JPH0353378B2 - - Google Patents

Info

Publication number
JPH0353378B2
JPH0353378B2 JP59098376A JP9837684A JPH0353378B2 JP H0353378 B2 JPH0353378 B2 JP H0353378B2 JP 59098376 A JP59098376 A JP 59098376A JP 9837684 A JP9837684 A JP 9837684A JP H0353378 B2 JPH0353378 B2 JP H0353378B2
Authority
JP
Japan
Prior art keywords
wear resistance
alloy
alloys
aluminum
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098376A
Other languages
Japanese (ja)
Other versions
JPS60243241A (en
Inventor
Ichiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP9837684A priority Critical patent/JPS60243241A/en
Publication of JPS60243241A publication Critical patent/JPS60243241A/en
Publication of JPH0353378B2 publication Critical patent/JPH0353378B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、例えばVTRシリンダー、コンプ
レツサーベーン、斜板式コンプレツサ等の斜板あ
るいはスリツパ、テープガイド、コネクテイング
ロツド等の高度の耐摩耗性を要求される各種機械
部品等に使用される耐摩耗性に優れたアルミニウ
ム合金、更に詳しくは、溶解鋳造工程を含む製造
プロセスによつて、鋳造あるいは押出材として製
造されるAl−共晶Si系の耐摩耗性アルミニウム
合金に関する。 従来の技術及び問題点 従来、耐摩耗性アルミニウム合金としては、Si
を11.0〜13.5wt%程度含有したA4032アルミニウ
ム合金展伸材や、Siを8.5〜13.0wt%程度含有し
たAC8A〜Cアルミニウム合金鋳物等が一般に使
用されている。 しかし、これらの合金は耐摩耗性に優れている
とはいえ、VTRシリンダー、コンプレツサーベ
ーン等前記例示したような機械部品に使用される
場合には、いまだ要求される耐摩耗性を充分に満
足すべきものではなかつた。 一方、上記合金よりも耐摩耗性に優れたものと
して、過共晶域にSiを含有したAl−Siアルミニ
ウム合金が既知であるが、かかる合金はSiの含有
量が多ため組織中に粗大な初晶シリコン粒子を多
く含み、このため切削性が悪く、複雑な形状の部
品加工等が困難であるというような欠点を有する
ものであつた。 発明の目的 この発明は、このような事情に鑑み、A4032,
AC8A〜Cアルミニウム合金等の従来のAl−共晶
Si系合金の保有する比較的良好な切削性を保持し
ながら、耐摩耗性の一層の向上を図ることを目的
としてなされたものである。 問題点を解決するための手段 而して、この発明は、鋭意研究の結果、アルミ
ニウムに、ほぼ共晶領域にSiを含有するAl−共
晶Si系合金に、更にCu及Mgを所定量含有せし
め、かつ製造工程のコントロールによつて特にSi
粒子の粒径分布状態を規制することにより、切削
性を損うことなく、耐摩耗性の更なる改善をはか
りうることを見出し、かかる知見に基いて完成さ
れたものである。 即ち、この発明は、溶解鋳造工程を含む製造プ
ロセスで製造されるアルミニウム合金であつて、
Si10〜14wt%、Cu6.0〜8.0wt%、Mg0.3〜2.0wt
%を含み、残部がアルミニウム及び不可避不純物
よりなり、かつ合金組織においてSi粒径が20μm
以下に制御されていることを特徴とする耐摩耗性
に優れたアルミニウム合金を要旨とする。 構成の具体的な説明と作用 まず、上記合金成分の添加意義及び組成範囲の
限定理由について説明すれば次のとおりである。 Siは、周知のとおり耐摩耗性の向上成分として
有効なものであり、これが10wt%未満では耐摩
耗性に劣るものとなる一方、逆に14wt%をこえ
て過多に含有されると、粒径の大きな初晶Si粒子
が形成されて切削性が劣化する。 Cuは、合金の耐摩耗性の向上をはかる上から
主要な元素であり、その含有量が6.0wt%未満で
は所期する十分な耐摩耗性の向上効果を得ること
ができない。しかしながら、8.0%をこえて過多
に含有するときは、合金の鋳造が困難となり、ま
た耐食性も劣化する。Cuの6.0〜8.0%の含有によ
つて、Al−共晶Si系合金の耐摩耗性を向上しう
るのは、鋳造工程含む製造プロセスによる合金製
造により、粒径10μm以下のAl−Cu金属間化合物
が全体に均一に析出し、この金属間化合物が耐摩
耗性の向上に貢献しているものと考えられる。 Mgは合金の強度の向上に寄与するものである
が、0.3wt%未満ではその効果が不十分であり、
逆に2.0wt%を起えるときは鋳造が困難となる。 ところで、この発明に合金の製造は、溶解鋳造
を含む製造プロセスによつて行われるものであ
り、金型鋳造だけでなく、連続鋳造を行つたビレ
ツトを押出して製造するものとしても良い。 しかしながら、この発明に係るアルミニウム合
金は、上記のような製造によつて得られる合金組
織において、Si粒径が20μm以下となるように制
御されなければならない。これによつて、合金の
耐摩耗性を良好に保ちつつ、切削性も良好なもの
とすることができる。このようなSi粒径の制御
は、とくに鋳造工程における溶湯の冷却速度をコ
ントロールすることによつて容易に行いうるもの
であり、たとえば後述の実施例に示すように、冷
却速度を約50℃/sec以上に設定することにより、
析出するSi粒子の粒径を充分に微細なものとして
得ることができる。 発明の効果 この発明に係るアルミニウム合金は、Siと共に
Cu及びMgを所定範囲内で含有すること、および
合金組織においてSi粒径が20μm以下に制御され
ていることが相俟つて、従来のAl−共晶Si系合
金、たとえばA4032,AC8A〜Cアルミニウム合
金等の従来合金と同程度以上の良好な切削性を保
持しつつも、下記の実施例の参酌によつて明らか
なように、その合金組成の限定事項の範囲から逸
脱する比較合金に較べて耐摩耗性を更に向上する
効果を実現し得る。従つて、この発明に係る合金
は高度な耐摩耗性が要求される機械部品等に一層
好適に使用し得るものとなしうる。 実施例 以下、この発明の実施例を示す。 下記第1表のNo.1〜5に示す合金のそれぞれに
ついて、冷却速度約50℃/sec以上を有する水冷
金型により直径50mm×長さ100mmの鋳塊に鋳造し、
500℃×4時間の溶体化処理を行つた後、170℃×
8時間の人工時効処理を行い供試材とした。一
方、第1表のNo.6の合金については冷却速度1
℃/secの砂型鋳物材として製作し、同様の溶体
化処理、人工時効処理を行い供試材とした。 そして、この各供試材につき組織中のSi粒径、
硬さ、耐摩耗性及び切削性を調べた。その結果を
第1表に示す。 なお、耐摩耗性試験は回転円板による大越式摩
耗試験機を用いて、摩擦距離:600m、摩擦速
度:1.97m/sec、相手材:FC−30(JIS)、潤滑:
なし、供試片寸法:60×20×10mmの試験条件で実
施した。また、切削性は、前すくい角:0゜、横す
くい角:10゜、前逃げ角:7゜、横逃げ角:7゜、前切
刃角:8゜、横切刃角:0゜、ノーズ半径:0゜の刃先
諸元を有する高速度鋼バイト(SKH−4)を使
用し、自動切削機にて、切削速度:322m/分、
送り速度:0.2mm//rev、切削距離:564mの切
削条件で各試料の切削を行つたのちのバイトの逃
