JPS6138254B2 - - Google Patents

Info

Publication number
JPS6138254B2
JPS6138254B2 JP21138981A JP21138981A JPS6138254B2 JP S6138254 B2 JPS6138254 B2 JP S6138254B2 JP 21138981 A JP21138981 A JP 21138981A JP 21138981 A JP21138981 A JP 21138981A JP S6138254 B2 JPS6138254 B2 JP S6138254B2
Authority
JP
Japan
Prior art keywords
microns
alloy
aluminum
silicon
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21138981A
Other languages
Japanese (ja)
Other versions
JPS58117850A (en
Inventor
Tsunehisa Sekiguchi
Shinji Fukuda
Katsumi Yokoi
Katsuhiko Nakagawa
Satoshi Hirawata
Shoji Kikunaga
Takayuki Takubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Showa Keikinzoku KK
Original Assignee
Victor Company of Japan Ltd
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Showa Keikinzoku KK filed Critical Victor Company of Japan Ltd
Priority to JP21138981A priority Critical patent/JPS58117850A/en
Publication of JPS58117850A publication Critical patent/JPS58117850A/en
Publication of JPS6138254B2 publication Critical patent/JPS6138254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はアルミニウム合金に関するものであ
り、さらに詳しく述べるならばガイドドラム等の
磁気記録再生装置(以下VTRと略称する)用接
触部品及び光学機器その他の精密機器の摺動、回
転部品等(以下これらを接触部品と総称する)と
して好適なアルミニウム合金に関するものであ
る。 以下、主としてVTR用磁気テープ接触部品を
例にとつてアルミニウム合金に要求される性質を
説明する。 VTRでは磁気テープをドラム上を走行させな
がら、映像及び音声信号の記録・再生を行つてい
るが、このドラムには一般にアルミニウム合金を
採用する。理由は非磁性、軽量が金属アルミニウ
ムの基本的性質であり、且つ各種合金元素の添加
によつて耐摩耗性等が改良されるからである。こ
こで上記ドラムは、磁気ヘツドを装着して磁気テ
ープと接触して回転する回転磁気ヘツド部と、さ
らに磁気テープを安定に走行させるために磁気テ
ープに接触している固定又は回転式のテープ案内
ドラムとから構成されている。これらの回転磁気
ヘツド部及びテープ案内ドラムが直接接触してい
る磁気テープ面は走行中にその磁気テープ面を損
なつてはならず、かかる要求に応じるためにアル
ミニウム合金の性質が極めて重要であることは良
く認識されており、その性質は磁気テープ走行性
との概念で把握されている。特に、再生画像の鮮
明度、色むら等を改善向上するために、磁気テー
プ走行性をアルミニウム合金の材質面と磁気テー
プ走行面の加工性の両面から改善することが強く
要望されている。上記磁気テープ走行性に影響を
与える磁気テープ接触部品用アルミニウム合金の
性質として、要求されている性質は次のとうりで
ある。 (イ) 磁気テープによる摩耗が少ないこと。すなわ
ち耐摩耗性が良好であること。上記ドラム等が
摩耗すると、磁気テープがドラムの磁気テープ
案内面にはりつくという現象で磁気テープの送
りが円滑を欠くことになるから耐摩耗性が必要
であることはいうまでもない。 (ロ) 磁気テープとの摩擦係数が小さいこと。これ
は磁気テープを無理なく安定に走行させるため
に要求される性質である。 (ハ) 機械的性質、特に強度が良好であること。こ
れはVTRのドラムが軽量小型部品として優れ
た機械的性質を要求されるからである。 (ニ) 被切削性が良好であること。VTRのドラム
は切削加工により最終的に仕上げられ、その仕
上面の平滑性が極めて重要であるから、いうま
でもなく要求される性質である。なお、アルミ
ニウム合金は通常熱処理の際の残留応力によつ
て、円筒度、真円度等の寸法精度が影響され、
加工仕上面の平滑性も影響されるから、熱処理
による残留応力の発生を小さくすることも重要
である。 (ホ) 塑性加工性、とりわけ冷間鍛造性が優れてい
ること。これは要求される性能を有した製品の
生産性向上のために要求される性質である。 (ヘ) 熱膨張係数が他のアルミニウム合金と比較し
て小さいこと。 従来、VTR用ドラムとしてAl−Cu系合金例え
ばAC8B、AC8C等の鋳物、Al−Cu−Si系合金例
えば6000系押出材が多用されてきた。しかしなが
ら、これらの材料にあつては、益々要求が荷酷に
なるVTR用としては不満足なものとなるに至
り、上記性質の幾つかを良好にすることを目的と
してアルミニウム合金の組成を改良する特許出願
がなされている。 例えば、特開昭53−93807号公報、特開昭54−
164110号公報及び特開昭52−89512号公報による
と、ケイ素含有量をAl−Si系の過共晶域とし、初
晶Siをアルミニウム基地中に分散させることによ
り耐摩耗性及び機械的強度を高め、これらの性質
を損なわないようにマグネシウムによつて快削性
を具備した点で従来の技術水準を一歩越えるもの
であつたが、硬質の初晶Siがアルミニウム基地か
ら剥離する傾向を有する点で耐摩耗性が不安定で
あることがこれらのアルミニウム合金の一つの難
点である。また、該Al−Si−Cu−Mg合金の切削
加工の際に工具の寿命が短かく、加工表面粗さも
十分でなく、仕上寸法精度が良くない点も難点で
ある。さらにこの合金は過共晶ケイ素含有量から
して鋳造合金であり、塑性加工による特性改良あ
るいは欠陥減少を期し難い。なお、上記特開昭52
−89512号は金型等によつてVTR用ドラムを鋳造
することを記載しているが、その組成及び金型鋳
造を以つてしては共晶組織のSi結晶の粒径が大き
くなることはやむを得ず、マグネシウムの添加に
よる快削性が粗大Si結晶により損われてしまうで
あろう。 次に、特開昭54−153715号公報及び特開昭55−
11118号公報は、上述の公報の如く多量の硬質結
晶(Si結晶)をアルミニウム基地中に生成するこ
とにより耐摩耗性を向上させるのではなく、主と
して被切削性に重点を置いて銅を添加することを
提案している。この合金は鍛造、押出し等の塑性
加工によつてVTR用ドラムとして成形される。
しかし、この材料は被切削性が良好である反面、
ケイ素含有合金と比較して耐摩耗性が低いことは
忍べるとしても仕上面精度及び撥水性に劣るのが
難点である。 本発明者等は、上記したような現状に鑑み、と
くにVTR等の磁気テープと接触するドラムとし
て求められる多面的特性を兼備した実用性の高い
アルミニウム合金を開発することを技術的課題と
して種々研究の結果、本発明に到達したものであ
る。 本発明者が、特に技術的課題とした点は、
VTR用ドラムとして高度且つ安定した耐摩耗性
を有するとともに、金属材料では一般にこれと相
反するとされる被切削性も兼備させる第1点、摩
耗され難い材料であつて、しかも動摩擦係数が小
さいために磁気テープの走行が安定であるという
性質を具備する第2点、高ケイ素含有量でなくと
も撥水性を良好とする第3点、次に、従来のAl
−Si−Cu−Mg系、Al−Cu−Mg系の何れよりも
機械仕上面粗度(精度)が良好となる第4点、及
び塑性加工に適する程度にケイ素含有量を低く保
つとともに、一般にアルミニウム合金材料の分野
ではケイ素含有量に比例すると考えられている耐
摩耗性をさらに良好に保つという第5点、を同時
に満足する接触部品用アルミニウム合金を提供す
る点にある。 このような技術的課題は以下に示す如く合金の
組成と組織との構成により解決される。 すなわち、合金の組成要件としては本願の第1
