JPH0239578B2 - - Google Patents
Info
- Publication number
- JPH0239578B2 JPH0239578B2 JP59046469A JP4646984A JPH0239578B2 JP H0239578 B2 JPH0239578 B2 JP H0239578B2 JP 59046469 A JP59046469 A JP 59046469A JP 4646984 A JP4646984 A JP 4646984A JP H0239578 B2 JPH0239578 B2 JP H0239578B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic tape
- tape
- drum
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 claims description 22
- 230000007797 corrosion Effects 0.000 claims description 22
- 229910000838 Al alloy Inorganic materials 0.000 claims description 11
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000000956 alloy Substances 0.000 description 35
- 229910045601 alloy Inorganic materials 0.000 description 28
- 238000012360 testing method Methods 0.000 description 17
- 238000005520 cutting process Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000001816 cooling Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000005242 forging Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000004512 die casting Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000006247 magnetic powder Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Magnetic Heads (AREA)
Description
本発明は、磁気テープの接触部品である、たと
えばVTR(ビデオテープレコーダー)のシリンダ
ー、即ちテープ案内用固定または回転ドラム、ヘ
ツドドラム等、磁気テープに直接接触する磁気記
録装置用部品に適した耐食性に優れたアルミニウ
ム合金に関するものである。
VTRは磁気テープに映像信号を磁気記録再生
する回転磁気ヘツド部と、磁気テープを安定に走
行させるための静止または回転するテープ案内ド
ラム等から構成されている。これらの回転磁気ヘ
ツド部あるいはテープ案内ドラムの如く磁気テー
プと直接接触する部品は磁粉を付着したテープ面
を損なうことなく安定したテープの走行を保持す
るうえで極めて重要な機能を果たすことが知られ
ており、再生映像の精度(映像の鮮明度、色むら
等)を向上するため、磁気テープ接触部品材料の
改善が強く要望されている。
従来、VTRのテープ接触部品としては、例え
ば表面にCrハードメツキを施した銅合金、オー
ステナイト系SUS材等が使用されていた。しか
し、最近は、アルミニウム合金のもつ軽量性や加
工性が優れていること、非磁性であることなどの
長所を生かして、アルミニウム合金鋳物又は鋳塊
を切削又は塑性加工(特に鍛造加工)して、
VTRのドラム等磁気テープ接触部品が製造され
るようになつた。
磁気テープ接触部品用材料に求められるアルミ
ニウム合金の性質としては、主として、次の項目
が挙げられる。
1) テープに対する耐摩耗性がよいこと。
2) テープとの動摩擦係数が小さく、テープ走
行性がよいこと。
3) 機械的強度が優れていること。
4) 被削性に優れ、切削仕上面の平滑性がよい
こと。
5) 塑性加工性、特に冷間鍛造性に優れるこ
と。
6) 高温多湿雰囲気中での耐食性が良好なこ
と。
従来、磁気テープ接触部品用アルミニウム合金
として、例えば、塑性加工用合金のJIS2000番系
Al―Cu系合金、鋳物用合金のJIS AC5Aおよび
8種系のAl―Si―Cu―Mg系合金等が広く使用さ
れているが、これらの合金は、前記1)〜5)の
性質においては優れているが、6)の高温多湿雰
囲気中での耐食性において、次のような問題点が
ある。
VTRのシリンダーに磁気テープを巻きつけた
まま、高温多湿の雰囲気中に長時間放置すると、
磁気テープとシリンダー間に露結した水分により
シリンダーが腐蝕を受けて発錆し、シリンダー表
面として必要な表面の平滑性を失うのみならず、
この錆が磁気テープの磁性塗膜にくいこんで、テ
ープを引き剥す際に磁性塗膜が剥離されることが
ある。
この対策として、特開昭58−19472号公報に、
金属又は合金の表面に化学処理皮膜を施し、該皮
膜をクロム又はステンレススチールのスパツター
膜で被覆する技術が公開されている。しかしこの
方法は、通常の工程に表面処理及びスパツター膜
被覆という工程が追加されるのでコスト高になる
という欠点をもつ。
本発明者らは、このような現状に鑑み磁気テー
プ接触部品用として、機械的性質に優れ、かつ高
温多湿の雰囲気中での耐食性に優れたアルミニウ
ム合金を開発することを技術的課題として種々研
究の結果、これまで広く使用されている塑性加工
用合金のJIS2000番系Al―Cu系合金、鋳物用合金
のJIS AC5A及び8種系Al―Si―Cu―Mg系合金
において、特にSi及びMgの含有量が腐蝕に大き
な影響を与えていることを見出し、本発明を完成