げ面の摩耗幅を測定することによつて評価した。
Industrial Application Fields This invention is applicable to various mechanical parts that require a high degree of wear resistance, such as VTR cylinders, compressor vanes, swash plates of swash plate type compressors, slippers, tape guides, connecting rods, etc. The present invention relates to an Al-eutectic Si-based wear-resistant aluminum alloy manufactured as a cast or extruded material by a manufacturing process including a melting and casting process. Conventional technology and problems Conventionally, as wear-resistant aluminum alloy, Si
Generally used are A4032 aluminum alloy wrought materials containing about 11.0 to 13.5 wt% of Si, and AC8A to C aluminum alloy castings containing about 8.5 to 13.0 wt% of Si. However, although these alloys have excellent wear resistance, they still cannot meet the required wear resistance when used in machine parts such as VTR cylinders and compressor survanes. It wasn't something to be satisfied with. On the other hand, Al-Si aluminum alloys containing Si in the hypereutectic region are known to have better wear resistance than the above alloys; It contains a large amount of primary silicon particles, which has disadvantages such as poor machinability and difficulty in machining parts with complicated shapes. Purpose of the Invention In view of the above circumstances, the present invention has been developed based on A4032,
Conventional Al-eutectic such as AC8A~C aluminum alloys
This was done with the aim of further improving wear resistance while maintaining the relatively good machinability of Si-based alloys. Means for Solving the Problems As a result of intensive research, the present invention has developed an Al-eutectic Si alloy that contains aluminum in an approximately eutectic region, and further contains a predetermined amount of Cu and Mg. In particular, Si
It was discovered that by regulating the particle size distribution state of the particles, it was possible to further improve wear resistance without impairing machinability, and this work was completed based on this knowledge. That is, the present invention provides an aluminum alloy manufactured by a manufacturing process including a melting and casting process,
Si10~14wt%, Cu6.0~8.0wt%, Mg0.3~2.0wt
%, the remainder consists of aluminum and unavoidable impurities, and the Si grain size in the alloy structure is 20 μm.
This article focuses on an aluminum alloy with excellent wear resistance that is controlled as follows. Detailed explanation of the structure and operation First, the significance of adding the above-mentioned alloy components and the reason for limiting the composition range will be explained as follows. As is well known, Si is effective as a component that improves wear resistance, and if it is less than 10wt%, the wear resistance will be poor, but if it is contained in an excessive amount exceeding 14wt%, the particle size Large primary Si particles are formed and machinability deteriorates. Cu is a major element for improving the wear resistance of the alloy, and if its content is less than 6.0 wt%, the desired effect of improving the wear resistance cannot be obtained. However, when the content exceeds 8.0%, it becomes difficult to cast the alloy, and the corrosion resistance also deteriorates. The wear resistance of Al-eutectic Si alloys can be improved by containing 6.0 to 8.0% Cu. It is thought that the compound precipitates uniformly over the entire surface, and that this intermetallic compound contributes to the improvement of wear resistance. Mg contributes to improving the strength of the alloy, but if it is less than 0.3wt%, the effect is insufficient.