発明及び第2発明は、重量で、ケイ素2.0〜6.0
%、銅0.5〜4.0%、マグネシウム0.1〜1.2%と、
鉛、ビスマス、スズ及びアンチモンの群から選択
された少なくとも1種の元素を総量で0.5〜2.0%
と、を含有し、残部が不可避的不純物及びアルミ
ニウムからなる合金である。 そして本願の第3発明及び第4発明は、重量
で、ケイ素2.0〜6.0%、銅0.5〜4.0%、マグネシ
ウム0.1〜1.2%と、鉛、ビスマス、スズ及びアン
チモンの群から選択された少なくとも1種の元素
を総量で0.5〜2.0%と、を含有し、マンガン0.1〜
1.0%、ニツケル0.2〜2.0%、亜鉛0.1〜1.0%、ク
ロム0.1〜1.0%、モリブデン0.05〜1.0%及びニオ
ブ0.05〜1.0%の群から選択された少なくとも1
種の元素をさらに含有し、残部が不可避的不純物
及びアルミニウムからなる合金である。 さらに合金の組織要件としては、本願の第1発
明及び第3発明は、特定の鋳造組織を特徴とする
もので、Al−Si共晶組織中のSi、及び金属間化合
物よりなる晶出物及び析出物の粒子の大きさが15
ミクロンを超えず、且つデンドライト二次アーム
間隔(以下DASと略称する)が20ミクロンを超
えない微細組織を有することを特徴とする合金で
ある。そして本願の第2発明及び第4発明は、特
定の塑性加工組織を特徴とするもので、Al−Si共
晶組織中のSi及び金属間化合物よりなる晶出物及
び析出物の粒子の大きさが10ミクロン以下、平均
粒子間隔が10ミクロン以下で均一に分散した微細
組織を有することを特徴とする合金である。 以下、本発明のアルミニウム合金(以下合金と
略称する)をたとえばVTR用ドラムとして用い
る時要求される性質と関連させて、組成、組織及
び製法を説明する。 まず、本発明の合金の組成限定理由について説
明する。 (1) ケイ素 ケイ素はそれ自身が共晶組織の構成相として
優れた性質を奏する他、他の合金成分と結合し
た金属間化合物として相乗作用を果し、主に合
金に耐摩耗性を付与する。なお、本発明におい
てはケイ素含有量は過共晶側にならないように
定められており、このため合金の塑性加工性、
特に冷間加工性は極めて良好なものとなつてい
る。従来の高濃度ケイ素含有アルミニウム合金
は冷間鍛造が可能であつても、製品及び/又は
素材の形状に制限があり、複雑な加工はできな
かつたが、本発明によると、僅かな取代で
VTR用ドラム等の接触部品を製作できるよう
になり、理想的な冷間鍛造性が発揮される。ま
た、ケイ素は金属アルミニウムの熱膨張率を低
下させ且つ撥水性を向上させる元素である。ケ
イ素の含有量が2.0%未満では耐摩耗性が不満
足であり、また6.0%を超えると塑性加工性、
特に冷間鍛造性が極端に低下する。好ましいケ
イ素含有量は4.0〜5.5%である。 (2) 銅 銅はアルミニウム合金基地に固溶して合金の
強度を高め且つ被切削性を改良する元素であ
り、さらに合金に熱処理性を付与することによ
つてもこれらの性質を改良する。その含有量が
0.5%未満では強度及び被切削性が不充分であ
る他、熱処理性も顕著ではない。一方、銅の含
有量が40%を越えると、合金塊の鋳造性が劣化
し、特に熱間割れを起し易い障害がある。また
銅含有量が4.0%を越えると合金の成形加工時
の塑性加工性も劣化する。好ましい銅の含有量
は1.0〜2.5%である。 (3) マグネシウム マグネシウムは合金基地に固溶するととも
に、過剰のケイ素等と結合してMg2Si等の析出
物として合金中に存在する。マグネシウムは合
金の機械的強度、特に耐力向上に寄与し、合金
に熱処理性を付与する他、銅とともに基地中に
固溶していることによる相乗効果により、合金
の被切削性を一層向上させる。その他Mg2Siを
生成したことにより、マグネシウムとケイ素の
相乗効果が現われ、合金の動摩擦係数を一層低
下させることによつて磁気テープとのなじみ性
が格段と良好になる。マグネシウム含有量が
0.1%未満ではこのような効果が少なく、1.2%
を越えると合金溶湯の酸化がマグネシウムのた
めに促進され、また塑性加工性も劣化するので
好ましくない。好ましいマグネシウム含有量は
0.4〜1.0%である。 (4) 鉛、ビスマス、スズ及びアンチモン これらの元素は低融点軟質金属であり、且つ
アルミニウム中への固溶量が少なく単独又は化
合物として存在し、それによつて合金の被切削
性を著しく改善する。被削性の向上とは、切削
抵抗の減少、切粉の分断微細化と切削仕上面の
精度向上を意味し、単独より、2種以上の方が
より効果的である。これらの元素の少なくとも
1種を総量で0.5%以下では、上記特性に対し
て効果はなく、2.0%以上では塑性加工性及び
靭性が極端に低下するため得策ではない。 好ましい含有量は0.8〜1.4%である。 続いて、本願第3発明及び第4発明の添加元
素について説明する。 (5) マンガン、ニツケル、亜鉛、クロム、モリブ
デン及びニオブ これらの元素は、いずれも下記含有量範囲に
おいて、合金の組織を一層微細化し、特にAl
−Si共晶を積極的に形成させる効果があり、こ
の結果切削加工後のテープ接触面の一層の緻密
平滑化がもたらされ、テープとの動摩擦係数、
なじみ性の向上に貢献する。その含有量は、マ
ンガン0.1〜1.0%、好ましくは0.3〜0.8%、ニ
ツケル0.2〜2.0%、好ましくは0.5〜1.5%、亜
鉛0.1〜1.0%、好ましくは0.3〜0.7%、クロム
0.1〜1.0%、好ましくは0.4〜0.8%、モリブデ
ン0.05〜1.0%、好ましくは0.1〜0.7%、ニオブ
0.05〜1.0%、好ましくは0.1〜0.7%である。こ
れら元素はその下限値未満では組織微細化の効
果はなく、上限値を越えると加工性(切削及び
塑性加工性)が有害な影響を受ける。 なお、本願合金にTi−Bを総量で0.01〜0.1重
量%を添加し、組織微細化を一層図るのも有効で
ある。不純物の含有量は合計で通常2.0%以下が
望ましい。 続いて、本発明の合金の組織的要件の限定理由
について説明する。 本発明合金の第一の使用形態は、鋳造材であ
り、これに切削加工を施して接触部品に仕上げ成
形する。その場合、合金材の主として切削性(切
削の処理性、切削仕上面の表面粗さ、穴あけ性)
及び磁気テープの動摩擦係数、耐摩耗性は、鋳造
組織中のDAS及び晶出物、析出物の粒子の大き
さと密接な関係があることが認められた。すなわ
ち、上記の諸性質が改善された鋳造材としては、
組織中のDASが20ミクロンを超えず、かつ、Al
−Cu、Mg−Si、Al−Mn−Fe、Al−Fe−Si、Al
−Cu−Mg等の金属間化合物、及びAl−Si共晶組
織中のSiのごとき晶出物、析出物の粒子の大きさ
が15ミクロンを越えないことが必要である。この
ような組織を有する鋳造材の製造方法としては、
鋳塊内のどの位置でも15℃/sec、以上の凝固速度
で急速冷却鋳造することにより達せられる。この
ような凝固速度は、単純な金型鋳造或はダイキヤ
ストでは得られず、冷却速度の大きい連続鋳造法
が適している。特に特公昭54−42847号に開示さ
れる気体加圧方式のホツトトツプ連続鋳造法が好
適であり、上記の組織要件を満足するのみでな
く、平滑鋳肌でしかも均質な鋳塊が得られる。 本発明合金の第二の使用形態は、塑性加工材で
あり、これに切削加工を施して接触部品に、仕上
げ成形する。ここで塑性加工とは、鋳造材を、熱
間・冷間鍛造、圧延加工、引抜加工、スエージ加
工、伸線加工、押出加工等の展伸加工を包含す
る。かかる塑性加工材は、切削性と耐摩耗性とい
う相反する性質がより一層兼備され、前記した鋳
造材に比しさらに一段と諸特性は改善される。た
だし、このような特性の改善は、塑性加工組織で
あつて事実上DASは消滅していることは言うま
でもないが、前記した金属間化合物、Al−Si共晶
組織中のSiのごとき晶出物及び析出物の粒子の大
きさが10ミクロン以下、その平均粒子間隔が10ミ
クロン以下で均一に分散した微細組織であつては
じめて顕現されることが認められた。このような
塑性加工材は、前記したごとき組織要件を満足す
る鍛造材に、加工率30%以上の塑性加工を施すこ
とによつて得られる。上記晶出物、析出物の粒子
の全体積%は主として合金組成により決定され一
定であるが、塑性加工によつてそれら粒子を分断
微細化し、そし個数を多くし、すなわち粒子間隔
を小さくすると共に、塑性流動によつて微細粒子
の均一分散化という組織コントロールが行われ
る。その結果として合金材の加工性と接触部品と
しての特性が一段と改善されたものとなる。な
お、前記鍛造材のうち、特公昭54−42847号に開
示される気体加圧ホツトトツプ連続鍛造法によつ