した。即ち本発明の目的は、塑性加工性、機械的
強度を損なうことなく、耐摩耗性、動摩擦係数、
被削性を改善し、かつ更に、耐食性をも改善した
磁気テープ接触部品用アルミニウム合金を提供す
ることであり、このような技術的課題は以下の構
成により解決される。
本願発明の要旨は、重量でSiが5%を越え12%
まで、Cuが2%を越え5%まで、Mg0.2〜0.8%、
Ni0.5〜2.5%、Fe0.1%〜1.0%、Ti0.005〜0.2%
を含み、さらに、Mn0.2〜1.2%、Cr0.2〜1.2%の
うち1種以上の元素およびPb、Bi、Sn、Sbのう
ち1種以上の元素を総量で0.5〜2%を含み、残
部は通常の不純物を含むAlよりなる耐食性に優
れた磁気テープ接触部品用アルミニウム合金を提
供するものである。
以下本発明の合金の組成範囲限定の理由につい
て説明する。本明細書の記載において含有元素の
含有量は、いずれも重量%で示されている。
Cu:Cuは合金素金の強度を高め、かつ被削性
を向上させる。2%以下だと効果は不十分であ
り、5%を越えると鋳造性・鍛造性、耐食性が低
下する。このためCuは2%を越え5%までの範
囲とする。
SiおよびMg:SiとMg2Si系析出物を形成して
合金強度を高める。Mgは合金の機械的強度、耐
力を向上させる。特にCuとの相乗効果により被
削性を一層確実にする。Siは、耐摩性を向上させ
るのに顕著な効果がある。Si5%以下、Mg0.2%
未満では、これらの効果は十分でない。
Siが12%を越えると初晶ケイ素が晶出し、冷間
鍛造性、切削仕上面の平滑性が低下する。この
為、Siは、5%を越え12%までの範囲とする。
Mgは、本願のSiの範囲内においては、高温多
湿雰囲気中での耐食性に著しい影響を及ぼす。即
ちMgが0.8%を越えると耐食性が著しく悪くな
る。この為Mgは0.2〜0.8%の範囲とする。
Fe:Feは、耐摩耗性及び被削性の向上に有効
である。0.1%未満ではその効果が認められず、
1.0%を越えると塑性加工性を悪くする。従つて
Feは0.1〜1.0%の範囲とする。
Ni:Niは、耐摩耗性および切削性を向上させ
る。0.5%未満ではその効果が認められず、2.5%
を越えると粗大な金属間化合物が生じ、鍛造加工
性及び切削性が低下する。従つてNiの範囲は0.5
〜2.5%とする。
Mn、Cr:Mn及び/又はCrの添加は耐摩耗性
を向上させる。0.2%未満では耐摩耗性に寄与す
る晶出が十分でなく、1.2%を越えると、晶出物
が粗大化して被削性を害する。従つてMn、Crは
0.2〜1.2%の範囲とする。
Pb、Bi、Sn、Sb:これらの元素は、合金の被
削性を向上させる。
被削性の向上とは、切削抵抗の減少、切粉の分
断微細化と切削仕上面の精度向上を意味し、単独
より、2種以上の方が効果的である。0.5%未満
では、上記特性に対して効果はなく、2.0%を越
えると塑性加工性及び靭性が極端に低下するため
得策ではない。
これらの元素の含有量(2種類以上の場合は合
計量)が0.5%未満では上記特性に対して効果が
少なく、2.0%を越えると塑性加工性及び機械的
強度、特に靭性が極端に低下する。好ましい含有
量は0.8〜1.4%である。
Ti:Tiは、組織の微細化にに有効であるが、
0.005%未満ではその効果が認められず、0.2%を
越えると効果が飽和するばかりか、鍛造加工性が
低下する。従つてTiは0.005〜0.2%の範囲とす
る。
本発明の実施にあたつては、上記の添加元素の
ほかに、B0.0004〜0.002%を添加してもよい。こ
れによつて、Tiとの共存により、微細化効果を
高め、かつ加工性を向上させる。
Bが、0.0004%未満では、Tiとの共存による微
細化効果が発揮されない。Bが0.002%を超える
とTiと粗大な硬い金属間化合物を形成し、これ
がテープ接触面上に現出すれば走行中のテープ面
を傷つけるおそれがある。従つて、Bは0.0004%
〜0.002%の範囲とする。
本発明合金からなるテープ接触部品を製造する
場合、その出発素材は砂型、金型の鋳物よりはむ
しろ、冷却速度の大きい直冷連続鋳造法によつて
製造される長尺鋳塊を鍛造手段により塑性加工
し、ついで機械的切削手段により成形仕上げされ
ることが最も望ましい。この場合、特開昭56−
69348号公報記載の鍛造用アルミニウム合金の製
造法を適用して、冷却速度(連続鋳造時の固液界
面の冷却速度)を25℃/秒以上に保持(特に直径
100mm以下の細径ピレツトがこの条件にふさわし
い)すれば、鋳造性は極めて向上し、長尺鋳塊を
押出し加工することなく直接鍛造加工しうるよう
になり生産性を向上しうるほか、合金塊の組織が
著しく微細化し、かつ金属間化合物からなる第二
相粒子が細かく均一に分散している。このため高
強度で耐摩耗性に富み、加うるにVTRテープ接
触部品として要求される緻密平滑な面いわゆる鏡
面仕上げ加工後の表面粗度は極めて優れたものと
なる。
一般にダイヤモンド切削刃を有する切削工具等
による金属の鏡面仕上げ加工のような精密仕上げ
面が要求される場合、合金塊の組織まで調製する
必要があることが知見されており、上記したよう
な本発明合金の細径長尺鋳塊はかかる要請に適合
する。
しかし本願発明の合金材は上記したような連続
鋳造塊に限定されるものではなく、金型、砂型、
ダイカスト等の鋳造法によつて成形造塊し、これ
をそのまま又は熱、冷鍛造加工を加えた後、切削
成形加工してVTRテープ接触部品を製造しても
従来の合金材に比し本発明の特徴的効果は充分発
揮されるものである。
以下実施例にもとづいて本発明を説明するが、
その要旨の範囲内で以下の実施例に限定されるも
のではない。
実施例及び比較例
第1表に実施例合金No.1〜9および比較例合金
No.10〜12の合金組成を示す。この表に示した合金
鋳塊の分類において合金鋳塊Aは、垂直半連続鋳
造法によるものである。冷却速度は28℃/秒に保
持され、直径73mmの円柱状長尺鋳塊に製造したも
ので、得られた鋳塊の内部組織中のデンドライト
アーム間隔は、狭く、かつ第2相粒子は微細かつ
均一に分散されていることが認められた。
合金鋳塊Bは、垂直半連続鋳造法によつて得た
