3vtJ以下を含有し、従来の鋳
造法によって約り℃/see以上の凝固速度によって製
造された展伸用Al2合金おいては、Alと上記元素と
の金属間化合物が、約0.1μm以下の微細な析出物と
してAl地中に分散し、これにより、前記AI2合金の
、室温から高温までの強度上昇、および、靭性の向上に
効果があることが知られている。急冷wi同粒粉末冶金
法おいては、溶製された合金の凝固速度が高いほど、T
i、 V、 ZrおよびCrを、上述した従来の含有量
の上限を超えて添加しても、粗大な金属間化合物の晶出
を抑制でき、従って。
About 0.2 wt. each for V and Zr. Below Z,
In a wrought Al2 alloy containing about 0.3 vtJ or less of Cr and produced by a conventional casting method at a solidification rate of about 0.degree. C./see or higher, the intermetallic compound of Al and the above elements is It is known that it is dispersed in Al soil as fine precipitates of about 0.1 μm or less, and that this is effective in increasing the strength and toughness of the AI2 alloy from room temperature to high temperature. In the rapid cooling wi homograin powder metallurgy method, the higher the solidification rate of the ingot alloy, the higher the T
Even if i, V, Zr, and Cr are added in amounts exceeding the above-mentioned conventional content limits, crystallization of coarse intermetallic compounds can be suppressed.

合金の強度および靭性の向上に効果がある。しかしなが
ら、 Ti、 V、 ZrおよびCrを含有することに
より1合金が完全に溶融する温度は著しく高温化される
1例えば、Al −1,OwtJTi合金の融点は約9
00℃に達する。このため、 Ti、 V、 Zrおよ
びCrの多量の含有は、粗大品出物に因る合金の靭性の
低下を招くだけでなく、 Afl  合金、特にMgを
含有するへ〇合金の溶湯の表面酸化を増大させ、急冷凝
固粉末冶金法で得られる合金部材の靭性を低下させる6
本発明において、Tx、 vl Zr、およびCrの少
なくとも1つの元素を含有させる場合において、各々の
含有量が0,03wt.1未満では上述した作用に所望
の効果が得られず、強度および靭性の向上効果が不十分
である。一方、 Ti、 VおよびZrの含有量が各々
0.40wt.%を超え、およびTi、 VおよびZr
の含有量の合計が0.40wt、%を超えさらに、Cr
の含有量が1.owt、%を超えると、靭性の低下が著
しい。
Effective in improving the strength and toughness of the alloy. However, by containing Ti, V, Zr, and Cr, the temperature at which an alloy completely melts becomes significantly higher.1For example, the melting point of Al-1,OwtJTi alloy is about 9
It reaches 00℃. For this reason, the inclusion of large amounts of Ti, V, Zr, and Cr not only leads to a decrease in the toughness of the alloy due to bulky products, but also leads to surface oxidation of the molten metal of the Afl alloy, especially the 〇 alloy containing Mg. and reduce the toughness of alloy parts obtained by rapid solidification powder metallurgy6.
In the present invention, when at least one element of Tx, vl Zr, and Cr is contained, each content is 0.03 wt. If it is less than 1, the desired effects described above cannot be obtained, and the effect of improving strength and toughness is insufficient. On the other hand, the contents of Ti, V and Zr are each 0.40wt. %, and Ti, V and Zr
The total content of Cr exceeds 0.40wt%, and
The content of 1. If it exceeds .owt.%, the toughness will be significantly reduced.

従って、Ti、 V、およびZr (7)含有量は0.
03〜0,40wt、Lの範囲内に但し、Ti、V、お
よびZrの含有量の合計は0.40wtJ0vtJ以下
r含有量は0.3〜2.5wt、%の範囲内に、各々限
定すべきである。
Therefore, the Ti, V, and Zr (7) contents are 0.
Within the range of 0.3 to 0.40 wt, L, however, the total content of Ti, V, and Zr must be limited to 0.40 wtJ or less, and the r content must be limited to 0.3 to 2.5 wt, respectively. Should.

(5)  Ni: Niへは、合金の高温強度の向上に効果がある。(5) Ni: Ni is effective in improving the high temperature strength of the alloy.

