JPS6056057A - Production of wear resistant aluminum alloy material having excellent machinability - Google Patents

Production of wear resistant aluminum alloy material having excellent machinability

Info

Publication number
JPS6056057A
JPS6056057A JP16579983A JP16579983A JPS6056057A JP S6056057 A JPS6056057 A JP S6056057A JP 16579983 A JP16579983 A JP 16579983A JP 16579983 A JP16579983 A JP 16579983A JP S6056057 A JPS6056057 A JP S6056057A
Authority
JP
Japan
Prior art keywords
aluminum alloy
particles
wear
wear resistance
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16579983A
Other languages
Japanese (ja)
Inventor
Ichiro Iwai
一郎 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP16579983A priority Critical patent/JPS6056057A/en
Priority to CA000462172A priority patent/CA1239811A/en
Priority to DE8484305971T priority patent/DE3469187D1/en
Priority to EP84305971A priority patent/EP0141501B1/en
Publication of JPS6056057A publication Critical patent/JPS6056057A/en
Priority to US06/894,470 priority patent/US4737206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop an Al alloy of which the machinability is improved and the variance in the wear resistance is decreased by adding elements for refining primary crystal Si grains to the specifically composed wear resistant Al alloy and subjecting the casting ingot thereof to hot extrusion. CONSTITUTION:One or both of 0.01-0.1% Sn and 0.01-0.1% P are added and incorporated as elements for refining primary crystal Si grains in the stage of casting to a wear resistant Al alloy contg. 10-30% Si, 0.3-5% Cu and 0.3- 2% Mo. The ingot of such Al alloy is hot extruded to refine the coarse grains of the primary crystal Si in the range of 10-80mum grain size and to refine the autectic Si to <=15mum grain size as well. Since the primary crystal Si and eutectic Si grains are refined and are uniformly dispersed, the machinability is improved, the life of a cutting tool is extended and the variance in the wear resistance is remarkably improved.

Description

【発明の詳細な説明】 この発明は、例えばエンジンシリンダーのライナー、V
TRシリンダー、エンジンピストン、コンブレラ勺ベー
ン等の耐摩耗性を要求される各種機械部品等に使用され
る耐摩耗性アルミニウム合金材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides, for example, engine cylinder liners, V
The present invention relates to a method for manufacturing wear-resistant aluminum alloy materials used in various mechanical parts that require wear resistance, such as TR cylinders, engine pistons, and combrella vanes.

なお、この明細書において「%」はいずれも「重量%」
を示すものである。
In addition, in this specification, all "%" means "% by weight"
This shows that.

従来、この種の耐摩耗性アルミニウム合金材料としては
、Slを10〜20%程度含有したAρ−3i系の例え
ばAC3A、AC8A−C。
Conventionally, as this type of wear-resistant aluminum alloy material, Aρ-3i series containing about 10 to 20% of Sl, such as AC3A and AC8A-C, have been used.

AC9A〜B等アルミニウム合金鋳物がよく知られてい
る。ところがこれらのアルミニウム合金材料は、鋳造さ
れるものであるために、耐摩耗性の面上に斉与する3i
の初晶粒子が粒径10〜150μmと相当大ぎ(、かつ
その分散が不均一なものであるために、材料としての耐
摩耗性のばらつきが大きいという欠点があ、つた。
Aluminum alloy castings such as AC9A-B are well known. However, since these aluminum alloy materials are cast, they have a uniform 3i value in terms of wear resistance.
The primary crystal grains of the material were considerably large with a particle size of 10 to 150 μm (and their dispersion was non-uniform), resulting in a drawback of large variations in the wear resistance of the material.

かつ又、この種耐摩耗性合金は、その鋳物を切削加工す
ることによって所期製品に製作されるものであるが、殊
に鋳造時に晶出される共晶Si粒子が、これも比較的大
きくかつ針状形態を呈するために概して切削性に劣り、
特に切削工具寿命が短いという欠点があった。
Moreover, this type of wear-resistant alloy is manufactured into the desired product by cutting the casting, but the eutectic Si particles that are crystallized during casting are also relatively large and Generally, machinability is poor due to the needle-like shape;
In particular, there was a drawback that the life of the cutting tool was short.

そこで、この発明は耐摩耗性アルミニウム合金について
、上記のような耐摩耗性のばらつきを少なくし、かつ同
時に切削性を向上することを目的としてなされたもので
あり、特定の組成アルミニウム合金の鋳物を更に熱間に
て押出すことにより、かつこれによって初晶Si粒子及
び共晶3i粒子をいずれも所定の粒径範囲に微細化し、
かつ同時に均一分散せしめるものとなすことによって、
切削工具寿命及び耐摩耗性のばらつきを大幅に改善しう
ろことを見出し、断る知見に基づいて完成されるに至っ
たものである。
Therefore, the present invention was made with the aim of reducing the above-mentioned variations in wear resistance of wear-resistant aluminum alloys and improving machinability at the same time. Further, by hot extrusion, both the primary Si particles and the eutectic 3i particles are refined to a predetermined particle size range,
At the same time, by making it uniformly dispersed,
It was completed based on the discovery and knowledge that greatly improved the variation in cutting tool life and wear resistance.