直径200mmの円柱状鋳塊を押出して、直径70mmの
丸棒としたものである。
合金鋳塊Cは金型鋳造によつて第1図に示す形
状に造形した。
機械的性質の試験片は、合金材A,Bでは鋳塊
を、又、合金材Cでは、舟底金型鋳塊を各々T6
熱処理(500℃×4時間、水冷焼き入れ、ついで
180℃×8時間の人工時効処理)した後、JIS4号
試験片に加工した。
鍛造性評価用の試験片は、合金材A,Bとも
に、鋳塊を焼鈍熱処理(370℃×4時間、炉冷)
したのちに第2図aに示すウエツジ試験片(L=
150mm、t0=3mm、t1=15mm、W=20mm)に加工
した。
硬さ、切削性、表面粗さ、動摩擦係数、耐食性
の各試験片は、合金材A,Bでは冷間鍛造によ
り、合金材Cでは金型鋳造によつて各々第1図の
形状に造形した。これらの合金材を粗削りした後
に上記と同一条件のT6熱処理を施し、ついでダ
イヤモンド切削刃を有する切削工具によつて鏡面
仕上げ加工を行ない、第1図における寸法諸元が
D=63mm、d1=40mm、d2=20mm、H1=16mm、H2
=7mmより成るVTR回転ドラムとした。テープ
が摺動するドラム外周面の切削条件は切削速度
150m/min、切込み量0.05mm、切削工具送り量
0.05mm/回転であつた。比摩耗量試験片は上記
VTR回転ドラムの一部から切出して供した。
第2表にこれら試片の特性値を示す。
The present invention provides corrosion resistance suitable for parts of magnetic recording devices that directly contact magnetic tape, such as VTR (video tape recorder) cylinders, fixed or rotating tape guide drums, and head drums. It concerns an excellent aluminum alloy. A VTR consists of a rotating magnetic head for magnetically recording and reproducing video signals on a magnetic tape, and a stationary or rotating tape guide drum for stably running the magnetic tape. It is known that parts that come into direct contact with the magnetic tape, such as the rotating magnetic head or the tape guide drum, play an extremely important function in maintaining stable tape running without damaging the tape surface to which magnetic particles are attached. Therefore, in order to improve the accuracy of reproduced images (image clarity, color unevenness, etc.), there is a strong demand for improvements in materials for magnetic tape contact parts. Conventionally, VTR tape contact parts have been made of, for example, a copper alloy with Cr hard plating on the surface, an austenitic SUS material, or the like. However, recently, aluminum alloy castings or ingots have been cut or plastic processed (particularly forged) by taking advantage of the advantages of aluminum alloys, such as their light weight, excellent workability, and non-magnetic properties. ,
Magnetic tape contact parts such as VTR drums began to be manufactured. The properties of the aluminum alloy required for the material for magnetic tape contact parts include the following items. 1) Good abrasion resistance against tape. 2) The coefficient of dynamic friction with the tape is small and the tape runs well. 3) Excellent mechanical strength. 4) Excellent machinability and smooth finished surface. 5) Excellent plastic workability, especially cold forgeability. 6) Good corrosion resistance in a high temperature and humid atmosphere. Conventionally, as aluminum alloys for magnetic tape contact parts, for example, JIS2000 series alloys for plastic working have been used.
