JP2743709B2 - Aluminum alloy for extrusion and forging - Google Patents

Aluminum alloy for extrusion and forging

Info

Publication number
JP2743709B2
JP2743709B2 JP4143405A JP14340592A JP2743709B2 JP 2743709 B2 JP2743709 B2 JP 2743709B2 JP 4143405 A JP4143405 A JP 4143405A JP 14340592 A JP14340592 A JP 14340592A JP 2743709 B2 JP2743709 B2 JP 2743709B2
Authority
JP
Japan
Prior art keywords
weight
forging
aluminum alloy
strength
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4143405A
Other languages
Japanese (ja)
Other versions
JPH05311306A (en
Inventor
一 神尾
達 山田
健二 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP4143405A priority Critical patent/JP2743709B2/en
Publication of JPH05311306A publication Critical patent/JPH05311306A/en
Application granted granted Critical
Publication of JP2743709B2 publication Critical patent/JP2743709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、展伸用合金に匹敵する
強度をもち、鍛造加工性及び耐摩耗性に優れたアルミニ
ウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy having a strength comparable to a wrought alloy, and excellent in forgeability and wear resistance.

【0002】[0002]

【従来の技術】熱間鍛造用素材のアルミニウム合金とし
て、6061,6066,6082等の6000番台の
Al−Mg−Si合金が従来から使用されている。なか
でも、6061合金は、最も多く鍛造材として使用され
ている。しかし、6061合金は、引張り強さが27〜
33kg/mm2 であり、いわゆる中強度部材としての
用途に制約される。
2. Description of the Related Art Al-Mg-Si alloys in the 6000 series, such as 6061, 6066, 6082, etc., have been conventionally used as aluminum alloys for hot forging. Among them, 6061 alloy is most often used as a forging material. However, the 6061 alloy has a tensile strength of 27-
It is 33 kg / mm 2, which is restricted to the use as a so-called medium strength member.

【0003】6000番台のアルミニウム合金は、熱間
鍛造によって強度を向上させ且つ所定形状に成形された
後、T6 等の熱処理が施されている。ところが、熱処理
によって加工組織の再結晶粒が粗大化し、強度,伸び等
の機械的性質が低下する。熱処理による再結晶粒の粗大
化は、特に50%以上の高加工率で鍛造されたものに顕
著に発生する。
[0003] 6000-series aluminum alloy, after being molded to and a predetermined shape to improve the strength by hot forging, heat treatment such as T 6 it is applied. However, the recrystallization grains of the processed structure are coarsened by the heat treatment, and mechanical properties such as strength and elongation are reduced. The coarsening of the recrystallized grains due to the heat treatment remarkably occurs particularly in the case of forging with a high working ratio of 50% or more.

【0004】そこで、特開平1−283337号公報で
は、Mn,Cr,Zr等を添加することにより結晶粒の
粗大化を抑制することが提案されている。所定量のM
n,Cr及びZrをAl−Mg−Si系のアルミニウム
合金に複合添加するとき、鍛造,熱処理等の工程におい
て結晶粒の成長が抑制され、微細な結晶組織をもつ材料
が得られるとされている。また、特開平3−6346号
公報では、Si,Cu,Mg,Mn,Be等の成分調整
を図ることにより、鍛造工程及び熱処理工程で変色がな
く、アルミニウム合金本来の色調をもつ鍛造用合金が紹
介されている。
Therefore, Japanese Patent Application Laid-Open No. 1-283337 proposes to suppress the coarsening of crystal grains by adding Mn, Cr, Zr or the like. Predetermined amount of M
When n, Cr and Zr are added to an Al-Mg-Si-based aluminum alloy in a complex manner, the growth of crystal grains is suppressed in steps such as forging and heat treatment, and a material having a fine crystal structure is obtained. . In Japanese Patent Application Laid-Open No. Hei 3-6346, a forging alloy having the original color tone of an aluminum alloy without discoloration in the forging step and the heat treatment step by adjusting the components such as Si, Cu, Mg, Mn, and Be. Has been introduced.