数種の鋳造用1合金には、約1 、5wt、%以下のN
iが含有されており、Niが主として合金の高温強度の
向上に効果があることは従来から、知られている。急冷
凝固粉末冶金法によってAl−5L合金部材を製造する
場合において、Al−3L合金に対してNiを含有させ
ると、Al−Ni金属間化合物の微細分散によって、合
金の高温強度の向上に一暦の効果が有り、さらに、合金
の熱膨張率の低下、耐摩耗性の向上にも一定の効果が得
られる。また、A(1−5i合金に約6.Owt.%以
下のNiを含有させると。
Some casting alloys contain up to about 1.5 wt.% N.
It has been known that Ni is mainly effective in improving the high-temperature strength of the alloy. When manufacturing Al-5L alloy parts by rapid solidification powder metallurgy, adding Ni to Al-3L alloy will improve the high-temperature strength of the alloy due to the fine dispersion of Al-Ni intermetallic compounds. In addition, certain effects can be obtained in reducing the coefficient of thermal expansion and improving the wear resistance of the alloy. Further, when the A(1-5i alloy contains about 6.0 wt.% or less of Ni).

^Q−5i合金の融点は低下し、前記合金の溶湯の表面
酸化の増大が抑制される。さらに、Al−3L合金に適
当量のNiを含有させることにより、Al−3i合金の
靭性は若干上昇するか、または、靭性には影響を及ぼさ
ない8本発明において、Ni含有量が0.3wt、%未
満では合金の高温強度の増加、熱膨張率の低下および耐
摩耗性の向上に所望の効果が得られない、一方、Ni含
有量が2.5wtJを超えると合金の靭性が低下する。
The melting point of the ^Q-5i alloy is lowered, and the increase in surface oxidation of the molten metal of the alloy is suppressed. Furthermore, by incorporating an appropriate amount of Ni into the Al-3L alloy, the toughness of the Al-3i alloy increases slightly, or does not affect the toughness8 In the present invention, the Ni content is 0.3 wt. If the Ni content is less than 2.5 wtJ, the desired effects of increasing the high temperature strength, decreasing the coefficient of thermal expansion, and improving the wear resistance of the alloy cannot be obtained. On the other hand, if the Ni content exceeds 2.5 wtJ, the toughness of the alloy decreases.

従って、N1含有量は0.3〜2゜5wt、%の範囲内
に限定すべきである。
Therefore, the N1 content should be limited within the range of 0.3 to 2.5 wt.%.

(6)  Fe、 Mn : 不可避的不純物としてのFeおよびにnの含有量の規制
は1合金の靭性の向上および耐熱衝撃性の向上に効果が
ある。 FaおよびMnが高SLの^Q−5L合金に含
有されると、 Al1−5L−FaおよびA(1−5i
−−Mnの形で金属間化合物が晶出する。これらの金属
間化合物は合金の熱膨張率の低下や耐摩耗性の向上には
一定の効果を有するものの、靭性および耐熱衝撃性を低
下させる。特に、急冷凝固粉末冶金法によって、溶融し
たAfi−5l合金を102〜10””C/sseの範
囲の凝固速度によって凝固すると、上述の金属間化合物
は、粗大且つ針状の晶出物となり、合金の靭性は著しく
低下する。また、 Mnは合金の熱伝導率を小さくして
耐熱衝撃性を劣下させる効果が大きい、従って1本発明
において、不可避的不純物であるFe含有量は0.6w
t、X未満、1含有量は0.3wt、X未満に限定する
ことにより、A11l−5l合金部材の靭性をさらに向
上させることができる。
(6) Fe, Mn: Controlling the content of Fe and Mn as inevitable impurities is effective in improving the toughness and thermal shock resistance of the alloy. When Fa and Mn are contained in the high SL^Q-5L alloy, Al1-5L-Fa and A(1-5i
--Intermetallic compounds crystallize in the form of Mn. Although these intermetallic compounds have certain effects on lowering the coefficient of thermal expansion and improving the wear resistance of the alloy, they lower the toughness and thermal shock resistance. In particular, when the molten Afi-5l alloy is solidified by rapid solidification powder metallurgy at a solidification rate in the range of 102 to 10"C/sse, the above-mentioned intermetallic compounds become coarse and acicular crystals, The toughness of the alloy is significantly reduced. In addition, Mn has a large effect of reducing the thermal conductivity of the alloy and deteriorating its thermal shock resistance. Therefore, in the present invention, the Fe content, which is an unavoidable impurity, is 0.6 w.
By limiting the content of 1 to less than 0.3wt and X, the toughness of the A11l-5l alloy member can be further improved.

次に、急冷凝固および固化成形条件を上述のように限定
した理由を以下に述べる。
Next, the reason why the conditions for rapid solidification and solidification molding were limited as described above will be described below.