Al--Cu alloys, JIS AC5A casting alloys, and 8-type Al--Si--Cu--Mg alloys are widely used, but these alloys do not have the properties listed in 1) to 5) above. Although it is excellent, it has the following problems in 6) corrosion resistance in a high temperature and humid atmosphere. If you leave magnetic tape wrapped around a VCR cylinder in a hot and humid atmosphere for a long time,
Moisture condensed between the magnetic tape and the cylinder causes the cylinder to corrode and rust, which not only causes the cylinder surface to lose its smoothness, but also to
This rust may become embedded in the magnetic coating of the magnetic tape, causing the magnetic coating to peel off when the tape is peeled off. As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 1984-19472 describes
A technique has been disclosed in which a chemically treated film is applied to the surface of a metal or an alloy, and the film is covered with a sputtered film of chromium or stainless steel. However, this method has the disadvantage that the cost is high because the steps of surface treatment and sputter film coating are added to the normal steps. In view of the current situation, the inventors of the present invention have conducted various researches to develop an aluminum alloy with excellent mechanical properties and excellent corrosion resistance in a high temperature and humid atmosphere for use in magnetic tape contact parts. As a result, in the JIS 2000 series Al-Cu alloys, which are alloys for plastic working, and the JIS AC5A series, which are alloys for casting, and the Al-Si-Cu-Mg series 8 series, which have been widely used so far, Si and Mg The present invention was completed based on the discovery that the content has a large effect on corrosion. That is, the object of the present invention is to improve wear resistance, coefficient of dynamic friction,
The object of the present invention is to provide an aluminum alloy for magnetic tape contact parts that has improved machinability and also improved corrosion resistance, and these technical problems are solved by the following configuration. The gist of the present invention is that Si exceeds 5% and 12% by weight.
up to, Cu over 2% up to 5%, Mg 0.2 to 0.8%,
Ni0.5~2.5%, Fe0.1%~1.0%, Ti0.005~0.2%
, and further contains one or more elements among Mn0.2-1.2%, Cr0.2-1.2%, and one or more elements among Pb, Bi, Sn, and Sb in a total amount of 0.5-2%, The remaining part is made of Al containing ordinary impurities to provide an aluminum alloy for magnetic tape contact parts with excellent corrosion resistance. The reason for limiting the composition range of the alloy of the present invention will be explained below. In the description of this specification, the contents of all included elements are expressed in weight %. Cu: Cu increases the strength of the alloy base metal and improves machinability. If it is less than 2%, the effect will be insufficient, and if it exceeds 5%, castability, forgeability, and corrosion resistance will deteriorate. Therefore, Cu should be in a range of more than 2% and up to 5%. Si and Mg: Forms Si and Mg 2 Si-based precipitates to increase alloy strength. Mg improves the mechanical strength and yield strength of the alloy. In particular, the synergistic effect with Cu further ensures machinability. Si has a remarkable effect on improving wear resistance. Si5% or less, Mg0.2%
If the amount is less than that, these effects will not be sufficient. When Si exceeds 12%, primary silicon crystallizes, and cold forgeability and smoothness of the cut surface deteriorate. For this reason, Si should be in a range of more than 5% and up to 12%. Within the range of Si in the present application, Mg has a significant effect on corrosion resistance in a high temperature and humid atmosphere. That is, if Mg exceeds 0.8%, corrosion resistance will deteriorate significantly. For this reason, Mg should be in the range of 0.2 to 0.8%. Fe: Fe is effective in improving wear resistance and machinability. The effect is not recognized at less than 0.1%,
If it exceeds 1.0%, plastic workability will deteriorate. Accordingly
Fe is in the range of 0.1 to 1.0%. Ni: Ni improves wear resistance and machinability. The effect is not recognized below 0.5%, and 2.5%
If it exceeds this, coarse intermetallic compounds will be formed and forging workability and machinability will deteriorate. Therefore, the range of Ni is 0.5
~2.5%. Mn, Cr: Addition of Mn and/or Cr improves wear resistance. If it is less than 0.2%, the crystallization that contributes to wear resistance will not be sufficient, and if it exceeds 1.2%, the crystallized substances will become coarse and will impair machinability. Therefore, Mn and Cr are
It should be in the range of 0.2 to 1.2%. Pb, Bi, Sn, Sb: These elements improve the machinability of the alloy. Improving machinability means reducing cutting resistance, fragmenting chips into fine particles, and improving the accuracy of the cut surface, and two or more types are more effective than using them alone. If it is less than 0.5%, it has no effect on the above properties, and if it exceeds 2.0%, the plastic workability and toughness will be extremely reduced, which is not a good idea. If the content of these elements (total amount if two or more types) is less than 0.5%, there is little effect on the above properties, and if it exceeds 2.0%, plastic workability and mechanical strength, especially toughness, will be extremely reduced. . The preferred content is 0.8-1.4%. Ti: Ti is effective in refining the structure, but