【0005】この6010系等のアルミニウム合金は、
押出し工程を経て鍛造用素材にされるが、耐摩耗性に劣
り、ボルトを使用した締結や鋼製部材との接合に問題が
ある。たとえば、使用中に振動,衝撃,摺動等によって
アルミ部材と鋼製部材との間で摩擦や摩耗等が生じ、締
結部の緩み,抜け落ち,破損等が生じ易くなる。そのた
め、ボルト締結部等が多い自動車用部品としては、改良
の余地がある。耐摩耗性を改善するため、本発明者等
は、Al−Si系合金にSbを添加して半連続鋳造法に
よって凝固した鋳塊を押出し加工することが有効である
ことを見い出し、特開平1−268839号公報として
紹介した。
[0005] Aluminum alloys such as 6010 series
Although it is made into a forging material through an extrusion process, it is inferior in wear resistance and has problems in fastening using bolts and joining with steel members. For example, during use, friction, wear, and the like are generated between the aluminum member and the steel member due to vibration, impact, sliding, and the like, and loosening, falling off, breakage, and the like of the fastening portion are likely to occur. Therefore, there is room for improvement in automotive parts having many bolted portions and the like. To improve wear resistance, the present inventors have found that it is effective to add Sb to an Al-Si alloy and extrude a solidified ingot by a semi-continuous casting method. -268839.

【0006】[0006]

【発明が解決しようとする課題】Sb添加により組織を
微細化した特開平1−268839号公報のアルミニウ
ム合金は、耐摩耗性に優れるものの、6061合金に比
較して引張り強さ,疲労強度等が低く、高強度が必要と
される構造材としての使用に若干問題が残る。
The aluminum alloy disclosed in Japanese Patent Application Laid-Open No. 1-268839, in which the structure is refined by adding Sb, is excellent in abrasion resistance, but has a higher tensile strength, fatigue strength and the like than the 6061 alloy. Some problems remain for use as a structural material requiring low strength and high strength.

【0007】他方、特開平3−6346号公報のアルミ
ニウム合金は、Sb添加に起因するものと推察される鍛
造品表面の変色をBe添加によって抑制することを狙っ
たものであり、機械的強度や加工性に対する改良が十分
でない。
On the other hand, the aluminum alloy disclosed in JP-A-3-6346 aims at suppressing the discoloration of the surface of a forged product, which is presumed to be caused by the addition of Sb, by adding Be. Insufficient improvement in processability.

【0008】本発明は、このような問題を解消すべく案
出されたものであり、Si,Sb,Fe,Ti,Mg,
B及びCuの間で成分バランスを図ることにより、展伸
用合金に匹敵する鍛造後のT6 処理材で33kg/mm
2 以上の引張り強さをもち、且つ伸びも13%以上と高
い鍛造加工性及び耐摩耗性に優れたアルミニウム合金を
提供することを目的とする。
[0008] The present invention has been devised to solve such a problem, and includes Si, Sb, Fe, Ti, Mg, and Si.
By balancing the components between B and Cu, the forged T 6 treated material comparable to the wrought alloy is 33 kg / mm.
An object of the present invention is to provide an aluminum alloy having a tensile strength of 2 or more, and an elongation of 13% or more, which is high in forgeability and wear resistance.

