JPH0434621B2 - - Google Patents

Info

Publication number
JPH0434621B2
JPH0434621B2 JP63127344A JP12734488A JPH0434621B2 JP H0434621 B2 JPH0434621 B2 JP H0434621B2 JP 63127344 A JP63127344 A JP 63127344A JP 12734488 A JP12734488 A JP 12734488A JP H0434621 B2 JPH0434621 B2 JP H0434621B2
Authority
JP
Japan
Prior art keywords
weight
alloy
content
strength
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63127344A
Other languages
Japanese (ja)
Other versions
JPH01298131A (en
Inventor
Masayuki Harada
Isao Sato
Koichi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12734488A priority Critical patent/JPH01298131A/en
Publication of JPH01298131A publication Critical patent/JPH01298131A/en
Publication of JPH0434621B2 publication Critical patent/JPH0434621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は空調機部品用材料として好適の耐摩耗
性高強度アルミニウム鋳造用合金に関する。 [従来の技術] ピストン等の空調機部品用材料としては、従来
から、優れた耐摩耗性及び耐熱性を有する
JISAC8A、8B、8C又はA390合金が使用されて
いる。これらの合金の中でも、特に、Al−12重
量%Si共晶組成のAC8A合金が「Lo−Ex」と呼
ばれ、空調機部品用材料として広く使用されてい
る。AC8A及びAC8B合金の組成を下記第1表に
示す。
[Industrial Application Field] The present invention relates to a wear-resistant high-strength aluminum casting alloy suitable as a material for air conditioner parts. [Prior art] Materials for air conditioner parts such as pistons have traditionally had excellent wear resistance and heat resistance.
JISAC8A, 8B, 8C or A390 alloys are used. Among these alloys, AC8A alloy having an Al-12 wt % Si eutectic composition is called "Lo-Ex" and is widely used as a material for air conditioner parts. The compositions of AC8A and AC8B alloys are shown in Table 1 below.