即ち、この発明は、5i10〜30%、Quo、3〜5
%、Mao、3〜2%を含み、かつSr O,01〜0
.1%、Po、01〜0.1%のうちの1種または2種
以上を含有するアルミニウム基合金を溶解鋳造して鋳塊
を作成し、次いでこの鋳塊を熱間で押出すことにより、
鋳塊に含まれる粗大な初晶3i粒子を破壊して粒径10
〜80μmの範囲に微細化すると共に、共晶Si粒子も
粒径15μm以下に微細化せしめたものとなすことを特
徴とする切削性にすぐれた耐摩耗性アルミニウム合金材
料の製造方法に係るものである。
That is, in this invention, 5i10-30%, Quo, 3-5
%, Mao, 3-2%, and SrO,01-0
.. By melting and casting an aluminum-based alloy containing one or more of 1%, Po, and 01 to 0.1% to create an ingot, and then hot extruding this ingot,
The coarse primary 3i particles contained in the ingot are destroyed to reduce the particle size to 10
This relates to a method for producing a wear-resistant aluminum alloy material with excellent machinability, characterized in that the grain size is refined to a range of ~80 μm, and the eutectic Si particles are also refined to a grain size of 15 μm or less. be.

先ず、上記合金成分の添加意義及び組成範囲の限定理由
について説明すれば次のとおりである。
First, the significance of adding the above-mentioned alloy components and the reason for limiting the composition range will be explained as follows.

3iは、周知のとおり耐摩耗性の向上成分として有効な
ものであり、これが10%未満では耐摩耗性に劣るもの
となる一方、逆に30%をこえて過多に含有されると、
鋳造が困難になる。
As is well known, 3i is effective as a wear resistance improving component, and if it is less than 10%, the wear resistance will be poor, but if it is contained in excess of 30%,
Casting becomes difficult.

C0及びMgは、いずれも合金の強度の向上に寄与する
ものであり、0.3%未満ではその効果が不十分である
。しかしCI+が5%をこえるときは、耐食性が著しく
悪くなる。またM(]が2%をこえる場合は、上記の効
果を格別増大せず、むしろ粗大な晶出物を生成して機械
的製質を劣化する。
Both C0 and Mg contribute to improving the strength of the alloy, and if the content is less than 0.3%, the effect is insufficient. However, when CI+ exceeds 5%, corrosion resistance deteriorates significantly. Moreover, when M( ) exceeds 2%, the above-mentioned effects are not particularly enhanced, but rather coarse crystallized substances are produced and the mechanical quality is deteriorated.

3rおよびPはいずれも鋳造時に初晶Si粒子を微細化
する微細化剤として作用するものであり、いずれか少な
くとも一方を含有すれば足るが、それぞれ0.01%未
満では上記効果に乏しく、0.1%をこえても格別効果
の増大を望めない。
Both 3r and P act as refining agents to refine primary Si particles during casting, and it is sufficient to contain at least one of them, but if each is less than 0.01%, the above effect is poor, and 0. Even if it exceeds .1%, no particular increase in effect can be expected.

また、この発明に用いるアルミニウム合金は、上記必須
成分のほかに、好ましくは更にN1、Fe 、 Mnを
それぞれ0.5〜3.0%の範囲で1種または2種以上
含有することが許容される。これらの成分はいずれも、
耐熱性の向上に寄与するものであるが、各成分が0.5
%未満ではその効果に乏しく、逆に3%をこえると切削
性が著しく悪くなる。
Furthermore, in addition to the above-mentioned essential components, the aluminum alloy used in the present invention may preferably further contain one or more of N1, Fe, and Mn in the range of 0.5 to 3.0% each. Ru. Both of these ingredients are
It contributes to improving heat resistance, but each component is 0.5
If it is less than 3%, the effect will be poor, and if it exceeds 3%, the machinability will be extremely poor.

次に、製造工程について説明すると、上記のアルミニウ
ム合金は、これを先ず従来の常法に従う溶解鋳造により
アルミニウム合金鋳物に製作する。この鋳造によって得
られる鋳塊に含まれる初晶St粉粒子、上記Srおよび
(または)Pの添加により微細化されたものとなるが、
それでもなおその粒径は、概ね20〜100μ兜の範囲
の未だ相当に大きいものである。また、共晶Si粒子も
、粒径30μm以下のがなり大きいものであり、かつそ
の形態が針状を呈するものである。
Next, the manufacturing process will be explained. The above aluminum alloy is first manufactured into an aluminum alloy casting by melting and casting according to a conventional conventional method. The primary St powder particles contained in the ingot obtained by this casting are refined by the addition of Sr and/or P, but
Nevertheless, the particle size is still quite large, generally in the range of 20-100 microns. Further, the eutectic Si particles are also large, with a particle size of 30 μm or less, and have an acicular shape.