て製造された鋳造材は塑性加工性とくに冷間鍛造
性が良好であり、複雑な加工を高鍛錬比で加えて
も、割れが発生しにくいばかりでなく、機械的性
質も改善される。 本発明合金は鋳造材又は塑性加工材を非熱処理
状態で使用するが、あるいは均質化処理、T6
理等の熱処理を行なつて使用する。 以下、本発明を実施例に基づいて説明する。し
かし、本発明は実施例により限定されるものでは
ない。 実施例 第1表に組成を示す合金を鋳造により調製し
た。第1表の合金材No.1〜No.14及びNo.17〜19
は凝固速度23℃/secに保持して前記気体加圧ホツ
トトツプ連続鋳造により直径68mmの垂直連続鋳造
棒に製造したものであり、得られた鋳塊横断面の
内部組織を観察したところ析出物及び晶出物は微
細均一に分散していることが認められた。代表例
として合金材No.4の100倍の顕微鏡組織写真を第
1図に示す。なおこの組成写真においてDASの
大きさは最大16ミクロン、析出物及び晶出物の粒
子寸法は最大7ミクロンであつた。 次に、第1表の合金材No.15及びNo.16は本発
明と同一組成の合金を金型鋳造によつて上記と同
一直径の円柱状に造形して得られた比較例の合金
材であり、前述の本発明の合金材に比較して粗い
組織を呈していた。合金材No.15の顕微鏡組織を
第2図に示す。このDASの大きさは最大36ミク
ロン、析出物及び晶出物の粒子寸法は最大15ミク
ロン、その粒子間隔は13ミクロン以下であつた。 上記鋳塊は何れも、ピーリング機によつて表面
鋳肌を皮削りした後、480℃×1hrの均質化熱処理
を行なつた。第1表の分析値はこの処理后の合金
材の分析値を示す。また、このように処理を施し
た鋳造材より直接切出しを行なつて強度特性試験
(引張り強さ、伸び)、切削性試験(切粉処理性、
孔あけ性)、及び冷間鍛造性試験の試験片aを切
削成形した。一方、表面粗さ、比摩耗量、テープ
走行性、動摩擦係数、真円度の試験片bは
No.13、及びNo.14の合金材以外は上記均質化処
理後の鋳造材を第3図に示すVTRドラム形状に
加工率60%の冷間鍛造成形を施しさらに切削成形
した。上記試験片a及びbはいづれもT6熱処理
(500℃×4hr加熱後、温水冷焼入れ、170℃×9hr
の人工時効処理)を施した後供試した。試験片b
のT6熱処理前の諸元はD=63mm、d=40.5mm、
H1=16mm、H2=8mmであり、T6熱処理後さらに
ダイヤモンド切削刃を有する切削工具により仕上
切削して、全面を鏡面状態とした。この供試片b
の組織にはいづれもDASは観測しえず、Al−Si
共晶組織中のSi、及び金属間化合物よりなる晶出
物、及び析出物の粒子の大きさが最大5ミクロ
ン、その粒子間隔の平均値が7.5ミクロン以下で
均一に分散した微細組織を呈していた。 No.13、及びNo.14の合金材の試験片bは、前
記した均質化処理後の鋳造材を塑性加工すること
なく切削加工によつて第3図に示す形状に成形し
たものであり、その組織はいづれもDASの大き
さは最大15ミクロン、晶出物及び析出物の粒子寸
法は最大8ミクロンの微細組織であつた。 各試験法の概要は次のとおりであつた。 (イ) 表面粗さ 表面粗さ計によりダイヤモンド切削工具加工
面の粗さを測定した。 (ロ) 耐摩耗性 大越式摩耗試験機により、相手材をFC30と
し、摩擦速度3m/sec、荷重18.2Kg、摩擦距離
600m、無潤滑の状態で試験し、単位面積のKg
当りの比摩耗量を測定した。 (ハ) テープ走行性 1500時間VTR用磁気テープを走行させた
後、再生画像の安定性をVTRにより試験し
た。 (ニ) 動摩擦係数 VTRと同様の走行方法で供試片の片方には
50grの逆張力(Wp)を負荷し、18.0cm/秒の
速度で磁気テープを供試片上を走行させ、負荷
と相対する片側で作用荷重(Wr)を測定し
て、動摩擦係数を測定した。 (ホ) 真円度 冷間鍛造、T6熱処理、切削仕上げ加工後に
仕上げ面外周を三次元測定機により真円度を測
定した。 (ヘ) 冷間鍛造性 第4図に示すウエツジ試験片1(L=150
mm、t0=15mm、t1=3mm、W=20mm)を第5図
の如く金敷2上に置き、1/2トンハンマー3に
より鍛伸し、鍛伸後の試片4の割れにより限界
加工率を(ta−ta′/ta)により測定した。限界
加工率60%以上を「良」、45%未満を「不良」、
その中間を「やや良」とした。 (ト) 切削性 コンパツクスダイヤモンドの切削工具で、切
削速度200m/min、切込み0.15mmの条件で切削
し、切粉(屑)の形状により処理性を評価し
た。すなわち切粉(屑)の形状が、粒状又は細
かい円弧状の場合「良」、細かい環状の場合
「やや良」、ラセン状に連続した場合「不良」と
した。また、1.5mmの超硬ドリルを使用し、
450rpmで連続100回、厚さ8mmの試験片に孔明
け加工した時のドリルの摩耗量で孔明け性を評
価した。 これらの結果を第2表に示す。
This invention relates to aluminum alloys, and more specifically, contact parts for magnetic recording and reproducing devices (hereinafter referred to as VTR) such as guide drums, and sliding and rotating parts of optical equipment and other precision equipment (hereinafter referred to as these). The present invention relates to an aluminum alloy suitable for use as contact parts (generally referred to as contact parts). The properties required of aluminum alloys will be explained below, mainly using magnetic tape contact parts for VTRs as an example. In a VTR, video and audio signals are recorded and played back by running magnetic tape on a drum, and this drum is generally made of aluminum alloy. The reason is that non-magnetism and light weight are the basic properties of metallic aluminum, and wear resistance etc. are improved by adding various alloying elements. Here, the drum includes a rotating magnetic head section that is attached with a magnetic head and rotates in contact with the magnetic tape, and a fixed or rotating tape guide that is in contact with the magnetic tape to keep the magnetic tape running stably. It consists of a drum. The magnetic tape surface with which these rotating magnetic heads and tape guide drums are in direct contact must not be damaged during running, and the properties of the aluminum alloy are extremely important to meet this requirement. This is well recognized, and its properties are understood through the concept of magnetic tape running properties. In particular, in order to improve the clarity, color unevenness, etc. of reproduced images, it is strongly desired to improve the running properties