If it is less than 0.005%, the effect is not recognized, and if it exceeds 0.2%, not only the effect is saturated, but also the forging workability decreases. Therefore, Ti should be in the range of 0.005 to 0.2%. In carrying out the present invention, 0.0004 to 0.002% of B may be added in addition to the above-mentioned additional elements. As a result, coexistence with Ti enhances the miniaturization effect and improves workability. If B is less than 0.0004%, the refinement effect due to coexistence with Ti will not be exhibited. If B exceeds 0.002%, a coarse hard intermetallic compound is formed with Ti, and if this appears on the tape contact surface, there is a risk of damaging the tape surface during running. Therefore, B is 0.0004%
The range shall be ~0.002%. When manufacturing tape contact parts made of the alloy of the present invention, the starting material is not a sand mold or metal mold casting, but rather a long ingot manufactured by a direct cooling continuous casting method with a high cooling rate, and then forged by a long ingot. Most preferably, it is plastically worked and then shaped and finished by mechanical cutting means. In this case, JP-A-56-
Applying the manufacturing method of aluminum alloy for forging described in Publication No. 69348, the cooling rate (cooling rate of the solid-liquid interface during continuous casting) is maintained at 25°C/second or more (especially when the diameter
If a narrow diameter pillar of 100 mm or less is suitable for this condition), castability will be greatly improved, and long ingots can be directly forged without extrusion, improving productivity. The structure has become significantly finer, and the second phase particles made of intermetallic compounds are finely and uniformly dispersed. For this reason, it has high strength and wear resistance, and in addition, it has an extremely excellent surface roughness after being processed to a precise, smooth surface, so-called mirror finishing, which is required for VTR tape contact parts. It is generally known that when a precision finished surface is required, such as mirror finishing of metal using a cutting tool having a diamond cutting edge, it is necessary to prepare the structure of the alloy ingot. A long, narrow-diameter ingot of the alloy satisfies these requirements. However, the alloy material of the present invention is not limited to the above-mentioned continuous casting ingots, but also metal molds, sand molds,
Compared to conventional alloy materials, the present invention can be made by molding ingots using a casting method such as die casting, and then manufacturing VTR tape contact parts by cutting or forming the ingots as they are or by applying heat or cold forging. The characteristic effects of are fully exhibited. The present invention will be explained below based on Examples.
Within the scope of the gist, the present invention is not limited to the following examples. Examples and Comparative Examples Table 1 shows Example Alloys No. 1 to 9 and Comparative Example Alloys.
The alloy compositions of Nos. 10 to 12 are shown. In the classification of alloy ingots shown in this table, alloy ingot A is produced by the vertical semi-continuous casting method. The cooling rate was maintained at 28°C/sec, and the ingot was manufactured into a long cylindrical ingot with a diameter of 73 mm. The distance between dendrite arms in the internal structure of the obtained ingot was narrow, and the second phase particles were fine. It was also observed that the particles were uniformly dispersed. Alloy ingot B was obtained by extruding a cylindrical ingot with a diameter of 200 mm obtained by a vertical semi-continuous casting method into a round bar with a diameter of 70 mm. The alloy ingot C was formed into the shape shown in FIG. 1 by die casting. The mechanical property test pieces were T6 ingots for alloy materials A and B, and boat bottom mold ingots for alloy C.
Heat treatment (500℃ x 4 hours, water cooling quenching, then
After undergoing artificial aging treatment at 180°C for 8 hours, it was processed into JIS No. 4 test pieces. For the test pieces for forgeability evaluation, the ingots of both alloy materials A and B were subjected to annealing heat treatment (370°C x 4 hours, furnace cooling).
After that, the wedge test piece (L=
150 mm, t 0 = 3 mm, t 1 = 15 mm, W = 20 mm). Test pieces for hardness, machinability, surface roughness, coefficient of dynamic friction, and corrosion resistance were formed into the shapes shown in Figure 1 by cold forging for alloy materials A and B, and by die casting for alloy material C. . After rough cutting these alloy materials, they were subjected to T6 heat treatment under the same conditions as above, and then mirror-finished using a cutting tool with a diamond cutting blade, and the dimensions in Fig. 1 were D = 63 mm, d 1 = 40mm, d2 =20mm, H1 =16mm, H2
= 7mm VTR rotating drum. The cutting conditions for the outer peripheral surface of the drum on which the tape slides are the cutting speed.
150m/min, depth of cut 0.05mm, cutting tool feed rate
It was 0.05mm/rotation. The specific wear amount test piece is as above.
It was cut out from a part of a VTR rotating drum. Table 2 shows the characteristic values of these specimens.