そこで、この発明は、これらの初晶及び共晶3i粒子を
含む鋳塊を更に420〜430℃程度の熱間にて押出し
加工する。しかも、この熱間押出しにより、合金中に含
む粒径1o〜1゜0μmの粗大な初晶Si粒子の一部を
破壊し、その粒径が10〜80μmの範囲で、かつ40
μTrt以上の粒子が60%以下の面積比を占める範囲
に微細化し、かつその分布を均一化せしめると共に、共
晶Si粒子も、これを粒径15μm以下の範囲で、かつ
10μm以下の粒子が60%以下の面積比を占める範囲
に微細化せしめるものとする。
Therefore, in the present invention, the ingot containing these primary crystal and eutectic 3i particles is further extruded at a temperature of about 420 to 430°C. Moreover, this hot extrusion destroys a part of the coarse primary Si particles with a particle size of 10 to 1.0 μm contained in the alloy, and the particle size is in the range of 10 to 80 μm and 40 μm.
At the same time, the eutectic Si particles are refined to a range in which particles of μTrt or larger occupy an area ratio of 60% or less, and their distribution is made uniform, and the eutectic Si particles are also reduced to a particle size of 15 μm or less, with particles of 10 μm or less occupying a 60% area ratio. % or less.

上述のようなこの発明に係る方法によれば、得られるア
ルミニウム合金材料中の前記初晶Si粒子及び初晶Si
粒子の前記粒径範囲による微細化と、その分布の均一化
により、所期される耐摩耗性の良好な保持とそのばらつ
きの減少効果を実現しうるのはもとより、同時に優れた
工具切削性、特、に切削工具寿命の大幅な増大効果を突
環しうるちのである。従って、従来品より一層卓越した
性能を有する耐摩耗性アルミニウム合金材料を、簡単な
製造工程でかつ比較的低コストに!ll造し提供するこ
とができる効果を奏する。
According to the method according to the present invention as described above, the primary crystal Si particles and the primary crystal Si in the obtained aluminum alloy material
By making the particles finer within the above-mentioned particle size range and making their distribution more uniform, it is possible not only to maintain the desired wear resistance and reduce its dispersion, but also to achieve excellent tool machinability and In particular, it has a sharp ring effect that greatly increases the life of the cutting tool. Therefore, a wear-resistant aluminum alloy material with superior performance than conventional products can be produced through a simple manufacturing process and at a relatively low cost! It has the advantage of being able to be created and provided.

以下、この発明の実施例を示す。Examples of this invention will be shown below.

第1表 上記第1表に示す組成のアルミニウム基合金について、
それらを先ず溶解半連続鋳造し、直径120a+s+の
ビレットを製造した。然るところ、ビレットに含む初晶
S1粒子の粒径は10〜100μm1共晶81粒子の粒
径は30μm以下でかつ針状を呈するものであった。
Table 1 Regarding aluminum-based alloys having the composition shown in Table 1 above,
They were first melted and semi-continuously cast to produce billets with a diameter of 120a+s+. However, the particle size of the primary crystal S1 particles contained in the billet was 10 to 100 μm, and the particle size of the 1 eutectic 81 particles was 30 μm or less and had an acicular shape.

そこで次に、このビレットを、押出温度425℃、押出
しラム速度0.04m /1nの条件で直径30#l#
lの丸棒に押出し、所期するアルミニウム合金材料を得
た。
Next, this billet was processed into a material with a diameter of 30#l# under the conditions of an extrusion temperature of 425℃ and an extrusion ram speed of 0.04m/1n.
The desired aluminum alloy material was obtained by extruding it into a round bar.

この得られた各種アルミニウム合金材料につき、鋳造し
たままの試料と比較してそれらの耐摩耗性及び切削性を
調べたところ、下記第2表及び第3表に示すとおりであ
った。
The wear resistance and machinability of the various aluminum alloy materials thus obtained were compared with as-cast samples, and the results were as shown in Tables 2 and 3 below.

〔以下余白〕[Margin below]

第2表 耐摩耗性(注1) (注1):耐摩耗性試験は、回転円板による大越式耐摩
耗試験機を用いて、摩 擦距1lIll:600TrL1摩擦速度:2m/mi
n、相手材: FC−30 (Jls)の試験条件で実施した。
Table 2 Wear resistance (Note 1) (Note 1): The wear resistance test was conducted using an Ohkoshi type wear resistance tester with a rotating disk.Friction distance: 1lIll: 600TrL 1Friction speed: 2m/mi
n, counterpart material: The test was conducted under the test conditions of FC-30 (Jls).

上表の結束から判るように、この発明によって製造され
るアルミニウム合金材料は、鋳造したままのものに較べ
て、明らかに比摩耗量の減少に加えて、そのばらつきの
減少の効果が認められるものであった。
As can be seen from the binding in the above table, the aluminum alloy material manufactured by this invention has the effect of clearly reducing the specific wear amount and reducing its dispersion compared to the as-cast material. Met.