On the other hand, when the content is 2.0wt%, casting becomes difficult. Incidentally, the alloy according to the present invention is manufactured by a manufacturing process including melting and casting, and may be manufactured not only by die casting but also by extruding a billet that has been continuously cast. However, in the aluminum alloy according to the present invention, the Si grain size must be controlled to be 20 μm or less in the alloy structure obtained by the above manufacturing process. Thereby, the wear resistance of the alloy can be maintained well, and the machinability can also be made good. Such control of the Si particle size can be easily carried out by controlling the cooling rate of the molten metal in the casting process. For example, as shown in the example below, the cooling rate can be adjusted to about 50°C/ By setting it to sec or more,
It is possible to obtain precipitated Si particles having a sufficiently fine particle size. Effects of the invention The aluminum alloy according to this invention has a
The combination of containing Cu and Mg within a predetermined range and controlling the Si grain size to 20 μm or less in the alloy structure makes conventional Al-eutectic Si alloys, such as A4032, AC8A to C aluminum Although it maintains good machinability comparable to or better than conventional alloys such as alloys, as is clear from consideration of the examples below, compared to comparative alloys that deviate from the range of limitations of the alloy composition. The effect of further improving wear resistance can be achieved. Therefore, the alloy according to the present invention can be more suitably used in mechanical parts that require a high degree of wear resistance. Examples Examples of the present invention will be shown below. Each of the alloys shown in Nos. 1 to 5 in Table 1 below was cast into an ingot with a diameter of 50 mm and a length of 100 mm using a water-cooled mold having a cooling rate of approximately 50°C/sec or more.
After solution treatment at 500℃×4 hours, 170℃×
The sample material was subjected to artificial aging treatment for 8 hours. On the other hand, for alloy No. 6 in Table 1, the cooling rate is 1
It was manufactured as a sand mold casting material of ℃/sec, and subjected to the same solution treatment and artificial aging treatment, and was used as a test material. Then, for each sample material, the Si particle size in the structure,
Hardness, wear resistance and machinability were investigated. The results are shown in Table 1. The wear resistance test was conducted using an Okoshi type wear tester with a rotating disk, friction distance: 600 m, friction speed: 1.97 m/sec, mating material: FC-30 (JIS), lubrication:
None, test piece size: 60 x 20 x 10 mm. In addition, the machinability is: front rake angle: 0°, side rake angle: 10°, front relief angle: 7°, side relief angle: 7°, front cutting edge angle: 8°, side cutting edge angle: 0°, Using a high-speed steel tool bit (SKH-4) with cutting edge specifications of nose radius: 0°, cutting speed: 322 m/min with an automatic cutting machine.
Evaluation was made by measuring the wear width of the flank surface of the cutting tool after each sample was cut under the following cutting conditions: feed rate: 0.2 mm//rev, cutting distance: 564 m.