of the magnetic tape from both the viewpoint of the material of the aluminum alloy and the workability of the running surface of the magnetic tape. The required properties of the aluminum alloy for magnetic tape contact parts that affect the running properties of the magnetic tape are as follows. (a) Less wear due to magnetic tape. In other words, it should have good wear resistance. It goes without saying that abrasion resistance is necessary because when the drum or the like is worn out, the magnetic tape sticks to the magnetic tape guide surface of the drum, making the feeding of the magnetic tape less smooth. (b) The coefficient of friction with the magnetic tape is small. This is a property required to run the magnetic tape smoothly and stably. (c) Good mechanical properties, especially strength. This is because the VTR drum is a lightweight, small component that requires excellent mechanical properties. (d) Good machinability. VTR drums are finally finished by cutting, and the smoothness of the finished surface is extremely important, so it goes without saying that this is a required property. Note that the dimensional accuracy of aluminum alloys, such as cylindricity and roundness, is usually affected by residual stress during heat treatment.
Since the smoothness of the finished surface is also affected, it is also important to reduce the generation of residual stress due to heat treatment. (e) Excellent plastic workability, especially cold forgeability. This is a property required to improve the productivity of products with the required performance. (f) The coefficient of thermal expansion is small compared to other aluminum alloys. Conventionally, castings of Al-Cu alloys such as AC8B and AC8C, and extruded materials of Al-Cu-Si alloys such as 6000 series have been widely used as drums for VTRs. However, these materials have come to be unsatisfactory for VTR applications, which are becoming increasingly demanding, and patents have been issued to improve the composition of aluminum alloys with the aim of improving some of the above properties. An application has been filed. For example, JP-A-53-93807, JP-A-54-
According to JP-A No. 164110 and JP-A-52-89512, wear resistance and mechanical strength are improved by setting the silicon content to the Al-Si hypereutectic region and dispersing primary Si into the aluminum matrix. It was a step beyond the conventional technology in that it was made with magnesium to provide free machinability without impairing these properties, but the hard primary crystal silicon had a tendency to peel off from the aluminum matrix. One drawback of these aluminum alloys is that their wear resistance is unstable. In addition, when cutting the Al-Si-Cu-Mg alloy, the tool life is short, the machined surface roughness is not sufficient, and the finished dimensional accuracy is not good. Furthermore, this alloy is a cast alloy due to its hypereutectic silicon content, and it is difficult to expect properties to be improved or defects to be reduced by plastic working. In addition, the above-mentioned Japanese Patent Application Publication No. 52
No. 89512 describes that VTR drums are cast using a mold, etc., but the composition and mold casting do not increase the grain size of the Si crystals in the eutectic structure. Unavoidably, the free machinability due to the addition of magnesium will be impaired by the coarse Si crystals. Next, JP-A-54-153715 and JP-A-55-
Publication No. 11118 does not improve wear resistance by generating a large amount of hard crystals (Si crystals) in the aluminum base as in the above-mentioned publication, but instead focuses on machinability and adds copper. I am proposing that. This alloy is formed into a VTR drum through plastic working such as forging and extrusion.