上述した組成範囲の合金は、公知の手段によって溶製す
る。前記合金は、上述した組成範囲の限定によって、約
800℃未満且つgoo℃近傍の所定温度で、溶融によ
る全成分の完全な均一な合金化が容易に達成される。
Alloys having the above-mentioned composition range are melt-produced by known means. By limiting the composition range described above, the alloy can easily achieve completely uniform alloying of all components by melting at a predetermined temperature of less than about 800°C and around goo°C.

溶製された合金は、103℃/see以上の冷却速度に
よって粉末または薄片状の凝固体に形成される。
The melted alloy is formed into a powder or flake-like solidified body by cooling at a cooling rate of 103° C./see or higher.

溶製された合金は適当な冷却媒体によって急冷凝固され
るが、冷却媒体への急速な熱伝達を達成する必要がある
ことから、IX固体は粉末または薄片状に形成される。
The melted alloy is rapidly solidified with a suitable cooling medium, and because of the need to achieve rapid heat transfer to the cooling medium, the IX solid is formed into a powder or flake form.

102℃/98c以上の冷却速度を必要とする理由は、
冷却速度が102℃/see未滴の場合には、粗大な晶
出物が生じ、合金の強度および靭性が不十分となるので
これを避けるためである。
The reason why a cooling rate of 102℃/98c or higher is required is as follows.
This is to avoid the fact that if the cooling rate is 102° C./see, coarse crystallized substances will be produced and the strength and toughness of the alloy will be insufficient.

急冷凝固手段としては、最も経済性および量産性に優れ
た空気アトマイズ法を用いるのが好ましい。
As the rapid solidification method, it is preferable to use air atomization, which is the most economical and mass-producible method.

他の急冷凝固手段5例えば単ロール法など、空気アトマ
イズ法よりも高い冷却速度が得られる急冷凝固手段も実
用化されつつあるが、単ロール法は経済性に劣り不利で
あるとともに、過度に高い冷却速度によって急冷凝固を
行なうと、かえってS1粒子が微細となり過ぎ、合金の
耐摩耗性をむしろ低下させる場合もある。
Other rapid solidification methods 5 Rapid cooling and solidification methods that can obtain higher cooling rates than air atomization methods, such as the single roll method, are also being put into practical use, but the single roll method is disadvantageous due to its poor economic efficiency, and is also excessively expensive. If rapid solidification is performed by changing the cooling rate, the S1 particles may become too fine, which may actually reduce the wear resistance of the alloy.

次に、固化成形条件について述べる。Next, the solidification molding conditions will be described.

本発明においては、急冷凝固によってrAslされた前
記凝固体を、そのまま、または、予備成形し、少なくと
も1度は、550℃以下の温度において熱間成形するこ
とが必要である。
In the present invention, it is necessary to hot-form the solidified body subjected to rAsl by rapid solidification, either as it is or after preforming, at least once at a temperature of 550° C. or lower.

粉末または薄片状の凝固体は、適当な方法によって合金
部材に固化成形されるが、Al金合金粉末または薄片に
おいては強固な酸化皮膜の存在により同化が阻害される
ので、熱間において、そしてさらに比較的大きな成形圧
力の付与により酸化皮膜を破壊して粉末間または薄片間
の金属結合を達成することが重要である。この熱間成形
において十分な塑性流動を付与することにより、合金表
面に形成される酸化皮膜の破壊、および、金属結合の達
成を確実に行なわせることが好ましい、このためには、
熱間成形の温度は350℃以上であることが好ましい、
ただし、成形圧力が高く、塑性流動が十分化ずる条件に
おいては、より低温での熱間成形が可能である。一方、
熱間成形温度が高過ぎると、金属間化合物が著しく粗大
化し、または、一部再溶解が生じて、合金部材の強度お
よび靭性が低下する。従って、熱間成形温度は、550
℃以下とすべきである。
The powder or flake-like solidified material is solidified and formed into an alloy member by an appropriate method, but assimilation of Al-gold alloy powder or flakes is inhibited by the presence of a strong oxide film, so It is important to destroy the oxide film by applying a relatively large compaction pressure to achieve metallic bonding between the powders or between the flakes. It is preferable to provide sufficient plastic flow during this hot forming to ensure the destruction of the oxide film formed on the alloy surface and the achievement of metallic bonding.
The hot forming temperature is preferably 350°C or higher,
However, hot forming at a lower temperature is possible under conditions where the forming pressure is high and plastic flow is sufficient. on the other hand,
If the hot forming temperature is too high, the intermetallic compounds will become coarse or partially remelted, reducing the strength and toughness of the alloy member. Therefore, the hot forming temperature is 550
It should be below ℃.