第3表 切削工具寿命(注2) (注2):切削工具寿命は、前すくい角二〇喰、横すく
い角:10度、前退゛げ 角ニア度、横逃げ角=7度、前切 刃角:8度、横切刃角:0度、ノ ーズ半径:O度、の諸元を有する 超硬バイトを使用し、切込み深さ: 0.1m*1送り速麿0.05##I、回転数:500
rpm、潤滑剤:石 油の切削条件で、切削距離:20 0mの切削を行ったのち、バイト の逃げ面の摩耗幅を測定した。
Table 3 Cutting tool life (Note 2) (Note 2): Cutting tool life is based on front rake angle of 20 degrees, side rake angle: 10 degrees, front retraction angle in degrees, side relief angle = 7 degrees, front Use a carbide cutting tool with the following specifications: cutting edge angle: 8 degrees, side edge angle: 0 degrees, nose radius: 0 degrees, cutting depth: 0.1 m * 1 feed rate 0.05 ## I, rotation speed: 500
After cutting with a cutting distance of 200 m under the cutting conditions of rpm and lubricant: petroleum, the wear width of the flank surface of the cutting tool was measured.

上記第3表の結果により、本発明によるアルミニウム合
金材料は、鋳物品に較べて、バイトの逃げ面の摩耗が極
めC小であり、切削工具寿命を大幅に改善しうるもので
あることがわかる。
From the results in Table 3 above, it can be seen that the aluminum alloy material according to the present invention has extremely small wear on the flank face of the cutting tool C compared to the cast product, and can significantly improve the life of the cutting tool. .

以」二 手続補正書 昭φ9年3□21.3 特許庁長官若杉和夫 殿 1、油性の表示 昭和58年特 許願第16579グ 事件との関係 特許出願人 フリガナ 堺市海山町6丁224番地 住 所 氏 名(名称) 昭和アルミニウム株式会社4、代 理
 人 代表者 河 内 壽 昭6、 補正により増加す
る発明の数 8、補正の内容 明 細 書 く補正) 1、発明の名称 切削性にすぐれた耐摩耗性アルミニウム合金材料の製造
方法 2、特許請求の範囲 5i10〜30%、Cu0.3〜5%、MgO,3〜2
%を含有するアルミニウム基台金を溶解鋳造して鋳塊を
作成し、次いでこの鋳塊を熱間で押出すことにより、鋳
塊に含まれる粗大な初晶Si粒子を破壊して粒径10〜
80μmの範囲に微細化すると共に、共晶Si粒子も粒
径15μm以下に微細化せしめたものとなすことを特徴
とする切削性にすぐれた耐摩耗性アルミニウム合金材料
の製造方法。
1980 3□21.3 Amendment to the procedure Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Relationship to the oil-based indication Patent Application No. 16579 case filed in 1980 Patent applicant Furigana: 6-224, Kaiyama-cho, Sakai City Tokoro Name (Name) Showa Aluminum Co., Ltd. 4, Agent Representative Hisashi Kawachi 6, Number of inventions increased due to amendment 8, Details of the amendment (amended) 1. Name of the invention Excellent machinability Manufacturing method 2 of wear-resistant aluminum alloy material, claim 5i 10-30%, Cu 0.3-5%, MgO, 3-2
% is melted and cast to create an ingot, and then this ingot is hot extruded to destroy the coarse primary Si particles contained in the ingot and reduce the particle size to 10. ~
A method for producing a wear-resistant aluminum alloy material with excellent machinability, characterized in that the grain size of the eutectic Si particles is refined to a range of 80 μm, and the grain size of the eutectic Si particles is also refined to 15 μm or less.

3、発明の詳細な説明 この発明は、例えばエンジンシリンダーのライナー、V
TRシリンダー、エンジンピストン、コンプレッサベー
ン等の耐摩耗性を要求される各種機械部品等に使用され
る耐摩耗性アルミニウム合金材料の製造方法に関する。
3. Detailed Description of the Invention The present invention is applicable to engine cylinder liners, V
The present invention relates to a method for manufacturing wear-resistant aluminum alloy materials used in various mechanical parts such as TR cylinders, engine pistons, and compressor vanes that require wear resistance.

なお、この明細書において合金成分についての「%」は
いずれも「重量%」を示すものである。
In this specification, all "%" regarding alloy components indicate "% by weight".

従来、この種の耐摩耗性アルミニウム合金材料としては
、Siを10〜20%程度含有したAQ’−8i系の例
えばAC3A、AC8A−C。
Conventionally, this type of wear-resistant aluminum alloy material includes AQ'-8i series, such as AC3A and AC8A-C, containing about 10 to 20% Si.