However, while this material has good machinability,
Although the lower wear resistance compared to silicon-containing alloys can be tolerated, the disadvantage is that the finished surface precision and water repellency are inferior. In view of the above-mentioned current situation, the present inventors have conducted various researches with the technical objective of developing a highly practical aluminum alloy that has the multifaceted properties required for drums that come into contact with magnetic tapes such as VTRs. As a result, we have arrived at the present invention. The technical issues that the inventor has specifically focused on are:
The first point is that it has high and stable wear resistance as a VTR drum, and also has machinability, which is generally considered to be contradictory to metal materials. The second point is that the running of the magnetic tape is stable, the third point is that it has good water repellency even without a high silicon content, and the second point is that the magnetic tape has the property of being stable in running.
-The fourth point is that the machined surface roughness (accuracy) is better than either the Si-Cu-Mg system or the Al-Cu-Mg system, and the silicon content is kept low enough to be suitable for plastic working, and it is generally It is an object of the present invention to provide an aluminum alloy for contact parts that simultaneously satisfies the fifth point of maintaining better wear resistance, which is considered to be proportional to silicon content in the field of aluminum alloy materials. These technical problems can be solved by the composition and structure of the alloy as shown below. In other words, the compositional requirements for the alloy are the first in this application.
The invention and the second invention contain 2.0 to 6.0 silicon by weight.
%, copper 0.5-4.0%, magnesium 0.1-1.2%,
At least one element selected from the group of lead, bismuth, tin, and antimony in a total amount of 0.5 to 2.0%
It is an alloy containing , and the remainder consisting of unavoidable impurities and aluminum. And the third invention and the fourth invention of the present application contain 2.0 to 6.0% silicon, 0.5 to 4.0% copper, 0.1 to 1.2% magnesium, and at least one member selected from the group of lead, bismuth, tin, and antimony. Contains 0.5 to 2.0% of the elements in total, and 0.1 to 2.0% of manganese.
1.0%, nickel 0.2-2.0%, zinc 0.1-1.0%, chromium 0.1-1.0%, molybdenum 0.05-1.0% and niobium 0.05-1.0%.
It is an alloy that further contains certain elements, with the remainder consisting of unavoidable impurities and aluminum. Furthermore, as for the structural requirements of the alloy, the first and third inventions of the present application are characterized by a specific cast structure, and include Si in the Al-Si eutectic structure and crystallized substances consisting of intermetallic compounds. Precipitate particle size is 15
The alloy is characterized by having a microstructure in which the dendrite secondary arm spacing (hereinafter abbreviated as DAS) does not exceed 20 microns. The second invention and the fourth invention of the present application are characterized by a specific plastic working structure, and the particle size of crystallized substances and precipitates made of Si and intermetallic compounds in the Al-Si eutectic structure is This alloy is characterized by having a uniformly dispersed microstructure with a grain size of 10 microns or less and an average particle spacing of 10 microns or less. Below, the composition, structure, and manufacturing method of the aluminum alloy of the present invention (hereinafter abbreviated as alloy) will be explained in relation to the properties required when it is used, for example, as a drum for a VTR. First, the reason for limiting the composition of the alloy of the present invention will be explained. (1) Silicon In addition to exhibiting excellent properties as a constituent phase of the eutectic structure, silicon acts synergistically as an intermetallic compound combined with other alloy components, primarily imparting wear resistance to the alloy. . In addition, in the present invention, the silicon content is determined so as not to be on the hypereutectic side, so that the plastic workability of the alloy
In particular, cold workability is extremely good. Although conventional high-concentration silicon-containing aluminum alloys can be cold-forged, there are restrictions on the shape of the product and/or the material, and complex processing is not possible.
It is now possible to manufacture contact parts such as drums for VTRs, and exhibits ideal cold forging properties. Further, silicon is an element that lowers the thermal expansion coefficient of metal aluminum and improves water repellency. If the silicon content is less than 2.0%, the wear resistance will be unsatisfactory, and if it exceeds 6.0%, the plastic workability will be poor.
In particular, cold forgeability is extremely reduced. The preferred silicon content is 4.0-5.5%. (2) Copper Copper is an element that is dissolved in the aluminum alloy matrix to increase the strength of the alloy and improve machinability, and also improves these properties by imparting heat treatability to the alloy. Its content is
If it is less than 0.5%, strength and machinability are insufficient, and heat treatability is also not remarkable. On the other hand, if the copper content exceeds 40%, the castability of the alloy ingot deteriorates, and there is a problem in that it is particularly susceptible to hot cracking. Furthermore, if the copper content exceeds 4.0%, the plastic workability during forming of the alloy will also deteriorate. The preferred copper content is 1.0-2.5%. (3) Magnesium Magnesium forms a solid solution in the alloy base, and also exists in the alloy as precipitates such as Mg 2 Si by combining with excess silicon and the like. Magnesium contributes to improving the mechanical strength of the alloy, particularly its yield strength, and imparts heat treatability to the alloy. Magnesium further improves the machinability of the alloy due to the synergistic effect of solid solution with copper in the matrix. In addition, by producing Mg 2 Si, a synergistic effect between magnesium and silicon appears, further reducing the coefficient of dynamic friction of the alloy, and thereby improving compatibility with the magnetic tape. Magnesium content
Below 0.1%, this effect is small, and 1.2%
Exceeding this is not preferable because the oxidation of the molten alloy will be accelerated by the magnesium and the plastic workability will also deteriorate. The preferred magnesium content is
It is 0.4-1.0%. (4) Lead, bismuth, tin, and antimony These elements are soft metals with a low melting point, and exist alone or as a compound with a small amount of solid solution in aluminum, thereby significantly improving the machinability of the alloy. . Improving machinability means reducing cutting resistance, fragmenting chips into fine particles, and improving the accuracy of the cut surface, and two or more types are more effective than using them alone. If the total amount of at least one of these elements is less than 0.5%, there will be no effect on the above properties, and if it is more than 2.0%, the plastic workability and toughness will be extremely reduced, which is not a good idea. The preferred content is 0.8-1.4%. Next, the additive elements of the third and fourth inventions of the present application will be explained. (5) Manganese, nickel, zinc, chromium, molybdenum, and niobium All of these elements, in the following content ranges, further refine the structure of the alloy, especially Al
-It has the effect of actively forming Si eutectic, which results in an even denser and smoother tape contact surface after cutting, which increases the coefficient of kinetic friction with the tape.