【表】【table】
【表】【table】
【表】
各試験法の概要は次のとおりである。
イ) 引張強さ及びロ)伸び
オルゼン式50トン万能試験機を用いてJIS4号
試験片によるテストを行なつた。
ハ) 鍛造性
第2図aに示すウエツジ試験片1を第2図b
に示す金敷2上に置き、1/2トンハンマー3
によつて鍛伸し、鍛伸後の試験片4の割れ発生
位置を比較することで評価した。評価結果は
◎:良好、〇:ふつう、△:やや不良と表示す
る。
ニ) 硬さ
ビツカース硬度計によつてテープ摺動面真下
の硬さを測定した。
ホ) 切屑処理性
人造焼結ダイヤモンドの切削工具で、切削速
度150m/min、切込み量0.15mmの条件で切削
し、切削屑の形状で比較、評価した。評価結果
は、◎:良好、〇:ふつう、△やや不良と表示
する。
ヘ) 表面粗さ
ドラムの軸方向の表面粗さを、触針式あらさ
試験機にて測定した。
ト) 耐摩耗性
大越式摩耗試験機により、相手をFC30とし、
摩擦速度3m/sec、荷重2.1Kg、摩擦距離600m、
無潤滑の状態で試験し、単位面積のKg当りの比
摩耗性を測定した。
チ) 動摩擦係数
VTRと同様の走行方法で磁気テープの片方
には50grの逆長力(Wp)を負荷し、18.0cm/
secの相対速度で供試材を回転させ、磁気テー
プの負荷と相対する片側で作用荷重(WT)を
測定して動摩擦係数を算出した。
リ) 耐食性
VTRドラムに、60grの荷重をかけた磁気テ
ープをまきつけ温度40℃、湿度85%の雰囲気に
1週間保持した後、ドラムと磁気テープについ
て各々が接触し合つていた部分の状態を観察し
た。評価は4段階とした。即ち、
◎:ドラム、磁気テープに変化なし。
〇:ドラムに小さな腐蝕発生、磁気テープに異
常なし。
△:ドラムに腐蝕発生、磁気テープの所々に磁
性粉の剥離あり。
×:ドラムが激しく腐蝕、磁気テープの磁性粉
の剥離顕著。
以上の評価で、◎及び〇は、実用上差し支え
ない程度のものである。
耐食性試験によつて得たドラム表面のスケツチ
図を第3図に、それに対応する磁気テープのスケ
ツチ図を第4図に示す。第3図、第4図とも、a
は合金No.2、bは合金No.10に対応する。
第3図bでドラム表面に存在する黒い点が腐蝕
部分であり、第4図bでテープ表面の黒い点がド
ラムの腐蝕によつて磁性粉が剥離した部分であ
る。
第3図bの腐蝕部の断面を組織観察したとこ
ろ、腐食は結晶粒界に伝播して起る粒界腐蝕であ
ることが明らかとなつた。第3図bのドラムの腐
蝕部の断面の顕微鏡組織写真を第5図に示す。
従つて、VTRドラムと磁気テープとを接触さ
せたまま高温、高湿下で静的に放置した場合の耐
食性は、SiおよびMg含有量を管理することによ
つて達成することが出来る。
第2表の特性値にみられるように、本発明の合
金は、磁気テープ接触部品に要求される機械的特
質に優れ、かつ部品表面にコーテイングなどの特
殊な処理を施さなくとも耐食性に優れており、磁
気テープ接触部品用材料として甚だ好適である。[Table] A summary of each test method is as follows. A) Tensile strength and B) Elongation Tests were conducted using JIS No. 4 test pieces using an Olzen 50-ton universal testing machine. c) Forgeability The wedge test piece 1 shown in Fig. 2a is
Place it on the anvil 2 shown in the figure, and use the 1/2 ton hammer 3.
The evaluation was made by comparing the crack occurrence positions of the test piece 4 after forging and elongation. The evaluation results are indicated as ◎: good, 〇: normal, and △: slightly poor. d) Hardness The hardness directly below the tape sliding surface was measured using a Bitkers hardness meter. e) Chip disposal properties Cutting was performed using an artificial sintered diamond cutting tool at a cutting speed of 150 m/min and a depth of cut of 0.15 mm, and the shape of the chips was compared and evaluated. The evaluation results are displayed as ◎: good, 〇: normal, and △ slightly poor. f) Surface roughness The surface roughness of the drum in the axial direction was measured using a stylus roughness tester. g) Abrasion resistance Using an Okoshi type abrasion tester, the test material was FC30.
Friction speed 3m/sec, load 2.1Kg, friction distance 600m,
The test was conducted without lubrication, and the specific wear resistance per kg of unit area was measured. H) Coefficient of Dynamic Friction Using the same running method as a VTR, a reverse length force (Wp) of 50gr was applied to one side of the magnetic tape, and the magnetic tape was rolled at 18.0cm/
The test material was rotated at a relative speed of sec, and the acting load (WT) was measured on one side facing the magnetic tape load to calculate the dynamic friction coefficient. li) Corrosion resistance After wrapping a magnetic tape with a load of 60gr around a VTR drum and keeping it in an atmosphere of 40℃ and 85% humidity for one week, the condition of the parts where the drum and magnetic tape were in contact with each other was determined. Observed. The evaluation was in four stages. That is, ◎: No change in drum or magnetic tape. ○: Small corrosion occurred on the drum, no abnormality on the magnetic tape. △: Corrosion occurred on the drum, and magnetic powder was peeled off in some places on the magnetic tape. ×: The drum was severely corroded, and the magnetic powder on the magnetic tape was noticeably peeled off. In the above evaluation, ◎ and ○ indicate that there is no problem in practical use. A sketch of the drum surface obtained from the corrosion resistance test is shown in FIG. 3, and a corresponding sketch of the magnetic tape is shown in FIG. In both Figures 3 and 4, a
corresponds to alloy No. 2, and b corresponds to alloy No. 10. The black dots on the drum surface in FIG. 3b are corroded areas, and the black dots on the tape surface in FIG. 4b are areas where the magnetic powder has peeled off due to drum corrosion. When the structure of the cross section of the corroded area shown in FIG. 3b was observed, it became clear that the corrosion was intergranular corrosion that propagated to the grain boundaries. FIG. 5 shows a micrograph of the cross section of the corroded portion of the drum shown in FIG. 3b. Therefore, corrosion resistance when the VTR drum and magnetic tape are statically left in contact with each other under high temperature and high humidity can be achieved by controlling the Si and Mg contents. As seen in the characteristic values in Table 2, the alloy of the present invention has excellent mechanical properties required for magnetic tape contact parts, and also has excellent corrosion resistance without special treatment such as coating on the part surface. Therefore, it is extremely suitable as a material for magnetic tape contact parts.