AC9A−B等アルミニウム合金鋳物がよく知られてい
る。ところがこれらのアルミニウム合金材料は、鋳造さ
れるものであるために、耐摩耗性の向上に寄与する3i
の初晶粒子が粒径150μmにも達する大きなものを含
んで全体的に粗大であり、かつその分散が不均一なもの
であるために、材料としての耐摩耗性のばらつきが大き
いという欠点があった。かつ又、この種耐摩耗性合金は
、その鋳物を切削加工することによって所期製品に製作
する場合、殊に鋳造時に晶出される共晶3i粒子が、こ
れも比較的大きくかつ針状形態を呈するために概して切
削性に劣り、特に切削工具寿命が短いという欠点があっ
た。
Aluminum alloy castings such as AC9A-B are well known. However, since these aluminum alloy materials are cast, they have 3i, which contributes to improved wear resistance.
The primary crystal grains of this material are generally coarse, including large ones with a particle size of 150 μm, and their dispersion is uneven, so there is a drawback that the wear resistance of the material varies widely. Ta. Moreover, when this type of wear-resistant alloy is manufactured into a desired product by cutting the casting, the eutectic 3i particles that are crystallized during casting are also relatively large and have an acicular shape. Therefore, the machinability is generally poor, and the cutting tool life is particularly short.

そこで、この発明は耐摩耗性アルミニウム合金について
、上記のような耐摩耗性のばらつきを少なくし、かつ同
時に切削性を向上することを目的としてなされたもので
あり、特定の組成アルミニウム合金の鋳物を更に熱間に
て押出すことにより、かつこれによって初晶Si粒子及
び共晶3i粒子をいずれも所定の粒径節回に微細化し、
かつ同時に均一分散せしめるものとなすことによって、
切削工具寿命及び耐摩耗性のばらつきを大幅に改善しう
ろことを見出し、断る知見に基づいて完成されるに至っ
たものである。
Therefore, the present invention was made with the aim of reducing the above-mentioned variations in wear resistance of wear-resistant aluminum alloys and improving machinability at the same time. Further, by hot extrusion, both the primary Si particles and the eutectic 3i particles are refined to a predetermined particle size,
At the same time, by making it uniformly dispersed,
It was completed based on the discovery and knowledge that greatly improved the variation in cutting tool life and wear resistance.

即ち、この発明は、5i10〜30%、Quo、3〜5
%、M(+ 0.3〜2%を含有するアルミニウム基合
金を溶解鋳造して鋳塊を作成し、次いでこの鋳塊を熱間
で押出すことにより、鋳塊に含まれる粗大な初晶3i粒
子を破壊して粒径10〜80μmの範囲に微細化すると
共に、共晶Si粒子も粒径15μm以下に微細化せしめ
たものとなすことを特徴とする切削性にすぐれた耐摩耗
性アルミニウム合金材料の製造方法に係るものである。
That is, in this invention, 5i10-30%, Quo, 3-5
%, M (+0.3 to 2%) is melted and cast to create an ingot, and then this ingot is extruded under hot conditions to remove coarse primary crystals contained in the ingot. A wear-resistant aluminum with excellent machinability, characterized in that the 3i particles are destroyed and refined to a grain size in the range of 10 to 80 μm, and the eutectic Si particles are also refined to a grain size of 15 μm or less. The present invention relates to a method for producing an alloy material.

先ず、上記合金成分の添加意義及び組成範囲の限定理由
について説明すれば次のとおりである。
First, the significance of adding the above-mentioned alloy components and the reason for limiting the composition range will be explained as follows.

3iは、周知のとおり耐摩耗性の向上成分として有効な
ものであり、これが10%未満では耐摩耗性に劣るもの
となる一方、逆に30%をこえて過多に含有されると、
鋳造が困難になる。
As is well known, 3i is effective as a wear resistance improving component, and if it is less than 10%, the wear resistance will be poor, but if it is contained in excess of 30%,
Casting becomes difficult.

Cu及びM(+は、いずれも合金の弾痕の向上に寄与す
るものであり、0.3%未満ではその効果が不」−分で
ある。しかしCLIが5%をこえるときは、耐食性が著
しく悪くなる。またMOが2%をこえる場合は、上記の
効果を格別増大せず、むしろ粗大な晶出物を生成して機
械的製質を劣化する。
Cu and M(+) both contribute to improving the bullet hole of the alloy, and if it is less than 0.3%, the effect is ineffective. However, when the CLI exceeds 5%, the corrosion resistance is significantly reduced. Moreover, when MO exceeds 2%, the above effects are not particularly enhanced, but rather coarse crystallized substances are produced and the mechanical quality is deteriorated.

この発明に用いるアルミニウム合金は、上記各成分のほ
かに、他の有意義性のある各種の添加物を含むことが許
容される。例えば好ましい任意的添加元素として、S「
および(または)Pを用いうる。これらの元素はいずれ
も鋳造時に初晶3i粒子を微細化する微細化剤として作
用するものである点で均等物であり、いずれか少なくと
も一方を含有すれば足るが、それぞれ0.005%未満
では上記効果に乏しく、0゜1%をこえても格別効果の
増大を望めない。
The aluminum alloy used in this invention may contain various other significant additives in addition to the above-mentioned components. For example, as a preferable optional additive element, S"
and/or P may be used. All of these elements are equivalent in that they act as refining agents to refine primary 3i particles during casting, and it is sufficient to contain at least one of them, but less than 0.005% of each The above-mentioned effects are poor, and even if it exceeds 0.1%, no particular increase in effect can be expected.