Contributes to improved familiarity. Its content is manganese 0.1-1.0%, preferably 0.3-0.8%, nickel 0.2-2.0%, preferably 0.5-1.5%, zinc 0.1-1.0%, preferably 0.3-0.7%, chromium
0.1-1.0%, preferably 0.4-0.8%, molybdenum 0.05-1.0%, preferably 0.1-0.7%, niobium
0.05-1.0%, preferably 0.1-0.7%. Below the lower limit of these elements, there is no effect of microstructural refinement, and when the upper limit is exceeded, workability (cutting and plastic workability) is adversely affected. Note that it is also effective to add Ti-B in a total amount of 0.01 to 0.1% by weight to the alloy of the present application to further refine the structure. The total content of impurities is usually preferably 2.0% or less. Next, the reasons for limiting the structural requirements of the alloy of the present invention will be explained. The first form of use of the alloy of the present invention is as a cast material, which is subjected to cutting to be finished formed into a contact part. In that case, the machinability of the alloy material (cutting processability, surface roughness of the cut surface, drilling performance)
It was also found that the dynamic friction coefficient and wear resistance of magnetic tapes are closely related to the particle sizes of DAS, crystallized substances, and precipitates in the cast structure. In other words, cast materials with improved properties listed above include:
DAS in tissue does not exceed 20 microns and Al
−Cu, Mg−Si, Al−Mn−Fe, Al−Fe−Si, Al
- It is necessary that the particle size of intermetallic compounds such as Cu-Mg and crystallized substances and precipitates such as Si in the Al-Si eutectic structure does not exceed 15 microns. As a method for manufacturing a cast material having such a structure,
This can be achieved by rapid cooling casting at a solidification rate of 15°C/sec or higher at any location within the ingot. Such a solidification rate cannot be obtained by simple mold casting or die casting, and a continuous casting method with a high cooling rate is suitable. In particular, the gas pressurized hot-top continuous casting method disclosed in Japanese Patent Publication No. 54-42847 is suitable, as it not only satisfies the above-mentioned microstructural requirements but also provides a homogeneous ingot with a smooth cast surface. The second form of use of the alloy of the present invention is as a plastically worked material, which is subjected to a cutting process and then finished formed into a contact part. Here, plastic working includes stretching processing of a cast material, such as hot/cold forging, rolling, drawing, swaging, wire drawing, and extrusion. Such a plastically worked material has the contradictory properties of machinability and wear resistance, and its various properties are further improved compared to the above-mentioned cast material. However, it goes without saying that this improvement in properties is due to the plastic working structure and DAS has virtually disappeared, but it is due to the intermetallic compounds mentioned above and crystallized substances such as Si in the Al-Si eutectic structure. It was also observed that the precipitates were only manifested when the particle size was 10 microns or less, the average particle spacing was 10 microns or less, and the microstructure was uniformly dispersed. Such a plastically worked material can be obtained by subjecting a forged material that satisfies the above-mentioned structural requirements to plastic working at a processing rate of 30% or more. The total volume percentage of the crystallized and precipitated particles is mainly determined by the alloy composition and is constant, but by plastic working, these particles are divided into fine particles, and the number of particles is increased, that is, the particle spacing is reduced. , the microstructure is controlled by uniform dispersion of fine particles through plastic flow. As a result, the workability of the alloy material and its properties as a contact part are further improved. Among the forged materials mentioned above, the cast materials manufactured by the gas pressurized hot-top continuous forging method disclosed in Japanese Patent Publication No. 54-42847 have good plastic workability, especially cold forgeability, and are suitable for complex processing. Even when added at a high forging ratio, not only is cracking less likely to occur, but the mechanical properties are also improved. The alloy of the present invention is used as a cast material or a plastically worked material without being heat treated, or after being subjected to heat treatment such as homogenization treatment or T6 treatment. Hereinafter, the present invention will be explained based on examples. However, the present invention is not limited to the examples. Examples Alloys whose compositions are shown in Table 1 were prepared by casting. Alloy materials No.1 to No.14 and No.17 to 19 in Table 1
was manufactured into a vertically continuously cast bar with a diameter of 68 mm by the above-mentioned gas-pressure hot-top continuous casting while maintaining the solidification rate at 23°C/sec. When the internal structure of the obtained ingot cross section was observed, precipitates and It was observed that the crystallized substances were finely and uniformly dispersed. As a representative example, a 100x microscopic micrograph of alloy material No. 4 is shown in Figure 1. In this composition photograph, the maximum size of DAS was 16 microns, and the maximum particle size of precipitates and crystallized substances was 7 microns. Next, alloy materials No. 15 and No. 16 in Table 1 are alloy materials of comparative examples obtained by molding alloys with the same composition as the present invention into a cylindrical shape with the same diameter as above by die casting. The structure was coarser than that of the alloy material of the present invention described above. Figure 2 shows the microscopic structure of alloy material No. 15. The maximum size of this DAS was 36 microns, the maximum particle size of precipitates and crystallized substances was 15 microns, and the particle spacing was 13 microns or less. All of the above ingots were subjected to homogenization heat treatment at 480° C. for 1 hour after having their surface cast surfaces scraped using a peeling machine. The analytical values in Table 1 show the analytical values of the alloy material after this treatment. In addition, we directly cut out the cast material treated in this way and conducted strength property tests (tensile strength, elongation) and machinability tests (chip handling properties,
Test piece a for the drilling property test and cold forgeability test was cut and formed. On the other hand, test piece b for surface roughness, specific wear amount, tape runnability, coefficient of dynamic friction, and roundness was
With the exception of alloy materials No. 13 and No. 14, the cast materials after the above homogenization treatment were subjected to cold forging at a processing rate of 60% into the VTR drum shape shown in FIG. 3, and were further cut and formed. The above test pieces a and b were both T6 heat treated (heated at 500°C for 4 hours, then quenched in hot water, then quenched at 170°C for 9 hours.
