JPH0116301B2 - - Google Patents

Info

Publication number
JPH0116301B2
JPH0116301B2 JP58040983A JP4098383A JPH0116301B2 JP H0116301 B2 JPH0116301 B2 JP H0116301B2 JP 58040983 A JP58040983 A JP 58040983A JP 4098383 A JP4098383 A JP 4098383A JP H0116301 B2 JPH0116301 B2 JP H0116301B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
wear resistance
casting
alloy material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58040983A
Other languages
Japanese (ja)
Other versions
JPS59166661A (en
Inventor
Ichiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4098383A priority Critical patent/JPS59166661A/en
Publication of JPS59166661A publication Critical patent/JPS59166661A/en
Publication of JPH0116301B2 publication Critical patent/JPH0116301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、例えばVTRシリンダ、エンジン
シリンダのライナー等の耐摩耗性を要求される各
種機械部品等に使用される耐摩耗性アルミニウム
合金材料の製造方法に関する。 なお、この明細書において「%」はいずれも
「重量%」を示すものである。 従来の技術と問題点 従来、この種の耐摩耗性アルミニウム合金材料
としては、Siを10〜20%程度含有したAl―Si系
合金が、例えばAC3A、AC8A〜C、AC9A〜B
等のアルミニウム鋳物合金としてよく知られてい
る。ところがこれらのアルミニウム合金材料は、
鋳造されるものであるために、耐摩耗性の向上に
寄与するSiの初晶粒子が粒径10〜150μmと相当大
きく(一般に80μm以下が好ましいとされてい
る)、かつその分散が不均一なものとなつて、材
料としての耐摩耗性のばらつきが大きいという欠
点があつた。 この発明は、上記の欠点を改善した耐摩耗性ア
ルミニウム合金材料の製造方法を提供しようとす
るものである。 問題点を解決するための手段 この発明は、特定のアルミニウム合金組成と、
その鋳造物を更に熱間押出しゝて、初晶Si粒子の
微細化、均一分散化をはかる製造工程との組合わ
せに特徴を有するものである。 即ち、この発明は、Si10〜30%、Cu0.5〜6%、
Mg0.5〜2%を含有し、更にNi、Cr、Mn、Feを
それぞれ0.5〜10%の範囲で1種または2種以上
含有し、残部アルミニウム及び不可避不純物から
なるアルミニウム合金を溶解鋳造する工程と、こ
れによつて得られたアルミニウム合金鋳塊を熱間
押出しする工程とを含むことを特徴とする耐摩耗
性に優れたアルミニウム合金材料の製造方法を要
旨とするものである。 先ず、上筋の合金組成についてその限定理由を
説明すれば次のとおりである。 即ち、Siは、周知のとおり耐摩耗性の向上成分
として有効なものであり、10%未満の含有ではそ
の効果が不充分であり、30%を超えるときは鋳造
が困難なものとなる。 また、Cu及びMgは、いずれも強度の向上成分
として有効なものであり、それらの含有量が0.5
%未満では強度上の要請に満足を得ることができ
ず、またCuが6%を超え、あるいはMgが2%を
超える場合には、鋳造が困難なものとなると共
に、粗大な晶出物を生成して機械的性質が劣化す
る。 更にまた、Ni、Cr、Mn、Feのいずれも耐摩
耗性の向上に寄与する点で作用上の均等性を有す
るものであり、加えてNiは、耐熱性の向上にも
有効に作用する。上記各成分が0.5%未満ではそ
れらによる耐摩耗性の向上効果を充分に得ること
ができない。逆に10%を超えると、鋳造が困難な
ものとなる。従つて、上記Ni、Cr、Mn、Feの
いずれもその許容含有量がそれぞれ0.5〜10%の
範囲に制限されるものであり、1種または2種以
上任意の組合わせにおいて含有される。 一方、製造工程において、上記のアルミニウム
合金は、先ず従来の常法に従つてアルミニウム合
金鋳塊に鋳造される。この鋳造後の鋳塊中の初晶
Si粒径は10〜150μmとかなり粗大なものである。
そこで、この発明においては、その鋳塊を更に、
好ましくは予め均質化のための熱処理を施したの
ち、熱間押出しゝて所期するアルミニウム合金材
料に製造される。而して、この熱間押出しによ
り、合金中の初晶Si粒子が平均粒径40μm程度に
まで微細化し、かつその分散が均一化されて、所
期さる耐摩耗性の良好な保持と共に、そのばらつ
きの著しい減少効果を実現するものである。 発明の効果 従つて、この発明によれば、耐摩耗性に優れ
た、しかもそのばらつきの少ないアルミニウム合
金材料を得ることが可能となるものである。 実施例 次に、この発明の実施例を示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a method for manufacturing a wear-resistant aluminum alloy material used for various mechanical parts that require wear resistance, such as VTR cylinders and engine cylinder liners. In this specification, all "%" means "% by weight". Conventional technology and problems Conventionally, as this type of wear-resistant aluminum alloy material, Al-Si alloys containing about 10 to 20% Si are used, such as AC3A, AC8A-C, AC9A-B.
It is well known as an aluminum casting alloy. However, these aluminum alloy materials