【表】 この第1表の結果から明らかなように、本発明
合金は、比較合金に較べて、硬さも良好で、耐摩
耗性、切削性の点でも更に一層改善されたもので
あることを確認し得た。
[Table] As is clear from the results in Table 1, the alloy of the present invention has good hardness and is further improved in terms of wear resistance and machinability compared to the comparative alloy. I was able to confirm it.

Claims (1)

【特許請求の範囲】 1 溶解鋳造工程を含む製造プロセスで製造され
るアルミニウム合金であつて、 Si10〜14wt%、Cu6.0〜8.0wt%、Mg0.3〜
2.0wt%を含み、残部がアルミニウム及び不可避
不純物よりなり、 かつ合金組織においてSi粒径が20μm以下に制
御されていることを特徴とする耐摩耗性に優れた
アルミニウム合金。
[Scope of Claims] 1. An aluminum alloy manufactured by a manufacturing process including a melting and casting process, which contains Si10-14wt%, Cu6.0-8.0wt%, Mg0.3-
An aluminum alloy with excellent wear resistance, characterized in that it contains 2.0wt% of Si, the balance consists of aluminum and unavoidable impurities, and the grain size of Si in the alloy structure is controlled to 20μm or less.
JP9837684A 1984-05-15 1984-05-15 Aluminum alloy with superior wear resistance Granted JPS60243241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9837684A JPS60243241A (en) 1984-05-15 1984-05-15 Aluminum alloy with superior wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9837684A JPS60243241A (en) 1984-05-15 1984-05-15 Aluminum alloy with superior wear resistance

Publications (2)

Publication Number Publication Date
JPS60243241A JPS60243241A (en) 1985-12-03
JPH0353378B2 true JPH0353378B2 (en) 1991-08-14

Family

ID=14218157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9837684A Granted JPS60243241A (en) 1984-05-15 1984-05-15 Aluminum alloy with superior wear resistance

Country Status (1)

Country Link
JP (1) JPS60243241A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217434A (en) * 1989-02-16 1990-08-30 Showa Alum Corp Rod bush made of aluminum alloy
JPH03111531A (en) * 1989-09-25 1991-05-13 Riken Corp Rotor made of aluminum alloy
JP2002155329A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
JP2002155327A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
JP5048996B2 (en) 2006-11-10 2012-10-17 昭和電工株式会社 Wear-resistant aluminum alloy material excellent in workability and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23

Also Published As

Publication number Publication date
JPS60243241A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
EP0141501A1 (en) Extruded aluminum alloys having improved wear resistance and process for preparing same
Jorstad Influence of aluminum casting alloy metallurgical factors on machinability
JPH0353378B2 (en)
JPH0434621B2 (en)
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
US2026551A (en) Free cutting alloys
US2026542A (en) Free cutting alloys
JPS6070160A (en) Wear resistant extruded aluminum alloy material with superior machinability
JPH02107738A (en) Wear-resistant aluminum alloy stock for machining excellent in toughness
WO2022070905A1 (en) Manganese-aluminum bronze casting alloy
JPS6053097B2 (en) Wear-resistant Cu alloy with high strength and toughness
JPH0372040A (en) Copper alloy for trolley wire
JPH0557346B2 (en)
JP7318282B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JPS60197836A (en) Wear-resistant aluminum alloy extrudate
US2327561A (en) Silver-containing free-machining die steel
US2026561A (en) Free cutting alloys
JPH04198442A (en) High toughness zinc-base alloy
US2026565A (en) Free cutting alloys
US2026557A (en) Free cutting alloys
US2026564A (en) Free cutting alloys
US2026559A (en) Free cutting alloys
US2026562A (en) Free cutting alloys

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term