【表】 [発明が解決しようとする課題] しかしながら、近年、空調機の性能向上のため
に、部品の小型・軽量化、強度向上及び耐摩耗性
の改善が求められており、第1表に示す従来の
Al合金ではこれらの要求を満足することができ
ないという問題点がある。また、これらの部品を
機械加工して空調機に組立るのであるから、空調
機部品用材料としては切削加工性が優れたもので
あることも必要である。 本発明はかかる問題点に鑑みてなされたもので
あつて、強度が高いと共に耐摩耗性が優れていて
部品の小型・軽量化を可能とし、更に切削加工性
も優れた耐摩耗性高強度鋳造用アルミニウム合金
を提供することを目的とする。 [課題を解決するための手段] 本発明に係る耐摩耗性高強度鋳造用アルミニウ
ム合金は、Si:12.5乃至15重量%、Cu;1.5乃至
4重量%、Mg:0.5乃至1.5重量%、P:0.002乃
至0.1重量%及びNi:0.1乃至1.0重量%を含有し、
残部がAl及び不可避的不純物からなり、共晶シ
リコンの長さが平均値で3μm以上、初晶シリコ
ンのサイズが平均値で40μm以下に制御されてい
ることを特徴とする。 以下、本発明に係るアルミニウム合金の成分添
加理由及び組成限定理由について説明する。 Si Siは、Al合金の耐摩耗性を向上させると共に、
鋳造時の湯流性を向上させる。 Si含有量が12.5重量%未満の場合は、初晶シリ
コンを安定して分布させることができず、また初
晶シリコンが晶出しにくくなるために良好な耐摩
耗性が得られない。一方、Si含有量が15重量%を
超えると、初晶シリコンが粗大になると共に、切
削加工性及び鋳造性が悪くなり、使用に供し得な
い。 このため、Si含有量は12.5乃至15重量%にす
る。 第1図は横軸にSi含有量をとり、縦軸に引張強
さ及びブリネル硬さをとつて、夫々Cu3重量%−
Mg0.6重量%Al合金におけるSi含有量と引張強さ
及びブリネル硬さとの関係を示すグラフ図であ
る。この図から明らかなように、Si含有量が12.5
乃至15重量%の場合は、強度及び硬度の双方が優
れたものになる。 Cu Cuは高強度と適度の硬さを得るためにAl合金
に添加する。第2図は横軸にCu含有量をとり、
縦軸に引張強さ及びブリネル硬さをとつて、
Si13.5重量%−Mg0.6重量%Al合金におけるCu含
有量の相違による各特性の変化を示すグラフ図で
ある。この図から明らかなように、Cu含有量が
1.5重量%未満ではAl合金の強度改善効果が十分
でなく、逆に4重量%を超えると硬くなりすぎて
切削加工が困難となる。 このため、Cu含有量は1.5乃至4重量%にする。 Mg MgはAl合金の強度を向上させるために添加す
る。第3図は横軸にMg含有量をとり、縦軸に引
張強さ及びブリネル硬さをとつて、Si13.5重量%
−Cu3重量%Al合金におけるMg含有量の相違に
よる各特性の変化を示すグラフ図である。この図
から明らかなように、Mgを0.5重量%添加するこ
とにより、強度が最高値に達して飽和する。ま
た、Mg含有量が1.5重量%を超えると、溶湯が酸
化しやすくなり、鋳造不良の原因となる。 このため、Mg含有量は0.5乃至1.5重量%にす
る。 Ni NiはAl合金の高温強度を改善するために添加
する。この効果を得るためには、Niを0.1重量%
以上添加する必要がある。一方、Niを1重量%
を超えて添加してもそれ以上の高温強度改善効果
は得られないのに加え、耐食性が低下するという
問題点がある。 このため、Ni含有量は0.1乃至1重量%にする。 Ti TiはAl合金のマクロ結晶粒を微細化し、組織
のバラツキを小さくする。Ti含有量が0.01重量%
未満の場合はその添加による結晶粒微細化効果が
なく、0.15重量%を超えるとTiAl3が晶出し、Al
合金の強度に悪影響を及ぼす。 このため、Tiを添加する場合は、その含有量
は0.01乃至0.15重量%にする。 B BもTiと同様にマクロ結晶粒を微細化するが、
B含有量が0.001重量%未満の場合はその微細化
効果が得られず、逆に0.01重量%を超えると、こ
れ以上Bを添加してもその微細化効果は向上しな
いのに加え、Bの偏析が生じやすくなる。このた
め、Bを添加する場合は、その含有量を0.001乃
至0.01重量%にする。TiとBとは上述の如く同様
の作用を有するから、いずれか一方又は双方を添
加すればよい。 P PはSiを含有するAl合金中に添加されてその
初晶Siを微細にする。このようなPの改良処理に
より、Al合金の機械的性質及び切削加工性が改
善され、耐摩耗性のバラツキが少なくなる。従つ
て、Pの添加により改良処理をするが、このよう
な効果を得るためには、Pの添加量は0.002乃至
0.1重量%にする必要がある。 共晶Si及び初晶Siのサイズ 共晶Si及び初晶Siのサイズは耐摩耗性及び切削
加工性に影響する。この場合に、良好な耐摩耗性
を得るためには、共晶Siの長さを平均値で3μm以
上にする。また、初晶Siのサイズが平均値で40μ
mを超えると、切削加工性が劣化し、初晶Siが切
削加工の際に脱落しやすくなり、異常摩耗の原因
となりやすい。このため、初晶Siのサイズは平均
値で40μm以下にする。 初晶Siのサイズは、Si成分量を過共晶の低温側
(12.5乃至15重量%)に規制し、Pを所定量添加
することにより微細化する。また、鋳造後の冷却
速度を速くすることにより初晶Siのサイズを小さ
くすることができる。従つて、Si及びP含有量を
前述の範囲にすると共に、冷却速度を適切に設定
することにより、初晶Siの長さを40μm以下の微
細なものにすることができる。 共晶Siのサイズは、高圧鋳造法において金型温
度を高く設定することにより、冷却速度を遅くし
て、粗くすることができる。例えば、金型温度を
150℃以上、圧力を500Kg/cm2以上にすることによ
り、共晶Siのサイズを3μm以上に粗くすることが
できる。 [実施例] 次に、本発明の実施例に係るアルミニウム合金
について、その特性を従来の耐摩耗性高強度アル
ミニウム合金であるJISADC12及びA390合金と
比較して説明する。下記第2表は実施例1乃至6
及び従来の各Al合金の組成を示す。
[Table] [Problems to be solved by the invention] However, in recent years, in order to improve the performance of air conditioners, there has been a demand for smaller and lighter parts, improved strength, and improved wear resistance. Show traditional
Al alloys have a problem in that they cannot satisfy these requirements. Furthermore, since these parts are machined and assembled into an air conditioner, the material for the air conditioner parts must have excellent machinability. The present invention has been made in view of these problems, and is a wear-resistant high-strength casting that has high strength and excellent wear resistance, enables parts to be made smaller and lighter, and has excellent machinability. The purpose is to provide aluminum alloys for [Means for Solving the Problems] The wear-resistant high-strength casting aluminum alloy according to the present invention contains Si: 12.5 to 15% by weight, Cu: 1.5 to 4% by weight, Mg: 0.5 to 1.5% by weight, P: Contains 0.002 to 0.1% by weight and Ni: 0.1 to 1.0% by weight,
The remainder consists of Al and unavoidable impurities, and the length of the eutectic silicon is controlled to be 3 μm or more on average, and the size of primary silicon is controlled to be 40 μm or less on average. The reasons for adding components and the reasons for limiting the composition of the aluminum alloy according to the present invention will be explained below. Si Si improves the wear resistance of Al alloys and
Improves flowability during casting. If the Si content is less than 12.5% by weight, primary silicon cannot be stably distributed, and primary silicon becomes difficult to crystallize, making it impossible to obtain good wear resistance. On the other hand, if the Si content exceeds 15% by weight, primary silicon becomes coarse and machinability and castability deteriorate, making it unusable. Therefore, the Si content is set to 12.5 to 15% by weight. Figure 1 shows Si content on the horizontal axis, tensile strength and Brinell hardness on the vertical axis, and Cu3wt% -