Because it is a cast product, the primary Si particles that contribute to improving wear resistance are quite large, with a particle size of 10 to 150 μm (generally, 80 μm or less is preferred), and their dispersion is uneven. However, the drawback was that the wear resistance of the material varied widely. The present invention aims to provide a method for manufacturing a wear-resistant aluminum alloy material that improves the above-mentioned drawbacks. Means for Solving the Problems This invention provides a specific aluminum alloy composition and
This method is characterized by its combination with a manufacturing process in which the cast product is further hot extruded to make the primary Si particles finer and more uniformly dispersed. That is, in this invention, Si10-30%, Cu0.5-6%,
A process of melting and casting an aluminum alloy containing 0.5 to 2% Mg, and one or more of Ni, Cr, Mn, and Fe in the range of 0.5 to 10% each, and the balance being aluminum and unavoidable impurities. The gist of the present invention is a method for producing an aluminum alloy material having excellent wear resistance, which comprises the steps of: and hot extruding the aluminum alloy ingot obtained thereby. First, the reasons for limiting the alloy composition of the upper reinforcement are as follows. That is, as is well known, Si is effective as a component for improving wear resistance, and if the content is less than 10%, the effect is insufficient, and if it is more than 30%, casting becomes difficult. In addition, Cu and Mg are both effective as strength-improving components, and their content is 0.5
If the Cu content exceeds 6% or the Mg content exceeds 2%, casting becomes difficult and coarse crystallized substances are formed. formation and deterioration of mechanical properties. Furthermore, Ni, Cr, Mn, and Fe all have uniformity in function in that they contribute to improving wear resistance, and in addition, Ni also effectively works to improve heat resistance. If the content of each of the above components is less than 0.5%, the effect of improving wear resistance cannot be sufficiently obtained. Conversely, if it exceeds 10%, casting becomes difficult. Therefore, the permissible content of each of Ni, Cr, Mn, and Fe is limited to a range of 0.5 to 10%, and may be contained singly or in any combination of two or more. On the other hand, in the manufacturing process, the above aluminum alloy is first cast into an aluminum alloy ingot according to a conventional method. Primary crystals in the ingot after this casting
The Si particle size is quite coarse, 10 to 150 μm.
Therefore, in this invention, the ingot is further
Preferably, the material is heat-treated for homogenization in advance and then hot extruded to produce the desired aluminum alloy material. As a result of this hot extrusion, the primary Si particles in the alloy are refined to an average particle size of approximately 40 μm, and their dispersion is made uniform, which not only maintains the desired wear resistance but also improves its properties. This achieves the effect of significantly reducing variation. Effects of the Invention Therefore, according to the present invention, it is possible to obtain an aluminum alloy material having excellent wear resistance and having less variation thereof. Examples Next, examples of the present invention will be shown.