上述した熱間成形は、鍛造、押出、金型成形および静水
圧成形などの公知の手段により行うことができる。また
、熱間成形に先立って、金型成形および静水圧成形など
による冷間予備成形を行なうことにより、経済性および
量産性を向上することができる。さらに、熱間成形に先
立って、あるいは熱間成形と同時に真空引きまたは不活
性雰囲気の導入による脱ガスを行なうことは、健全な合
金部材を得るのに効果的である。
The hot forming described above can be performed by known means such as forging, extrusion, die forming, and isostatic pressing. Further, by performing cold preforming by die molding, isostatic pressing, etc. prior to hot molding, economical efficiency and mass productivity can be improved. Furthermore, degassing by evacuation or introduction of an inert atmosphere prior to hot forming or simultaneously with hot forming is effective in obtaining a sound alloy member.

以上述べたように、固化成形された合金部材は、理論密
度に対しほぼ100%の相対密度を有し、実質的に部材
内部に空隙を有していないことが必要であり、上述の方
法により達成することができる。
As mentioned above, it is necessary for the solidified and formed alloy member to have a relative density of almost 100% of the theoretical density and to have substantially no voids inside the member. can be achieved.

[実施例] 次に、この発明を実施例により説明する。[Example] Next, the present invention will be explained using examples.

第1表に示す成分組成の10種の本発明合金部材翫1〜
10.および8種の比較合金部材NQI〜8を以下に述
べるように製造した。即ち、あらかじめ推定された各合
金組成に対する融点を約100℃上回る温度で、各々所
定の成分組成となるように溶製し、保持した1本発明合
金部材&1〜10および比較合金部材Milli〜3,
8に対する保持温度は約760〜840℃であった。一
方、比較合金部材NQ4〜7に対する保持温度は870
〜940℃を必要とした1次いで、各組成の合金溶湯を
空気アトマイズ法により急冷凝固粉末に固化した。そし
て、固化した凝固粉末から、ふるい分けにより一32メ
ツシュ(ふるいの目開き500μm)の粉末を選別した
。そして、ふるい分けた一32メツシュの粉末の一部を
、さらにふるい分けによって分赦し粒度分布を調べたと
ころ、各組成の粉末で一350メツシュ(ふるいの目開
き44μm)の粉末の累積重量%は約50〜60%であ
った1次いで、各組成の急冷凝固粉末の少量を樹脂に埋
め込み、研摩して光学!11微鏡により粉末の断面組織
をw4祭し、2次デンドライト・アーム間隔を測定して
冷却速度を調べたところ、約500μ園の粉末の冷却速
度は約102℃/seeであった。
10 kinds of alloy members of the present invention having the compositions shown in Table 1 -
10. and eight comparative alloy members NQI-8 were manufactured as described below. That is, 1 inventive alloy members &1 to 10 and comparative alloy members Milli to 3, each melted and held at a temperature approximately 100°C higher than the melting point for each alloy composition estimated in advance so as to have a predetermined composition.
The holding temperature for No. 8 was about 760-840°C. On the other hand, the holding temperature for comparative alloy members NQ4 to 7 was 870.
Next, the molten alloys of each composition were solidified into rapidly solidified powder by air atomization, which required a temperature of ~940°C. Then, from the solidified powder, powder having a size of 132 meshes (sieve opening 500 μm) was sorted out by sieving. When a part of the 132 mesh powder was further sieved and the particle size distribution was examined, the cumulative weight percent of the 1350 mesh powder (sieve opening 44 μm) for each composition was approximately 50. ~60% 1 Then, a small amount of rapidly solidified powder of each composition was embedded in the resin, polished and optical! The cross-sectional structure of the powder was examined using a 11-microscope, and the secondary dendrite arm spacing was measured to investigate the cooling rate, and the cooling rate of the powder with a diameter of approximately 500 μm was approximately 102° C./see.

これらの急冷凝固粉末を400℃の温度で特殊金型を用
い真空熱間プレスし、脱ガスを行ない、脱ガスを行なう
と同時に相対密度約90%、直径200■のビレットに
固化成形した。これらのビレットを450℃の温度で熱
間押出により成形し。
These rapidly solidified powders were vacuum hot pressed using a special mold at a temperature of 400 DEG C. to degas them, and at the same time, they were solidified into a billet having a relative density of about 90% and a diameter of 200 cm. These billets were molded by hot extrusion at a temperature of 450°C.