FIG. 2 is a graph showing the relationship between Si content, tensile strength, and Brinell hardness in a Mg0.6% by weight Al alloy. As is clear from this figure, the Si content is 12.5
When the content is between 15% by weight, both strength and hardness are excellent. Cu Cu is added to Al alloys to obtain high strength and appropriate hardness. Figure 2 shows the Cu content on the horizontal axis.
Taking tensile strength and Brinell hardness on the vertical axis,
FIG. 3 is a graph diagram showing changes in each characteristic due to differences in Cu content in a Si13.5% by weight-Mg0.6% by weight Al alloy. As is clear from this figure, the Cu content is
If it is less than 1.5% by weight, the strength improvement effect of the Al alloy will not be sufficient, and if it exceeds 4% by weight, it will become too hard and difficult to cut. Therefore, the Cu content is set to 1.5 to 4% by weight. Mg Mg is added to improve the strength of the Al alloy. Figure 3 shows Mg content on the horizontal axis, tensile strength and Brinell hardness on the vertical axis, and Si13.5% by weight.
- It is a graph figure which shows the change of each characteristic by the difference in Mg content in 3 weight% Al alloys. As is clear from this figure, by adding 0.5% by weight of Mg, the strength reaches its maximum value and becomes saturated. Furthermore, if the Mg content exceeds 1.5% by weight, the molten metal will be easily oxidized, causing casting defects. Therefore, the Mg content is set to 0.5 to 1.5% by weight. Ni Ni is added to improve the high temperature strength of the Al alloy. To obtain this effect, Ni must be added at 0.1% by weight.
It is necessary to add more than that. On the other hand, Ni is 1% by weight.
Even if added in excess of 100%, no further improvement in high-temperature strength can be obtained, and there is a problem in that corrosion resistance decreases. For this reason, the Ni content is set to 0.1 to 1% by weight. Ti Ti makes the macrocrystal grains of the Al alloy finer and reduces the variation in the structure. Ti content is 0.01% by weight
If the amount is less than 0.15% by weight, TiAl 3 will crystallize and Al
Adversely affects the strength of the alloy. Therefore, when adding Ti, the content should be 0.01 to 0.15% by weight. B B also refines macro grains like Ti, but
If the B content is less than 0.001% by weight, the refinement effect cannot be obtained, and conversely, if it exceeds 0.01% by weight, the refinement effect will not improve even if B is added beyond this point, and the B content will not improve. Segregation is more likely to occur. Therefore, when B is added, its content should be 0.001 to 0.01% by weight. Since Ti and B have similar effects as described above, either one or both may be added. P P is added to an Al alloy containing Si to make the primary Si crystal fine. Such P-improving treatment improves the mechanical properties and machinability of the Al alloy, and reduces variations in wear resistance. Therefore, improvement treatment is carried out by adding P, but in order to obtain such an effect, the amount of P added must be between 0.002 and 0.002.
It is necessary to make it 0.1% by weight. Size of eutectic Si and primary Si The size of eutectic Si and primary Si affects wear resistance and machinability. In this case, in order to obtain good wear resistance, the average length of the eutectic Si should be 3 μm or more. In addition, the average size of primary Si is 40μ
If it exceeds m, machinability deteriorates, and primary Si crystals tend to fall off during cutting, which tends to cause abnormal wear. For this reason, the average size of primary Si is set to 40 μm or less. The size of primary Si is refined by regulating the amount of Si component to the low temperature side of hypereutectic (12.5 to 15% by weight) and adding a predetermined amount of P. Furthermore, the size of primary Si can be reduced by increasing the cooling rate after casting. Therefore, by setting the Si and P contents in the above-mentioned ranges and appropriately setting the cooling rate, it is possible to make the length of primary Si crystals as fine as 40 μm or less. The size of the eutectic Si can be made rough by setting the mold temperature high in the high-pressure casting method and slowing down the cooling rate. For example, mold temperature
By setting the temperature to 150° C. or higher and the pressure to 500 kg/cm 2 or higher, the size of the eutectic Si can be made coarser to 3 μm or higher. [Example] Next, the characteristics of an aluminum alloy according to an example of the present invention will be described in comparison with JISADC12 and A390 alloys, which are conventional wear-resistant high-strength aluminum alloys. Table 2 below shows Examples 1 to 6.
and the composition of each conventional Al alloy.