更に他の任意的添加元素として用いうるものとしてNi
、Fe、1ylnを挙げることができる。
Furthermore, Ni can be used as another optional additive element.
, Fe, and yln.

これらの元素は、いずれも合金の耐熱性の向上に有効に
寄与するものであり、この作用の面からいずれも均等物
であって、少なくとも1種または2種以上を含有すれば
足りるが、各成分が0.5%未満では上記の効果の実現
性に乏しく、逆に3%をこえると切削性が著しく悪(な
る欠点を派生する。
All of these elements effectively contribute to improving the heat resistance of the alloy, and in terms of this effect, they are all equivalent, and it is sufficient to contain at least one or two or more of them. If the content is less than 0.5%, it is difficult to achieve the above effects, and if the content exceeds 3%, the machinability is extremely poor (defects arise).

次に、製造工程について説明すると、上記のアルミニウ
ム合金は、これを先ず従来の常法に従う溶解鋳造により
アルミニウム合金鋳物に製作する。この鋳造によって得
られる鋳塊に含まれる初晶3i粒子は、上記SPおよび
(または)Pの添加により微細化されたものとなるが、
それでもなおその粒径は、概ね20〜100μmの範囲
の未だ相当に大きいものである。また、共晶3i粒子も
、粒径30μm以下のかなり大きいものであり、かつそ
の形態が針状を呈するものである。
Next, the manufacturing process will be explained. The above aluminum alloy is first manufactured into an aluminum alloy casting by melting and casting according to a conventional conventional method. The primary 3i particles contained in the ingot obtained by this casting are refined by the addition of SP and/or P, but
Nevertheless, the particle size is still quite large, generally in the range 20-100 μm. Moreover, the eutectic 3i particles are also quite large, with a particle size of 30 μm or less, and have an acicular shape.

そこで、この発明は、これらの初晶及び共晶3i粒子を
含む鋳塊を更に420〜430℃程麿の熱間にて押出し
加工する。しかも、この熱間押出しにより、合金中に含
む粒径10〜1100uの粗大な初晶3i粒子の一部を
破壊し、その粒径が10〜80μmの範囲で、かつ40
μm以上の粒子が60%以下の面積比を占める範囲に微
細化し、かつその分布を均一化せしめると共に、共晶3
i粒子も、これを粒径15μm以下の範囲で、かつ10
μm以下の粒子が60%以下の面積比を占める範囲に微
細化せしめるものとする。
Therefore, in the present invention, the ingot containing these primary crystals and eutectic 3i particles is further extruded at a temperature of about 420 to 430°C. Moreover, this hot extrusion destroys a part of the coarse primary 3i particles with a particle size of 10 to 1100 μm contained in the alloy, and the particle size is in the range of 10 to 80 μm and 40 μm.
The eutectic 3
The i-particles also have a particle size of 15 μm or less and a particle size of 10 μm or less.
It is assumed that the particles are refined to a range in which particles of μm or less occupy an area ratio of 60% or less.

上述のようなこの発明に係る方法によれば、得られるア
ルミニウム合金材料中の前記初晶S1粒子及び初晶S1
粒子の前記粒径範囲による微細化と、その分布の均一化
により、所期される耐摩耗性の良好な保持とそのばらつ
きの減少効果を実現しうるのはもとより、同時に優れた
工具切削性、特に切削工具寿命の大幅な増大効果を実現
しうるものである。従って、従来品より一層卓越した性
能を有する耐摩耗性アルミニウム合金材料を、簡単な製
造工程でかつ比較的低コストに製造し提供することがで
きる効果を奏する。
According to the method according to the present invention as described above, the primary crystal S1 particles and primary crystal S1 in the obtained aluminum alloy material
By making the particles finer within the above-mentioned particle size range and making their distribution more uniform, it is possible not only to maintain the desired wear resistance and reduce its dispersion, but also to achieve excellent tool machinability and In particular, it is possible to achieve the effect of significantly increasing the life of cutting tools. Therefore, it is possible to manufacture and provide a wear-resistant aluminum alloy material having performance superior to conventional products through a simple manufacturing process and at a relatively low cost.

以・下、この発明の実施例を示す。Examples of the present invention will be shown below.

第1表 上記第1表に示す組成のアルミニウム基合金について、
それらを先ず溶解半連続鋳造し、直径120JIII1
1のビレットを製造した。然るところ、ビレットに含む
初晶3i粒子の粒径は10〜100μm、共晶Si粒子
の粒径は30μ′rrL以下でかつ針状を呈するもので
あった。
Table 1 Regarding aluminum-based alloys having the composition shown in Table 1 above,
They were first melted and semi-continuously cast, and the diameter was 120JIII1.
A billet of No. 1 was produced. However, the particle size of the primary 3i particles contained in the billet was 10 to 100 μm, and the particle size of the eutectic Si particles was 30 μ'rrL or less and had a needle shape.