押出比25で、直径40naの丸棒を製造した。調質は
特に実施せず、押出のまま(Fil)とした。
A round bar with a diameter of 40 na was produced at an extrusion ratio of 25. No particular tempering was performed, and the extrusion was left as it was (Fil).

従来の鋳造用Al−5i合金との比較のため、JISA
C8AおよびJIS AC9A (成分組成は第1表に
併せて示した)を溶製し、 JIS舟形に鋳造し、 焼
戻して丁511質とした。
For comparison with conventional Al-5i alloy for casting, JISA
C8A and JIS AC9A (component compositions are also shown in Table 1) were melted, cast into a JIS boat shape, and tempered to obtain a 511 quality.

上述した本発明合金部材島1〜10.比較合金部材魔1
〜8、および、比較鋳造部材JIS AC8AおよびA
C9Aに対し、以下に述べる試験を行ない、引張り性質
、靭性、耐摩耗性および熱膨張について調べた。これら
の試験の結果を第2表に示す。
The above-mentioned alloy member islands 1 to 10 of the present invention. Comparison alloy parts magic 1
~8, and comparative cast members JIS AC8A and A
C9A was subjected to the following tests to examine its tensile properties, toughness, abrasion resistance, and thermal expansion. The results of these tests are shown in Table 2.

(1)引張り性質 各部材に対し、室温および300℃の温度で引張り試験
を行ない、各部材の引張り強さ(kgf/m”)および
伸び(%)を調べた。
(1) Tensile properties Each member was subjected to a tensile test at room temperature and 300° C., and the tensile strength (kgf/m”) and elongation (%) of each member were investigated.

(2)  靭性 各部材に対し、室温においてシャルピー衝撃試験を行な
い、シャルピー衝撃値(kg−m/aJ)を調べた。
(2) Toughness Each member was subjected to a Charpy impact test at room temperature, and the Charpy impact value (kg-m/aJ) was determined.

(3)耐摩耗性 各部材に対し、乾式入滅式摩耗試験を行ない。(3) Abrasion resistance A dry type wear test was performed on each component.

比摩耗量(101■’/kg)を調べた。試験条件は。The specific wear amount (101■'/kg) was investigated. What are the test conditions?

相手材ヲFC30g鉄トシ、面圧が2 kgf/d、 
 摺動距離が200m、摺動速度が3.8m/secで
あった。
The mating material is FC30g steel, surface pressure is 2kgf/d,
The sliding distance was 200 m, and the sliding speed was 3.8 m/sec.

(4)熱膨張性 25〜300℃の温度範囲での各合金部材の熱膨張を複
数回測定し、平均の熱膨張係数(10−“7℃)を調べ
た。
(4) Thermal expansion The thermal expansion of each alloy member in the temperature range of 25 to 300°C was measured multiple times, and the average coefficient of thermal expansion (10-7°C) was determined.

第1表 第1表および第2表から明らかなように、本発明合金部
材&1〜10は、室温の引張り強さがいずれも約40k
gf/■1以上で、従来の鋳造用1−51合金JIS 
AC8AおよびAC9Aの引張り強さを10kgf/1
I12以上上回り、伸びも4%以上でJXS AC8A
の3倍以上である。さらに、300℃の引張り強さも1
2kgf/■2以上で、AC8Aに対し約50%以上向
上している。
As is clear from Table 1 and Table 2, the alloy members &1 to 10 of the present invention all have a tensile strength of about 40k at room temperature.
gf/■1 or more, conventional 1-51 alloy JIS for casting
The tensile strength of AC8A and AC9A is 10kgf/1
JXS AC8A exceeds I12 and grows by more than 4%
This is more than three times as large. Furthermore, the tensile strength at 300℃ is 1
At 2kgf/■2 or more, it is improved by about 50% or more compared to AC8A.

本発明合金部材&1〜10のシャルピー衝撃値は1.8
kg−m/aj以上で、従来の高強度展伸用Al金合金
表示せず)に匹敵する靭性を有している。
The Charpy impact value of the invention alloy member &1 to 10 is 1.8
kg-m/aj or more, it has a toughness comparable to that of conventional high-strength elongated Al-gold alloys (not shown).