第1図は、VTR用回転ドラム形状試験片の断
面図、第2図aは、鍛造性評価のためのウエツジ
試験片の形状、第2図bは、鍛造性試験方法の説
明図、第3図及び第4図は、高温高湿雰囲気下で
の耐食性試験によつて得られたドラム表面(第3
図)とそれに対応する磁気テープ(第4図)のス
ケツチ図で、それぞれaは、合金No.2、bは合金
No.14に対応する。第5図は、第3図bのドラムの
腐蝕部の断面の顕微鏡組織写真である。
Figure 1 is a cross-sectional view of a rotating drum-shaped test piece for VTR, Figure 2a is the shape of a wedge test piece for forgeability evaluation, Figure 2b is an explanatory diagram of the forgeability test method, and Figure 3 Figures 4 and 4 show the drum surface (Third
Fig. 4) and the corresponding magnetic tape (Fig. 4), where a is alloy No. 2 and b is alloy No. 2, respectively.
Corresponds to No.14. FIG. 5 is a micrograph of a cross-section of the corroded portion of the drum of FIG. 3b.
Claims (1)
を越え5%まで、Mg0.2〜0.8%、Ni0.5〜2.5%、
Fe0.1%〜1.0%、Ti0.005〜0.2%を含み、さらに、
Mn0.2〜1.2%、Cr0.2〜1.2%のうち1種以上の元
素およびPb、Bi、Sn、Sbのうち1種以上の元素
を総量で0.5〜2%を含み、残部は通常の不純物
を含むAlよりなる耐食性に優れた磁気テープ接
触部品用アルミニウム合金。 2 重量でSiが5%を越え12%まで、Cuが2%
を越え5%まで、Mg0.2〜0.8%、Ni0.5〜2.5%、
Fe0.1%〜1.0%、Ti0.005〜0.2%、B0.0004〜
0.002%を含み、さらに、Mn0.2〜1.2%、Cr0.2〜
1.2%のうち1種以上の元素およびPb、Bi、Sn、
Sbのうち1種以上の元素を総量で0.5〜2%を含
み、残部は通常の不純物を含むAlよりなる耐食
性に優れた磁気テープ接触部品用アルミニウム合
金。[Claims] 1. Si is more than 5% and up to 12% by weight, and Cu is 2% by weight.
up to 5%, Mg0.2~0.8%, Ni0.5~2.5%,
Contains Fe0.1%~1.0%, Ti0.005~0.2%, and further,
Contains a total of 0.5-2% of one or more elements among Mn0.2-1.2%, Cr0.2-1.2%, and one or more elements among Pb, Bi, Sn, and Sb, and the remainder is normal impurities. An aluminum alloy for magnetic tape contact parts with excellent corrosion resistance. 2 Si over 5% and up to 12% by weight, Cu 2%
up to 5%, Mg0.2~0.8%, Ni0.5~2.5%,
Fe0.1%~1.0%, Ti0.005~0.2%, B0.0004~
Contains 0.002%, additionally Mn0.2~1.2%, Cr0.2~
1.2% of one or more elements and Pb, Bi, Sn,
An aluminum alloy for magnetic tape contact parts with excellent corrosion resistance, containing a total amount of 0.5 to 2% of one or more elements among Sb, and the remainder being Al containing ordinary impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4646984A JPS60190542A (en) | 1984-03-13 | 1984-03-13 | Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4646984A JPS60190542A (en) | 1984-03-13 | 1984-03-13 | Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60190542A JPS60190542A (en) | 1985-09-28 |
JPH0239578B2 true JPH0239578B2 (en) | 1990-09-06 |
Family
ID=12748032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4646984A Granted JPS60190542A (en) | 1984-03-13 | 1984-03-13 | Aluminum alloy having superior corrosion resistance for parts contacting with magnetic tape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60190542A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6227543A (en) * | 1985-07-30 | 1987-02-05 | Furukawa Alum Co Ltd | Wear-resisting aluminum alloy stock |
JPS62222040A (en) * | 1986-03-24 | 1987-09-30 | Mitsubishi Alum Co Ltd | Aluminum alloy excellent in wear resistance and cold forgeability |
JPS6442550A (en) * | 1987-08-07 | 1989-02-14 | Mitsubishi Aluminium | Aluminum alloy having excellent wear-resistance, machinability and cold forgeability |
JPH0297638A (en) * | 1988-09-30 | 1990-04-10 | Showa Denko Kk | Aluminum alloy for parts to be brought into contact with magnetic tape |
JPH02115339A (en) * | 1988-10-25 | 1990-04-27 | Showa Alum Corp | Wear-resistant aluminum alloy having excellent service life of cutting tools |
JPH02115338A (en) * | 1988-10-25 | 1990-04-27 | Showa Alum Corp | Aluminum alloy having excellent wear resistance and machinability |
JP3107517B2 (en) * | 1995-03-30 | 2000-11-13 | 株式会社神戸製鋼所 | High corrosion resistant aluminum alloy extruded material with excellent machinability |