It was tested after undergoing artificial aging treatment. Test piece b
The specifications before T6 heat treatment are D=63mm, d=40.5mm,
H 1 =16 mm, H 2 =8 mm, and after the T6 heat treatment, finishing cutting was performed using a cutting tool having a diamond cutting blade to make the entire surface mirror-finished. This specimen b
DAS cannot be observed in any of the structures, and Al−Si
The particles of Si in the eutectic structure and crystallized substances and precipitates made of intermetallic compounds have a maximum particle size of 5 microns, and the average particle spacing is 7.5 microns or less, presenting a uniformly dispersed microstructure. Ta. Test pieces b of alloy materials No. 13 and No. 14 were formed into the shape shown in FIG. 3 by cutting the cast material after the above-mentioned homogenization treatment without plastic working. The microstructures had a maximum DAS size of 15 microns and a maximum particle size of crystallized matter and precipitates of 8 microns. The outline of each test method is as follows. (a) Surface roughness The roughness of the diamond cutting tool machined surface was measured using a surface roughness meter. (b) Wear resistance Using an Okoshi type abrasion tester, the mating material was FC30, the friction speed was 3 m/sec, the load was 18.2 kg, and the friction distance was measured.
Tested at 600m without lubrication, kg per unit area
The specific wear amount per contact was measured. (c) Tape running properties After running the VTR magnetic tape for 1500 hours, the stability of the reproduced image was tested using a VTR. (d) Coefficient of dynamic friction When running in the same way as VTR, one side of the specimen was
Load a reverse tension (W p ) of 50 gr, run the magnetic tape over the specimen at a speed of 18.0 cm/sec, measure the acting load (W r ) on one side facing the load, and measure the coefficient of dynamic friction. did. (E) Roundness After cold forging, T6 heat treatment, and finishing cutting, the roundness of the finished surface was measured using a coordinate measuring machine. (f) Cold forgeability Wedge test piece 1 shown in Figure 4 (L=150
mm, t 0 = 15 mm, t 1 = 3 mm, W = 20 mm) was placed on the anvil 2 as shown in Fig. 5, and forged with a 1/2 ton hammer 3, reaching the limit due to cracks in the specimen 4 after forging. The processing rate was measured by (ta-ta'/ta). A limit machining rate of 60% or more is considered "good", a limit of less than 45% is "poor",
A score in the middle was rated as "somewhat good." (G) Machinability Cutting was performed using a Compax Diamond cutting tool at a cutting speed of 200 m/min and a depth of cut of 0.15 mm, and the processability was evaluated based on the shape of chips. That is, if the shape of the chips (chip) was granular or finely arcuate, it was evaluated as "good", if it was in the shape of a fine ring, it was evaluated as "slightly good", and if it was continuous in a spiral shape, it was evaluated as "poor". Also, using a 1.5mm carbide drill,
Drillability was evaluated based on the amount of wear on the drill when drilling holes in a test piece with a thickness of 8 mm 100 times in a row at 450 rpm. These results are shown in Table 2.

【表】【table】

【表】 以上の説明から、本発明の合金が接触部品用と
して好適な総合性能を有していることが明らかで
あり、また良好な諸性質は磁気記録再生装置、各
種の光学機械、その他の精密機器の摺動、回転部
品等として極めて適切であることも理解されるで
あろう。
[Table] From the above explanation, it is clear that the alloy of the present invention has comprehensive performance suitable for contact parts, and its good properties are used in magnetic recording and reproducing devices, various optical machines, and other applications. It will also be understood that it is extremely suitable for sliding and rotating parts of precision equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金の連続鋳造材の顕微鏡組織
写真(100倍)を示し、第2図は比較例合金の金
型鋳造材の顕微鏡組織写真(100倍)であり、第
3図はV.T.R.用回転ドラム形状試験片の図面、
第4図及び第5図はそれぞれ冷間鍛造試験片及び
試験法の説明である。 1……試験片、2……金敷、3……1/2トンハ
ンマー、4……試験片。
Figure 1 shows a microscopic structure photograph (100x) of a continuously cast material of the invention alloy, Fig. 2 shows a microscopic structure photograph (100x) of a mold cast material of a comparative example alloy, and Fig. 3 shows a VTR. Drawing of rotating drum shape test piece for
FIG. 4 and FIG. 5 are explanations of the cold forging test piece and the test method, respectively. 1...Test piece, 2...Anvil, 3...1/2 ton hammer, 4...Test piece.

Claims (1)

【特許請求の範囲】 1 重量で、ケイ素2.0〜6.0%、銅0.5〜4.0%、
マグネシウム0.1〜1.2%と、鉛、ビスマス、スズ
及びアンチモンの群から選択された少なくとも1
種の元素を総量で0.5〜2.0%と、を含有し、残部
が不可避的不純物及びアルミニウムからなり、か
つAl−Si共晶組織中のSi及び、金属間化合物より
なる晶出物及び析出物の粒子の大きさが15ミクロ
ンを超えず、且つデンドライト二次アーム間隔が
20ミクロンを超えない微細組織を有することを特
徴とする接触部品用アルミニウム合金。 2 重量で、ケイ素2.0〜6.0%、銅0.5〜4.0%、
マグネシウム0.1〜1.2%と、鉛、ビスマス、スズ
及びアンチモンの群から選択された少なくとも1
種の元素を総量で0.5〜2.0%と、を含有し、残部
が不可避的不純物及びアルミニウムからなり、か
つAl−Si共晶組織中のSi及び、金属間化合物より
なる晶出物及び析出物の粒子の大きさが10ミクロ
ン以下、平均粒子間隔が10ミクロン以下で均一に
分散した微細組織を有することを特徴とする接触
部品用アルミニウム合金。 3 重量で、ケイ素2.0〜6.0%、銅0.5〜4.0%、
マグネシウム0.1〜1.2%と、鉛、ビスマス、スズ
及びアンチモンの群から選択された少なくとも1
種の元素を総量で0.5〜2.0%と、を含有し、マン
ガン0.1〜1.0%、ニツケル0.2〜2.0%、亜鉛0.1〜
1.0%、クロム0.1〜1.0%、モリブデン0.05〜1.0
%及びニオブ0.05〜1.0%の群から選択された少
なくとも1種の元素をさらに含有し、残部が不可
避的不純物及びアルミニウムからなり、かつAl
−Si共晶組織中のSi及び、金属間化合物よりなる
晶出物及び析出物の粒子の大きさが15ミクロンを
超えず、且つデンドライト二次アーム間隔が20ミ
クロンを超えない微細組織を有することを特徴と
する接触部品用アルミニウム合金。 4 重量で、ケイ素2.0〜6.0%、銅0.5〜4.0%、
マグネシウム0.1〜1.2%と、鉛、ビスマス、スズ
及びアンチモンの群から選択された少なくとも1
種の元素を総量で0.5〜2.0%と、を含有し、マン
ガン0.1〜1.0%、ニツケル0.2〜2.0%、亜鉛0.1〜
1.0%、クロム0.1〜1.0%、モリブデン0.05〜1.0
%及びニオブ0.05〜1.0%の群から選択された少
なくとも1種の元素をさらに含有し、残部が不可
避的不樹物及びアルミニウムからなり、かつAl
−Si共晶組織中のSi及び、金属間化合物よりなる
晶出物及び析出物の粒子の大きさが10ミクロン以
下、平均粒子間隔が10ミクロン以下で均一に分散
した微細組織を有することを特徴とする接触部品
用アルミニウム合金。
[Claims] 1. Silicon 2.0 to 6.0%, copper 0.5 to 4.0% by weight,
0.1-1.2% magnesium and at least one selected from the group of lead, bismuth, tin and antimony