本発明合金部材NG1〜・10の比摩耗量および熱膨張
係数は、 JIS AC9Aにほぼ匹敵する。
The specific wear amount and coefficient of thermal expansion of the alloy members NG1 to NG10 of the present invention are almost comparable to JIS AC9A.

JIS AC9Aは、粗大Si晶出物の存在により著し
く靭性が劣り、さらに、切削性にも大きな問題があるた
め、その用途は極く限られているのに対し。
JIS AC9A has extremely poor toughness due to the presence of coarse Si crystallized substances, and also has major problems with machinability, so its uses are extremely limited.

本発明合金は、急冷凝固法により81晶出物が微細とな
って、靭性、切削性が大幅に改善され、さらに耐摩耗性
および熱膨張性について、JIS AC9^と同等以上
の特性を示すことから、その応用範囲は非常に広い。
In the alloy of the present invention, the 81 crystallized substances are made fine by the rapid solidification method, and the toughness and machinability are significantly improved, and the alloy exhibits properties equivalent to or better than JIS AC9^ in terms of wear resistance and thermal expansion. Therefore, its application range is very wide.

なお、本発明合金部材においては、押出などの熱間成形
を行ない、次いで得られた合金部材に焼戻し処理を行な
いT5調質とする、あるいは、同様に熱間成形を行ない
、次いで溶体化し、焼入れ処理を施し、室温放置してT
4調質とする、さらに、前記室温放置後焼戻してT6ま
たはT1@質とする、などの熱処理により、靭性を若干
犠牲として、室温乃至約300℃の強度を増加させるこ
とも可能である。
In the alloy member of the present invention, hot forming such as extrusion is performed, and then the obtained alloy member is subjected to tempering treatment to obtain T5 refining, or alternatively, hot forming is performed in the same manner, followed by solution treatment and quenching. Treated and left at room temperature
It is also possible to increase the strength from room temperature to about 300° C. at the expense of some toughness, by heat treatment such as 4 heat refining, and further tempering to obtain T6 or T1@ quality after standing at room temperature.

これに対して、比較合金部材Mal〜8は、急冷凝固粉
末冶金法により、本発明合金部材と同様の製造方法によ
って調製されたが、化学組成成分において、いずれも本
発明の限定範囲を外れている。
On the other hand, comparative alloy members Mal~8 were prepared by a rapid solidification powder metallurgy method in the same manufacturing method as the alloy member of the present invention, but in terms of chemical composition components, they were all outside the limited range of the present invention. There is.

Ti、 V、 Zr、 CrおよびN1の遷移金属元素
が含有されていない比較合金部材動1は、300℃の温
度での引張り強さが劣っていた。
Comparative alloy member Motion 1, which did not contain the transition metal elements Ti, V, Zr, Cr and N1, had poor tensile strength at a temperature of 300°C.

S1含有量が本発明の限定範囲を外れて高い比較合金部
材&2は、シャルピー衝撃値が低く、靭性が劣っていた
Comparative alloy member &2, in which the S1 content was higher than the limited range of the present invention, had a low Charpy impact value and poor toughness.

Ni含有量が本発明の限定範囲を外れて高い比較合金部
材翫3は、シャルピー衝撃値が低く、靭性が劣っていた
。その理由は、粗大な金属間化合物の晶出にある。
Comparative alloy member 3, in which the Ni content was higher than the limited range of the present invention, had a low Charpy impact value and poor toughness. The reason for this is the crystallization of coarse intermetallic compounds.

Cr含有量が本発明の限定範囲を外れて高い比較合金部
材&4.Zr含有量が本発明の限定範囲を外れて高い比
較合金部材Nn5.Ti、VおよびZrの含有量の合計
が本発明の限定範囲を外れて高い比較合金部材&6は、
いずれもシャルピー衝撃値が低く、靭性が劣っていた。
Comparative alloy member with high Cr content outside the limited range of the present invention &4. Comparative alloy member Nn5. whose Zr content is higher than the limited range of the present invention. Comparative alloy member &6 whose total content of Ti, V and Zr is outside the limited range of the present invention is
All had low Charpy impact values and poor toughness.

その理由は、粗大な金属間化合物の晶出、および1合金
の溶製、保持温度が上昇した結果、粉末中の酸化物量が
増大したことが挙げられる。
The reason for this is that the amount of oxides in the powder increased as a result of the crystallization of coarse intermetallic compounds and the increase in melting and holding temperature of the first alloy.