そこで次に、このビレットを、押出温度425℃、押出
しラム速度0.04m /1nの条件で直径30m+*
の丸棒に押出し、所期するアルミニウム合金材料を得た
Next, this billet was extruded at a diameter of 30m+* under the conditions of an extrusion temperature of 425°C and an extrusion ram speed of 0.04m/1n.
The desired aluminum alloy material was obtained by extruding it into a round bar.

この得られた各種アルミニウム合金材料につき、鋳造し
たままの試料と比較してそれらの耐摩耗性及び切削性を
調べたところ、下記第2表及び第3表に示すとおりであ
った。
The wear resistance and machinability of the various aluminum alloy materials thus obtained were compared with as-cast samples, and the results were as shown in Tables 2 and 3 below.

〔以下余白〕[Margin below]

第2表 耐摩耗性(注1) (注1):耐摩耗性試験は、回転円板による大越式耐摩
耗試験機を用いて、摩 擦距離:600m、摩擦速;哀:2 H/sin 、相手材:FC−30 (JIS)の試験条件で実施した。
Table 2 Wear resistance (Note 1) (Note 1): The wear resistance test was conducted using an Okoshi type wear resistance tester with a rotating disk, friction distance: 600 m, friction speed: 2 H/sin, Comparison material: FC-30 (JIS) test conditions were used.

上表の結果から判るように、この発明によって製造され
るアルミニウム合金材料は、鋳造したままのものに較べ
て、明らかに比摩耗量の減少に加えて、そのばらつきの
減少の効果が認められるものであった。
As can be seen from the results in the above table, the aluminum alloy material manufactured by the present invention has the effect of clearly reducing the specific wear amount and reducing its dispersion compared to the as-cast material. Met.

第3表 切削工具寿命(注2) (注2):切削工具寿命は、前すくい角二〇痕、検すく
い角=10度、前逃げ 角ニア度、横逃げ角ニア*、前切 刃角:8度、横切刃角:0度、ノ ーズ半径:0度、の諸元を有する 超硬バイトを使用し、切込み深さ 0.1jw+、送り速喰0.05m。
Table 3 Cutting tool life (Note 2) (Note 2): Cutting tool life is based on front rake angle 20 marks, test rake angle = 10 degrees, front relief angle nearness, side relief angle nearness *, front cutting edge angle Use a carbide cutting tool with the following specifications: 8 degrees, side edge angle: 0 degrees, nose radius: 0 degrees, depth of cut 0.1jw+, feed rate 0.05m.

回転数: 500rl)In 、 trim剤:石油の
切削条件で、切削路1i11t:200mの切削を行っ
たのち、バイト の逃げ面の摩耗幅を測定した。
After cutting a cutting path of 111t: 200 m under the cutting conditions of In (rotation speed: 500 rl) and trim agent: petroleum, the wear width of the flank surface of the cutting tool was measured.

上記第3表の結果により、本発明によるアルミニウム合
金材料は、鋳物品に較べて、バイトの逼げ面の摩耗が極
めて小であり、切削工具寿命を大幅に改善しうるちので
あることがわかる。
From the results in Table 3 above, it can be seen that the aluminum alloy material according to the present invention has extremely little wear on the tightened surface of the cutting tool compared to cast products, and can significantly improve the life of the cutting tool. .

以 上that's all

Claims (1)

【特許請求の範囲】[Claims] 5i10〜30%、Cu0.3〜5%、M(10,3〜
2%を含み、かつ5rO101〜0゜1%、Po、01
〜o、i%のうちの1種または2種以上を含有するアル
ミニウム基合金を溶解鋳造して鋳塊を作成し、次いでこ
の鋳塊を熱間で押出すことにより、鋳塊に含まれる粗大
な初晶3i粒子を破壊して粒径10〜80μmの範囲に
微細化すると共に、共晶S1粒子も粒径15μm以下に
微細化せしめたものとなすことを特徴とする切削性にす
ぐれた耐摩耗性アルミニウム合金材料の製造方法。
5i10~30%, Cu0.3~5%, M(10,3~
2% and 5rO101~0°1%, Po, 01
The coarse particles contained in the ingot are melted and cast by melting and casting an aluminum-based alloy containing one or more of ~o and i%, and then extruding this ingot under hot conditions. The primary crystal 3i grains are destroyed and refined to a grain size in the range of 10 to 80 μm, and the eutectic S1 grains are also refined to a grain size of 15 μm or less. Method of manufacturing abradable aluminum alloy material.
JP16579983A 1983-09-07 1983-09-07 Production of wear resistant aluminum alloy material having excellent machinability Pending JPS6056057A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16579983A JPS6056057A (en) 1983-09-07 1983-09-07 Production of wear resistant aluminum alloy material having excellent machinability
CA000462172A CA1239811A (en) 1983-09-07 1984-08-30 Extruded aluminum alloys having improved wear resistance and process for preparing same
DE8484305971T DE3469187D1 (en) 1983-09-07 1984-08-31 Extruded aluminum alloys having improved wear resistance and process for preparing same
EP84305971A EP0141501B1 (en) 1983-09-07 1984-08-31 Extruded aluminum alloys having improved wear resistance and process for preparing same
US06/894,470 US4737206A (en) 1983-09-07 1986-08-04 Extruded aluminum alloys having improved wear resistance and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16579983A JPS6056057A (en) 1983-09-07 1983-09-07 Production of wear resistant aluminum alloy material having excellent machinability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5468584A Division JPS6070160A (en) 1984-03-21 1984-03-21 Wear resistant extruded aluminum alloy material with superior machinability