【表】 上記第1表に示す各種組成のアルミニウム合金
について、先ずそれらを溶解鋳造し、直径120mm
×長さ200mmの金型鋳物を製造した。次いでこの
鋳塊を、均質化処理後、450℃×3時間加熱し、
押出速度3cm/分で直径30mmの丸棒に押出して所
期するアルミニウム合金材料の試料を得た。 そして、この各試料につき、耐摩耗性の比較試
験を行つたところ、結果は下記第2表に示すとお
りであつた。なお、耐摩耗試験は、摩擦距離:
600m、摩擦速度:2m/sec、相手材:Fc―30
で行つた。
[Table] For aluminum alloys of various compositions shown in Table 1 above, they were first melted and cast to a diameter of 120 mm.
×A mold casting with a length of 200 mm was manufactured. Next, this ingot was homogenized and heated at 450°C for 3 hours.
A sample of the desired aluminum alloy material was obtained by extrusion into a round bar with a diameter of 30 mm at an extrusion speed of 3 cm/min. A comparative test of abrasion resistance was performed on each sample, and the results were as shown in Table 2 below. In addition, the wear resistance test is based on the friction distance:
600m, friction speed: 2m/sec, mating material: Fc-30
I went there.

【表】 上記試料1〜5の初晶Si粒径は平均40μmであ
り、鋳造のまゝの試料の初晶Si粒径が10〜150μm
であるのに較べて微細かつ均一なものであつた。
その結果、第2表に示されるように、この発明に
係るアルミニウム合金材料は、従来品の鋳造の
まゝのものに較べて、明らかに比摩耗量の減少に
加えて、そのばらつきの減少の効果が認められる
ものであつた。
[Table] The average primary Si grain size of Samples 1 to 5 above is 40 μm, and the primary Si grain size of the as-cast samples is 10 to 150 μm.
It was finer and more uniform compared to the average size.
As a result, as shown in Table 2, the aluminum alloy material according to the present invention not only clearly reduces the specific wear amount but also reduces the dispersion compared to the conventional as-cast product. It was found to be effective.

Claims (1)

【特許請求の範囲】[Claims] 1 Si10〜30%、Cu0.5〜6%、Mg0.5〜2%を
含有し、更にNi、Cr、Mn、Feをそれぞれ0.5〜
10%の範囲で1種または2種以上含有し、残部ア
ルミニウム及び不可避不純物からなるアルミニウ
ム合金を溶解鋳造する工程と、これによつて得ら
れたアルミニウム合金鋳塊を熱間押出しする工程
とを含むことを特徴とする耐摩耗性に優れたアル
ミニウム合金材料の製造方法。
1 Contains 10-30% Si, 0.5-6% Cu, 0.5-2% Mg, and further contains 0.5-30% Ni, Cr, Mn, and Fe each.
It includes a process of melting and casting an aluminum alloy containing one or more types in the range of 10%, with the balance consisting of aluminum and unavoidable impurities, and a process of hot extruding the aluminum alloy ingot obtained thereby. A method for producing an aluminum alloy material with excellent wear resistance.
JP4098383A 1983-03-11 1983-03-11 Preparation of aluminum alloy material excellent in abrasion resistance Granted JPS59166661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098383A JPS59166661A (en) 1983-03-11 1983-03-11 Preparation of aluminum alloy material excellent in abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098383A JPS59166661A (en) 1983-03-11 1983-03-11 Preparation of aluminum alloy material excellent in abrasion resistance

Publications (2)

Publication Number Publication Date
JPS59166661A JPS59166661A (en) 1984-09-20
JPH0116301B2 true JPH0116301B2 (en) 1989-03-23

Family

ID=12595661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098383A Granted JPS59166661A (en) 1983-03-11 1983-03-11 Preparation of aluminum alloy material excellent in abrasion resistance

Country Status (1)

Country Link
JP (1) JPS59166661A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056057A (en) * 1983-09-07 1985-04-01 Showa Alum Corp Production of wear resistant aluminum alloy material having excellent machinability
JPS61259829A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of wear resistant aluminum alloy extrudate
JPS621535A (en) * 1985-06-27 1987-01-07 住友電気工業株式会社 Composite heat-dissipating structure and manufacture thereof
JPS6411952A (en) * 1987-07-06 1989-01-17 Showa Aluminum Corp Manufacture of hollow aluminum-alloy combining high strength with high wear resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057906A (en) * 1973-09-20 1975-05-20
JPS5298611A (en) * 1976-02-16 1977-08-18 Hitachi Ltd Corrosion-resisting and wear-resisting aluminium alloy and its product ion process
JPS52109415A (en) * 1976-03-10 1977-09-13 Pechiney Aluminium Hollow articles and production of the same
JPS5565351A (en) * 1978-11-10 1980-05-16 Hitachi Ltd Manufacture of aluminum-silicon type alloy with superior toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057906A (en) * 1973-09-20 1975-05-20
JPS5298611A (en) * 1976-02-16 1977-08-18 Hitachi Ltd Corrosion-resisting and wear-resisting aluminium alloy and its product ion process
JPS52109415A (en) * 1976-03-10 1977-09-13 Pechiney Aluminium Hollow articles and production of the same
JPS5565351A (en) * 1978-11-10 1980-05-16 Hitachi Ltd Manufacture of aluminum-silicon type alloy with superior toughness

Also Published As

Publication number Publication date
JPS59166661A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JPH0693363A (en) High tensile strength and heat resistant aluminum base alloy
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JP3479204B2 (en) Aluminum alloy casting for non-heat treatment and method for producing the same
CN111893354A (en) Al-Si-Cu-Mg wrought aluminum alloy and preparation method thereof
JPH0116301B2 (en)
JPH07145440A (en) Aluminum alloy forging stock
JPH04323343A (en) Aluminum alloy excellent in wear resistance
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPS6215626B2 (en)
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH0118980B2 (en)
JPH0557346B2 (en)
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0480108B2 (en)
JPH0328499B2 (en)
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPH0332403B2 (en)
JPH06212320A (en) High perfrmance al alloy material and its prduction