【表】 各実施例合金及び従来例合金を溶製し、その各
溶湯を金型鋳造及び高圧鋳造により斜板ピストン
に鋳造した。次いで、各鋳造製品をT6熱処理し
た後、切削加工すると共に、この製品を実機に取
付けてピストンとしての使用試験を行つた。各合
金の切削加工性、機械的性質及び実機試験の結果
を下記第3表に示す。但し、切削的加工性が優れ
ている場合を◎、良の場合を〇、不可の場合を×
で現した。なお、この切削加工性が不可のA390
合金については、実機試験を実施することができ
なかつた。 この切削加工性は以下のようにして求めた。先
ず、切削速度が前半75.4m/分、後半82.7m/
分、バイトの材質がハイス(高速度鋼)の条件で
フライス盤により切削加工した。そして、バイト
の刃先の摩耗度をバイトすくい角(mm)で表し
て、切削加工性の良否を種々の切削距離で調べ
た。この結果を第4図に示す。第4図において、
横軸は切削距離、縦軸はバイトすくい角(刃先摩
耗度)である。そして、図中、●は本発明の組成
範囲に入る合金であつて、初晶シリコンのサイズ
が25μmの場合の高圧鋳造材である。〇は同じく
本発明の組成範囲に入るが、初晶シリコンのサイ
ズが50μmの金型鋳造材である。△は従来の
ADC12合金であり、□は従来のA390合金であ
る。この第4図に示すように、刃先の摩耗度は
ADC12合金が最も少なく、A390合金が刃先の摩
耗度が最も大きい。本発明の実施例の場合には、
両合金の中間に位置し、A390合金よりも摩耗度
は小さい。従つて、ADC12合金が切削加工性が
◎、本発明の各実施例が〇、A390合金が×であ
る。これを第3表に記載した。
[Table] Each example alloy and conventional example alloy were melted, and each of the molten metals was cast into a swash plate piston by die casting and high pressure casting. Next, each cast product was subjected to T6 heat treatment and then machined, and the product was installed in an actual machine and tested for use as a piston. The machinability, mechanical properties, and results of actual machine tests for each alloy are shown in Table 3 below. However, if the cutting workability is excellent, ◎, if good, ○, if not good, ×
It appeared. Note that this machinability is not possible for A390.
As for the alloy, it was not possible to conduct an actual test. This machinability was determined as follows. First, the cutting speed was 75.4 m/min in the first half and 82.7 m/min in the second half.
Cutting was performed using a milling machine under the condition that the material of the tool bit was high speed steel. Then, the degree of wear on the cutting edge of the cutting tool was expressed as the rake angle (mm) of the cutting tool, and the quality of cutting workability was examined at various cutting distances. The results are shown in FIG. In Figure 4,
The horizontal axis is the cutting distance, and the vertical axis is the cutting tool rake angle (degree of wear on the cutting edge). In the figure, ● indicates an alloy that falls within the composition range of the present invention, and is a high-pressure cast material in which the size of primary silicon is 25 μm. ○ also falls within the composition range of the present invention, but is a mold casting material in which the size of primary crystal silicon is 50 μm. △ is the conventional
ADC12 alloy, and □ is the conventional A390 alloy. As shown in Figure 4, the degree of wear on the cutting edge is
ADC12 alloy has the least amount of wear, and A390 alloy has the highest degree of wear on the cutting edge. In the case of embodiments of the invention:
It is located between the two alloys and has a lower degree of wear than A390 alloy. Therefore, the machinability of ADC12 alloy is ◎, each of the examples of the present invention is ○, and the A390 alloy is rated ×. This is listed in Table 3.