【0009】本発明の押出し・鍛造用アルミニウム合金
は、その目的を達成するため、Si:3.5〜6.5重
量%,Sb:0.05〜0.15重量%,Fe:0.2
5重量%以下,Cu:0.5〜3.5重量%,Ti:
0.01〜0.1重量%,Mg:0.2〜0.6重量%
及びB:0.0005〜0.02重量%を含有し、残部
が実質的にAlの組成をもち、マトリックスに微細なA
Cuが分散析出していることを特徴とする。このア
ルミニウム合金は、更にMn:0.05〜0.5重量
%,Cr:0.05〜0.3重量%及びSr:0.00
1〜0.05重量%から選ばれた1種又は2種以上を含
有することができる。
The aluminum alloy for extrusion and forging according to the present invention has an Si content of 3.5 to 6.5% by weight, an Sb content of 0.05 to 0.15% by weight, and an Fe content of 0.2.
5% by weight or less, Cu: 0.5 to 3.5% by weight, Ti:
0.01 to 0.1% by weight, Mg: 0.2 to 0.6% by weight
And B: 0.0005 to 0.02% by weight, with the balance having a substantially Al composition, and
It is characterized in that l 2 Cu is dispersed and precipitated. This aluminum alloy further contains Mn: 0.05 to 0.5% by weight, Cr: 0.05 to 0.3% by weight, and Sr: 0.00
One or more selected from 1 to 0.05% by weight can be contained.

【0010】[0010]

【作 用】Al−Si−Mg系合金は、図1に示すよう
にSi含有量に応じて引張り強さσB や伸びδ等の引張
り特性が変化する。すなわち、Si含有量が7重量%を
超えるとき、強度が向上するものの、伸びが低下する。
逆に、4重量%未満のSi含有量では、耐摩耗性が低下
する。また、伸びは、表1に示すように共晶Siが小さ
くなると増加する傾向を示し、Sbの添加によって向上
する。
[Action] As shown in FIG. 1, an Al—Si—Mg alloy changes tensile properties such as tensile strength σ B and elongation δ according to the Si content. That is, when the Si content exceeds 7% by weight, the strength is improved, but the elongation is reduced.
Conversely, if the Si content is less than 4% by weight, the wear resistance is reduced. Further, as shown in Table 1, the elongation tends to increase as the eutectic Si decreases, and is improved by the addition of Sb.

【表1】 [Table 1]

【0011】本発明においては、Si含有量4〜7重量
%の範囲で強度,伸び及び耐摩耗性を維持するために、
Cuの添加が最も有効であることを見い出した。添加さ
れたCuは、鋳造したままの状態ではマトリックスの中
に固溶しているが、その後の加工,熱処理等によって微
細なAl2 Cu析出物となってマトリックス中に析出
し、アルミニウム合金の強度や硬さを向上させる。
In the present invention, in order to maintain strength, elongation and wear resistance in the range of Si content of 4 to 7% by weight,
It has been found that the addition of Cu is most effective. The added Cu forms a solid solution in the matrix as it is cast, but forms fine Al 2 Cu precipitates in the matrix as a result of subsequent processing, heat treatment, etc., and the strength of the aluminum alloy is reduced. And improve hardness.

【0012】この点、同様な強化を狙って使用されるM
gは、マトリックスを固溶硬化する元素であることか
ら、Cuと異なり強度の向上が図られても、伸びや加工
性を著しく低下してしまう。したがって、加工性が要求
されるアルミニウム合金に対しては、Mgを多量添加す
ることはできない。更に、添加されたCuは、鋳塊状態
でもAl−Ti−Bによる微細化効果を助長すると共
に、押出し丸棒においても熱処理後の再結晶粒が粗大化
することを抑制する作用を呈する。これにより、強度を
上昇させ、且つ伸びの低下が防止される。
In this regard, the M used for the same reinforcement is used.
Since g is an element that solid-solution hardens the matrix, unlike Cu, even if strength is improved, elongation and workability are significantly reduced. Therefore, a large amount of Mg cannot be added to an aluminum alloy that requires workability. Further, the added Cu promotes the refining effect of Al-Ti-B even in the ingot state, and also has the effect of suppressing the recrystallized grains after heat treatment from becoming coarse even in an extruded round bar. Thereby, the strength is increased, and a decrease in elongation is prevented.