Crystallized substances and precipitates containing 0.5 to 2.0% of seed elements in total, with the remainder consisting of inevitable impurities and aluminum, and consisting of Si in an Al-Si eutectic structure and intermetallic compounds. The particle size does not exceed 15 microns and the dendrite secondary arm spacing is
An aluminum alloy for contact parts, characterized by having a microstructure not exceeding 20 microns. 2 By weight, silicon 2.0-6.0%, copper 0.5-4.0%,
0.1-1.2% magnesium and at least one selected from the group of lead, bismuth, tin and antimony
Crystallized substances and precipitates containing 0.5 to 2.0% of seed elements in total, with the remainder consisting of inevitable impurities and aluminum, and consisting of Si in an Al-Si eutectic structure and intermetallic compounds. An aluminum alloy for contact parts, characterized by having a uniformly dispersed microstructure with a particle size of 10 microns or less and an average particle spacing of 10 microns or less. 3 By weight, silicon 2.0-6.0%, copper 0.5-4.0%,
0.1-1.2% magnesium and at least one selected from the group of lead, bismuth, tin and antimony
Contains 0.5~2.0% of total amount of seed elements, manganese 0.1~1.0%, nickel 0.2~2.0%, zinc 0.1~
1.0%, chromium 0.1~1.0%, molybdenum 0.05~1.0
% and at least one element selected from the group of 0.05 to 1.0% niobium, the balance consisting of inevitable impurities and aluminum, and Al
- It has a microstructure in which the particle size of crystallized substances and precipitates made of Si and intermetallic compounds in the Si eutectic structure does not exceed 15 microns, and the distance between secondary dendrite arms does not exceed 20 microns. Aluminum alloy for contact parts featuring: 4 By weight, silicon 2.0-6.0%, copper 0.5-4.0%,
0.1-1.2% magnesium and at least one selected from the group of lead, bismuth, tin and antimony
Contains 0.5~2.0% of total amount of seed elements, manganese 0.1~1.0%, nickel 0.2~2.0%, zinc 0.1~
1.0%, chromium 0.1~1.0%, molybdenum 0.05~1.0
% and 0.05 to 1.0% of niobium, and the remainder consists of unavoidable non-trees and aluminum, and Al
-Characterized by having a uniformly dispersed microstructure in which the particle size of crystallized substances and precipitates made of Si and intermetallic compounds in the Si eutectic structure is 10 microns or less, and the average particle spacing is 10 microns or less. Aluminum alloy for contact parts.
JP21138981A 1981-12-29 1981-12-29 Aluminum alloy for contact parts Granted JPS58117850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21138981A JPS58117850A (en) 1981-12-29 1981-12-29 Aluminum alloy for contact parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21138981A JPS58117850A (en) 1981-12-29 1981-12-29 Aluminum alloy for contact parts

Publications (2)

Publication Number Publication Date
JPS58117850A JPS58117850A (en) 1983-07-13
JPS6138254B2 true JPS6138254B2 (en) 1986-08-28

Family

ID=16605144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21138981A Granted JPS58117850A (en) 1981-12-29 1981-12-29 Aluminum alloy for contact parts

Country Status (1)

Country Link
JP (1) JPS58117850A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104448A (en) * 1982-12-01 1984-06-16 Showa Alum Corp Anti-wear aluminum alloy excellent in cutting tool life
JPS6092441A (en) * 1983-10-25 1985-05-24 Sumitomo Light Metal Ind Ltd Aluminum alloy material for vtr cylinder with superior wear resistance
JPS6164848A (en) * 1984-09-06 1986-04-03 Kobe Steel Ltd Aluminum alloy for magnetic tape contact parts
JPS61139635A (en) * 1984-12-11 1986-06-26 Kobe Steel Ltd Aluminum alloy for contact parts for magnetic tape having superior friction characteristic as well as excellent machinability
JPS6286144A (en) * 1985-09-30 1987-04-20 Kobe Steel Ltd Aluminum alloy material for parts contacting with magnetic tape
US5925315A (en) * 1995-02-14 1999-07-20 Caterpillar Inc. Aluminum alloy with improved tribological characteristics
AU1918595A (en) * 1995-02-14 1996-09-04 Caterpillar Tractor Co. Aluminum alloy with improved tribological characteristics
JP3835629B2 (en) * 1996-09-24 2006-10-18 住友軽金属工業株式会社 Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance
US6409966B1 (en) * 1998-05-19 2002-06-25 Reynolds Metals Company Free machining aluminum alloy containing bismuth or bismuth-tin for free machining and a method of use

Also Published As

Publication number Publication date
JPS58117850A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
JP2506115B2 (en) High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
EP0141501A1 (en) Extruded aluminum alloys having improved wear resistance and process for preparing same
JPH0122343B2 (en)
JPS6138254B2 (en)
JP2007186747A (en) Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
JPH0239578B2 (en)
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH0116901B2 (en)
GB2169000A (en) Aluminium-base alloy for head drum of video cassette recorders
JPS6144142B2 (en)
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH0434621B2 (en)
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
JPH0297638A (en) Aluminum alloy for parts to be brought into contact with magnetic tape
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
KR910006019B1 (en) Al alloy for head drum of audio tape recorder
JP2743709B2 (en) Aluminum alloy for extrusion and forging
JPH0332403B2 (en)
JPH02107738A (en) Wear-resistant aluminum alloy stock for machining excellent in toughness
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH0557346B2 (en)
JPH0353378B2 (en)
JPS63183159A (en) Manufacture of expanded material of wear-resistant free-cutting aluminum alloy
CN117867339A (en) Free-cutting aluminum alloy and preparation method and application thereof