不純物としてのFa含有量が、本発明の規制範囲を超え
ている比較合金部材47.Mn含有量が本発明の規制範
囲を超えている比較合金部材NQ8は、シャルピー衝撃
値が低く、靭性が劣っており、 Feまたはにn含有量
の増加がシャルピー衝撃値を低下させることを示してい
る。
Comparative alloy member 47 in which the content of Fa as an impurity exceeds the regulation range of the present invention. Comparative alloy member NQ8, in which the Mn content exceeds the regulatory range of the present invention, has a low Charpy impact value and poor toughness, indicating that an increase in Fe or n content lowers the Charpy impact value. There is.

[発明の効果] 以上説明したように、この発明の製造方法によれば、従
来の鋳造用Al−5i合金と同等以上の耐摩耗性を有し
、熱膨張率が低く、且つ、靭性が著しく改善されたAΩ
−5i合金部材が提供される。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, it has wear resistance equal to or higher than that of conventional Al-5i alloy for casting, has a low coefficient of thermal expansion, and has remarkable toughness. Improved AΩ
-5i alloy members are provided.

また、この発明のA(A−5i合金部材は、 切削性お
よび高温強度も改善されている。従って、例えば、自動
車、二軸車などのレシプロ内燃機関のピストンの材料と
して用いれば、寸法精度の向上および軽量化によって、
内燃機関の特性を向上させることが可能となる。また、
産業機器の摺動部品であって、従来は靭性などが不足す
るため、軽量のアルミニウム合金部材の使用が困難であ
ったものへの適用も可能になる。このように、この発明
によれば、幾多の工業上有用な効果がもたらされる。
In addition, the A (A-5i alloy member of this invention has improved machinability and high-temperature strength. Therefore, for example, if it is used as a material for a piston of a reciprocating internal combustion engine such as an automobile or a two-axle vehicle, it can improve dimensional accuracy. By improving and reducing weight,
It becomes possible to improve the characteristics of the internal combustion engine. Also,
It can also be applied to sliding parts of industrial equipment, for which it has been difficult to use lightweight aluminum alloy members due to lack of toughness. As described above, the present invention brings about a number of industrially useful effects.

出願人  三菱アルミニウム株式会社 代理人  潮  谷  京 津 夫Applicant: Mitsubishi Aluminum Corporation Agent Ushio Tani Kyo Tsuo

Claims (1)

【特許請求の範囲】 1 Si:18〜28wt.%、 Cu:0.5〜3.5wt.%、 Mg:0.2〜2.0wt.%、 下記からなる群から選んだ、少なくとも1つの元素: Ti:0.03〜0.40wt.%、 V:0.03〜0.40wt.%、 Zr:0.03〜0.40wt.%、 Cr:0.03〜1.00wt.%、 Ni:0.3〜2.5wt.%、 但し、Ti、VおよびZrの合計量は、0.40wt.
%以下、および、 残り:Alおよび不可避的不純物。 からなるAl合金を溶製し、 次いで、前記Al合金を、10^2℃/sec以上の冷
却速度によって急冷凝固して、粉末または薄片状の凝固
体を調製し、 次いで、前記凝固体を、そのまま、または、予備成形し
、少なくとも1度は550℃以下の温度において熱間成
形し、かくして、所定形状の合金部材を得ることを特徴
とする、熱膨張率が低く、耐摩耗性に優れ、且つ、高い
靭性を有する、Al−Si合金部材の製造方法。 2 前記不可避的不純物としてのFe、Mnの含有量は
、Fe:0.6wt.%未満、および、 Mn:0.3wt.%未満、 である、請求項1記載の、熱膨張率が低く、耐摩耗性に
優れ、且つ、高い靭性を有する、Al−Si合金部材の
製造方法。
[Claims] 1 Si: 18 to 28 wt. %, Cu: 0.5-3.5wt. %, Mg: 0.2-2.0wt. %, at least one element selected from the group consisting of: Ti: 0.03-0.40wt. %, V: 0.03-0.40wt. %, Zr: 0.03-0.40wt. %, Cr: 0.03-1.00wt. %, Ni: 0.3-2.5wt. %, however, the total amount of Ti, V and Zr is 0.40wt.
% or less, and the remainder: Al and unavoidable impurities. Next, the Al alloy is rapidly solidified at a cooling rate of 10^2°C/sec or more to prepare a powder or flaky solidified body, and then the solidified body is The alloy member is characterized by having a low coefficient of thermal expansion and excellent wear resistance, which is obtained as it is or by preforming and hot forming at least once at a temperature of 550° C. or lower to obtain an alloy member of a predetermined shape. Moreover, a method for manufacturing an Al-Si alloy member having high toughness. 2 The content of Fe and Mn as the unavoidable impurities is Fe: 0.6 wt. %, and Mn: 0.3wt. %. The method for producing an Al-Si alloy member according to claim 1, which has a low coefficient of thermal expansion, excellent wear resistance, and high toughness.
JP4417889A 1989-02-23 1989-02-23 Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness Pending JPH02225635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4417889A JPH02225635A (en) 1989-02-23 1989-02-23 Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4417889A JPH02225635A (en) 1989-02-23 1989-02-23 Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness

Publications (1)

Publication Number Publication Date
JPH02225635A true JPH02225635A (en) 1990-09-07

Family

ID=12684326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4417889A Pending JPH02225635A (en) 1989-02-23 1989-02-23 Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness

Country Status (1)

Country Link
JP (1) JPH02225635A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017302A1 (en) * 1991-04-03 1992-10-15 Sumitomo Electric Industries, Ltd. Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
EP0669404A2 (en) * 1994-02-12 1995-08-30 Hitachi Powdered Metals Co., Ltd. Wear-resistant sintered aluminum alloy and method for producing the same
EP1340827A1 (en) * 2002-02-14 2003-09-03 KS Aluminium-Technolgie Aktiengesellschaft Aluminium-silicon cast alloy for piston and castpart production
DE102004050484A1 (en) * 2004-10-15 2006-04-20 Peak Werkstoff Gmbh Alloy based on aluminum and molded part of this alloy
JP2010174374A (en) * 2001-03-31 2010-08-12 Yamaha Motor Co Ltd Cylinder liner of engine, method for producing the same, and cylinder block of engine
CN104060133A (en) * 2014-05-26 2014-09-24 安徽盛达前亮铝业有限公司 Door frame top plate of sliding door
CN104846240A (en) * 2015-04-17 2015-08-19 安徽中原内配有限责任公司 Hypereutectic aluminum-silicon alloy cylinder sleeve and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017302A1 (en) * 1991-04-03 1992-10-15 Sumitomo Electric Industries, Ltd. Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
US5368629A (en) * 1991-04-03 1994-11-29 Sumitomo Electric Industries, Ltd. Rotor for oil pump made of aluminum alloy and method of manufacturing the same
EP0669404A2 (en) * 1994-02-12 1995-08-30 Hitachi Powdered Metals Co., Ltd. Wear-resistant sintered aluminum alloy and method for producing the same
EP0669404A3 (en) * 1994-02-12 1995-10-25 Hitachi Powdered Metals Wear-resistant sintered aluminum alloy and method for producing the same.
JP2010174374A (en) * 2001-03-31 2010-08-12 Yamaha Motor Co Ltd Cylinder liner of engine, method for producing the same, and cylinder block of engine
EP1340827A1 (en) * 2002-02-14 2003-09-03 KS Aluminium-Technolgie Aktiengesellschaft Aluminium-silicon cast alloy for piston and castpart production
DE102004050484A1 (en) * 2004-10-15 2006-04-20 Peak Werkstoff Gmbh Alloy based on aluminum and molded part of this alloy
CN104060133A (en) * 2014-05-26 2014-09-24 安徽盛达前亮铝业有限公司 Door frame top plate of sliding door
CN104846240A (en) * 2015-04-17 2015-08-19 安徽中原内配有限责任公司 Hypereutectic aluminum-silicon alloy cylinder sleeve and preparation method thereof

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US4867806A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPH05179384A (en) High strength and high toughness aluminum alloy manufactured by spray deposition method
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP2001220639A (en) Aluminum alloy for casting
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP2703840B2 (en) High strength hypereutectic A1-Si powder metallurgy alloy
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
US6719859B2 (en) High strength aluminum base alloy
JPS60208443A (en) Aluminum alloy material
JPH05179383A (en) Aluminum alloy having fine crystallized grain manufacture by spray deposition method
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
JP4925028B2 (en) Aluminum alloy molding material
JPH07145440A (en) Aluminum alloy forging stock
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JPH07197164A (en) Aluminum alloy having high strength and high workability and its production
JPH05179387A (en) High strength and high toughness aluminum alloy manufactured by spray deposition method
EP0137180B1 (en) Heat-resisting aluminium alloy
JP4699786B2 (en) Al-based alloy with excellent workability and heat resistance
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JPH01268838A (en) Aluminum alloy member having high strength and excellent forgeability