【表】【table】

【表】 本発明の実施例1乃至6の合金はいずれも強
度、耐摩耗性及び切削加工性が優れており、この
合金を使用してピストンを製造することにより、
斜板式コンプレツサの小型化及び高性能化が可能
になる。これに対し、従来のA390合金は切削加
工性が劣り、ADC12合金は強度及び耐摩耗性
(硬度)が低く、実機試験において摩耗及び破損
が生じた。 [発明の効果] 本発明によれば、Si含有量を過共晶の低温側に
規制し、Pにより積極的に初晶Siを40μm以下に
微細化して、切削性を向上させ、この初晶Siの規
制と共に共晶Siサイズを3μm以上に粗くすること
により、耐摩耗性を向上させることができる。
[Table] All the alloys of Examples 1 to 6 of the present invention have excellent strength, wear resistance, and machinability, and by manufacturing a piston using this alloy,
It becomes possible to downsize and improve the performance of the swash plate compressor. In contrast, the conventional A390 alloy has poor machinability, and the ADC12 alloy has low strength and wear resistance (hardness), causing wear and breakage in actual machine tests. [Effects of the Invention] According to the present invention, the Si content is regulated to the low temperature side of the hypereutectic, and the primary Si is actively refined to 40 μm or less using P to improve machinability. Wear resistance can be improved by regulating Si and making the eutectic Si size coarser to 3 μm or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は夫々Si量、Cu量及びMg量
と、引張強さ及び硬さとの関係を示すグラフ図、
第4図は本実施例合金と従来合金との切削性を比
較するグラフ図である。
Figures 1 to 3 are graphs showing the relationship between Si content, Cu content, Mg content, and tensile strength and hardness, respectively;
FIG. 4 is a graph comparing the machinability of the alloy of this example and a conventional alloy.

Claims (1)