Publications (1)

Publication Number Publication Date
JPS6056057A true JPS6056057A (en) 1985-04-01

Family

ID=15819208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16579983A Pending JPS6056057A (en) 1983-09-07 1983-09-07 Production of wear resistant aluminum alloy material having excellent machinability

Country Status (1)

Country Link
JP (1) JPS6056057A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238347A (en) * 1986-04-08 1987-10-19 Kobe Steel Ltd Aluminum alloy excellent in wear resistance
JPH08170137A (en) * 1995-06-26 1996-07-02 Kobe Steel Ltd Aluminum alloy excellent in wear resistance
US5630355A (en) * 1993-06-21 1997-05-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating type compressor with improved cylinder block
CN1047657C (en) * 1993-06-21 1999-12-22 株式会社丰田自动织机制作所 Reciprocating-type compressor
JP2002155328A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
JP2002155330A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
US7821174B2 (en) 2005-06-07 2010-10-26 Mitsuba Corporation Armature of rotating electric machine and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057906A (en) * 1973-09-20 1975-05-20
JPS5067212A (en) * 1973-10-22 1975-06-05
JPS50137316A (en) * 1974-04-20 1975-10-31
JPS50146510A (en) * 1974-05-16 1975-11-25
JPS5298611A (en) * 1976-02-16 1977-08-18 Hitachi Ltd Corrosion-resisting and wear-resisting aluminium alloy and its product ion process
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS59166661A (en) * 1983-03-11 1984-09-20 Showa Alum Corp Preparation of aluminum alloy material excellent in abrasion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057906A (en) * 1973-09-20 1975-05-20
JPS5067212A (en) * 1973-10-22 1975-06-05
JPS50137316A (en) * 1974-04-20 1975-10-31
JPS50146510A (en) * 1974-05-16 1975-11-25
JPS5298611A (en) * 1976-02-16 1977-08-18 Hitachi Ltd Corrosion-resisting and wear-resisting aluminium alloy and its product ion process
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS59166661A (en) * 1983-03-11 1984-09-20 Showa Alum Corp Preparation of aluminum alloy material excellent in abrasion resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238347A (en) * 1986-04-08 1987-10-19 Kobe Steel Ltd Aluminum alloy excellent in wear resistance
JPH0647703B2 (en) * 1986-04-08 1994-06-22 株式会社神戸製鋼所 Aluminum alloy with excellent wear resistance
US5630355A (en) * 1993-06-21 1997-05-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating type compressor with improved cylinder block
CN1047657C (en) * 1993-06-21 1999-12-22 株式会社丰田自动织机制作所 Reciprocating-type compressor
JPH08170137A (en) * 1995-06-26 1996-07-02 Kobe Steel Ltd Aluminum alloy excellent in wear resistance
JP2002155328A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
JP2002155330A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
US7821174B2 (en) 2005-06-07 2010-10-26 Mitsuba Corporation Armature of rotating electric machine and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
US4737206A (en) Extruded aluminum alloys having improved wear resistance and process for preparing same
JPS6056057A (en) Production of wear resistant aluminum alloy material having excellent machinability
JPH0137464B2 (en)
JPS6138254B2 (en)
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
JPS6070160A (en) Wear resistant extruded aluminum alloy material with superior machinability
JPS60204854A (en) Aluminum alloy pulley
JPH0434621B2 (en)
US2242865A (en) Nickel alloy
JPS60197836A (en) Wear-resistant aluminum alloy extrudate
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
JPH0557346B2 (en)
JPH0353378B2 (en)
JPH02107738A (en) Wear-resistant aluminum alloy stock for machining excellent in toughness
JPS60218448A (en) Sliding bearing apparatus
JPS60197837A (en) Wear-resistant aluminum alloy extrudate having excellent machineability
JPS6063361A (en) Manufacture of wear resistant aluminum alloy material having oil retentivity
JPH0116301B2 (en)
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances
US2184692A (en) Free cutting alloys
JPH0332403B2 (en)
JPS6148555A (en) Extruded aluminum alloy material having superior wear resistance
US2026561A (en) Free cutting alloys