JP3654695B2 (en) * | 1995-12-25 | 2005-06-02 | アイシン軽金属株式会社 | Wear resistant aluminum alloy |
JP3835629B2 (en) * | 1996-09-24 | 2006-10-18 | 住友軽金属工業株式会社 | Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance |
JP4341438B2 (en) * | 2004-03-23 | 2009-10-07 | 日本軽金属株式会社 | Aluminum alloy excellent in wear resistance and sliding member using the same alloy |
JP3669440B2 (en) * | 2004-05-26 | 2005-07-06 | アイシン軽金属株式会社 | Wear resistant aluminum alloy |
JP2006283124A (en) * | 2005-03-31 | 2006-10-19 | Kobe Steel Ltd | Abrasion resistant aluminum alloy for cold forging |
JP6811076B2 (en) * | 2016-11-11 | 2021-01-13 | 株式会社ミクニ | Manufacturing method of power transmission gear for vehicles |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289512A (en) * | 1976-01-22 | 1977-07-27 | Mitsubishi Metal Corp | Al alloy for parts in contact with magnetic tape |
JPS54153715A (en) * | 1978-05-26 | 1979-12-04 | Mitsubishi Keikinzoku Kogyo | Aluminum alloy to be used for magnetic tape contact parts |
JPS5669344A (en) * | 1979-11-07 | 1981-06-10 | Showa Alum Ind Kk | Aluminum alloy for forging and its manufacture |
JPS5770253A (en) * | 1980-10-15 | 1982-04-30 | Furukawa Alum Co Ltd | Aluminum alloy for vtr cylinder |
JPS57149445A (en) * | 1981-03-09 | 1982-09-16 | Showa Alum Ind Kk | Aluminum alloy for parts in contact with vtr tape |
-
1984
- 1984-03-13 JP JP4646984A patent/JPS60190542A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289512A (en) * | 1976-01-22 | 1977-07-27 | Mitsubishi Metal Corp | Al alloy for parts in contact with magnetic tape |
JPS54153715A (en) * | 1978-05-26 | 1979-12-04 | Mitsubishi Keikinzoku Kogyo | Aluminum alloy to be used for magnetic tape contact parts |
JPS5669344A (en) * | 1979-11-07 | 1981-06-10 | Showa Alum Ind Kk | Aluminum alloy for forging and its manufacture |
JPS5770253A (en) * | 1980-10-15 | 1982-04-30 | Furukawa Alum Co Ltd | Aluminum alloy for vtr cylinder |
JPS57149445A (en) * | 1981-03-09 | 1982-09-16 | Showa Alum Ind Kk | Aluminum alloy for parts in contact with vtr tape |
Also Published As
Publication number | Publication date |
---|---|
JPS60190542A (en) | 1985-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5762728A (en) | Wear-resistant cast aluminum alloy process of producing the same | |
KR100199362B1 (en) | Aluminum alloy for die casting and ball joint using the same | |
JPH0239578B2 (en) | ||
SK283371B6 (en) | An alloy based on aluminium, containing aluminium and other elements, use of the alloy and metallurgical products made of this alloy | |
JPH0122343B2 (en) | ||
JPH0116901B2 (en) | ||
US4740250A (en) | Aluminium base-alloy for head drum of video cassette recorders | |
JPH04176836A (en) | Aluminum alloy excellent in wear resistance | |
JPS6138254B2 (en) | ||
JPH0348257B2 (en) | ||
JPS6144142B2 (en) | ||
JPH0578770A (en) | Cast aluminum alloy having excellent wear resistance | |
JPS635459B2 (en) | ||
JPS6086237A (en) | Cu-alloy for slide member | |
JP3389000B2 (en) | Hypereutectic Al-Si alloy for die casting, hypereutectic Al-Si alloy die casting and method of using the same | |
JPS6154854B2 (en) | ||
KR910006019B1 (en) | Al alloy for head drum of audio tape recorder | |
JPH0297638A (en) | Aluminum alloy for parts to be brought into contact with magnetic tape | |
JPH07195150A (en) | Method for casting aluminum alloy for hdd | |
JPH0118140B2 (en) | ||
JPS62222039A (en) | Aluminum alloy excellent in wear resistance and extrudability | |
JPH0136543B2 (en) | ||
JPS62192553A (en) | Aluminum alloy for cold forging | |
JPH07138688A (en) | Aluminum alloy forged member | |
JPH01268839A (en) | Aluminum alloy for working |