【特許請求の範囲】 1 Si:12.5乃至15重量%、Cu;1.5乃至4重量
%、Mg:0.5乃至1.5重量%、P:0.002乃至0.1重
量%及びNi:0.1乃至1.0重量%を含有し、残部が
Al及び不可避的不純物からなり、共晶シリコン
の長さが平均値で3μm以上、初晶シリコンのサ
イズが平均値で40μm以下に制御されていること
を特徴とする耐摩耗性高強度鋳造用アルミニウム
合金。 2 Ti:0.01乃至0.15重量%及びB:0.001乃至
0.01重量%から選択された少なくとも1種の元素
を含有することを特徴とする請求項1に記載の耐
摩耗性高強度鋳造用アルミニウム合金。
[Claims] 1 Contains Si: 12.5 to 15% by weight, Cu: 1.5 to 4% by weight, Mg: 0.5 to 1.5% by weight, P: 0.002 to 0.1% by weight, and Ni: 0.1 to 1.0% by weight, The rest
Wear-resistant high-strength casting aluminum consisting of Al and inevitable impurities, characterized by the length of eutectic silicon being controlled to an average value of 3 μm or more, and the size of primary crystal silicon being controlled to an average value of 40 μm or less. alloy. 2 Ti: 0.01 to 0.15% by weight and B: 0.001 to 0.15% by weight
The wear-resistant high-strength aluminum alloy for casting according to claim 1, characterized in that it contains at least one element selected from 0.01% by weight.
JP12734488A 1988-05-25 1988-05-25 Wear-resistant and high-strength aluminum alloy for casting Granted JPH01298131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12734488A JPH01298131A (en) 1988-05-25 1988-05-25 Wear-resistant and high-strength aluminum alloy for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12734488A JPH01298131A (en) 1988-05-25 1988-05-25 Wear-resistant and high-strength aluminum alloy for casting

Publications (2)

Publication Number Publication Date
JPH01298131A JPH01298131A (en) 1989-12-01
JPH0434621B2 true JPH0434621B2 (en) 1992-06-08

Family

ID=14957602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12734488A Granted JPH01298131A (en) 1988-05-25 1988-05-25 Wear-resistant and high-strength aluminum alloy for casting

Country Status (1)

Country Link
JP (1) JPH01298131A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709663B2 (en) * 1991-09-20 1998-02-04 日本軽金属株式会社 Aluminum alloy with excellent wear resistance
US5851320A (en) * 1996-01-05 1998-12-22 Norsk Hydro, A. S. Wear-resistant aluminum alloy and compressor piston formed therefrom
DE10006269A1 (en) 2000-02-12 2001-08-16 Bayerische Motoren Werke Ag Method for producing a metal component for a drive unit, in particular an internal combustion engine, which interacts with a friction partner via a sliding surface
JP4341438B2 (en) 2004-03-23 2009-10-07 日本軽金属株式会社 Aluminum alloy excellent in wear resistance and sliding member using the same alloy
JP5048996B2 (en) 2006-11-10 2012-10-17 昭和電工株式会社 Wear-resistant aluminum alloy material excellent in workability and method for producing the same
DE102008043871A1 (en) * 2008-11-19 2010-05-20 Robert Bosch Gmbh fuel pump
DE102018117418A1 (en) * 2018-07-18 2020-01-23 Friedrich Deutsch Metallwerk Gesellschaft M.B.H. Die-cast aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126750A (en) * 1983-01-11 1984-07-21 Izumi Jidosha Kogyo Kk Aluminum alloy
JPS61291941A (en) * 1985-06-19 1986-12-22 Taiho Kogyo Co Ltd Cast al alloy having high si content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126750A (en) * 1983-01-11 1984-07-21 Izumi Jidosha Kogyo Kk Aluminum alloy
JPS61291941A (en) * 1985-06-19 1986-12-22 Taiho Kogyo Co Ltd Cast al alloy having high si content

Also Published As

Publication number Publication date
JPH01298131A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
US4055417A (en) Hyper-eutectic aluminum-silicon based alloys for castings
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
Jorstad Influence of aluminum casting alloy metallurgical factors on machinability
JPH0434621B2 (en)
US2185348A (en) Aluminum base alloy
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP2709663B2 (en) Aluminum alloy with excellent wear resistance
US5669990A (en) Si-containing magnesium alloy for casting with melt thereof
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
KR100291560B1 (en) Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
KR102489980B1 (en) Aluminum alloy
US6572816B1 (en) Free-machinable hyper-eutectic Al-Si alloy
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JPS6238420B2 (en)
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH07179968A (en) Aluminum alloy for sliding material
JP4148801B2 (en) Wear-resistant Al-Si alloy having excellent machinability and casting method thereof
JPH0353378B2 (en)
US4808243A (en) High damping zinc alloy with good intergranular corrosion resistance and high strength at both room and elevated temperatures
US2026542A (en) Free cutting alloys
US2026567A (en) Free cutting alloys