【0013】マトリックスの強度や硬さが増加すること
によって、耐摩耗性に大きな影響を与える共晶Si粒子
をマトリックス中に固定する力が大きくなる。そのた
め、相手材との摺動による共晶Si粒子の剥離が防が
れ、より高い耐摩耗性が得られる。しかも、Cu添加に
伴って鋳塊の冷却速度が徐冷側に移行し、共晶Siの晶
出から凝固までの時間が長くなる。その結果、共晶Si
粒子は、丸みを帯びた形状になると共に、鋳塊内での分
布も均一になる。これによっても、耐摩耗性の向上が図
られる。
[0013] As the strength and hardness of the matrix increase, the force for fixing the eutectic Si particles in the matrix, which greatly affects the wear resistance, increases. Therefore, peeling of the eutectic Si particles due to sliding with the counterpart material is prevented, and higher wear resistance is obtained. In addition, the cooling rate of the ingot shifts to the slow cooling side with the addition of Cu, and the time from crystallization of eutectic Si to solidification becomes longer. As a result, eutectic Si
The particles have a rounded shape and a uniform distribution in the ingot. This also improves the wear resistance.

【0014】Cu添加は、鍛造性に関しても好結果をも
たらし、特に変形能の一つの指標である肌荒れの低減に
寄与する。これは、Cu添加に起因したマクロ結晶粒微
細化作用だけではなく、Sbの複合添加による共晶Si
粒子の微細化作用が相俟つた(Cu+Sb)の相乗効果
によるものである。しかも、Sbの複合添加により、伸
びの向上も図られる。
[0014] The addition of Cu has a good effect on the forgeability, and particularly contributes to the reduction of skin roughness, which is one index of deformability. This is not only due to the macro grain refinement effect caused by the addition of Cu, but also to the eutectic Si due to the combined addition of Sb.
This is due to the synergistic effect of (Cu + Sb) in which the effect of refining particles is combined. In addition, the elongation can be improved by the combined addition of Sb.

【0015】以下、本発明アルミニウム合金の合金成分
及びその含有量を説明する。 Si: 良好な鋳造性を付与すると共に、耐摩耗性を向
上させる上で有効な合金元素である。Siを3.5〜
6.5重量%含有する本発明のアルミニウム合金は、ボ
ルト締結部が多い自動車用部品として有利である。Si
含有量が3.5重量%を下回ると、鋳造性が劣化するば
かりでなく、強度,耐摩耗性が低下する。他方、6.5
重量%を超える多量のSiを含有するとき、延び,靭性
等が劣化し、鍛造加工性が悪くなる。
Hereinafter, the alloy components of the aluminum alloy of the present invention and the content thereof will be described. Si: An alloy element that is effective for imparting good castability and improving wear resistance. 3.5 to Si
The aluminum alloy of the present invention containing 6.5% by weight is advantageous as an automobile part having many bolted portions. Si
If the content is less than 3.5% by weight, not only does the castability deteriorate, but also the strength and wear resistance decrease. On the other hand, 6.5
When a large amount of Si is contained in excess of% by weight, elongation, toughness and the like are deteriorated and forgeability is deteriorated.

【0016】Sb: 共晶Siを微細にする作用を呈
し、特に鋳造・鍛造用に使用されるアルミニウム合金の
伸びを改善する。また、押出し・鍛造加工においても、
溶体化処理時間の短縮がSb添加によって可能となる。
このようなSbの作用は、0.05重量%以上含有させ
るとき顕著に現れる。しかし、0.15重量%を超える
多量の添加は、脆いSb2 Mg3 等の金属間化合物の発
生を促進させ、アルミニウム合金の加工性を劣化させ
る。したがって、Sb含有量を0.05〜0.15重量
%の範囲に設定した。
Sb: exhibits an effect of making eutectic Si fine, and particularly improves the elongation of an aluminum alloy used for casting and forging. In extrusion and forging,
The solution treatment time can be reduced by adding Sb.
Such an effect of Sb appears remarkably when the content is 0.05% by weight or more. However, the addition of a large amount exceeding 0.15% by weight promotes the generation of brittle intermetallic compounds such as Sb 2 Mg 3 and deteriorates the workability of the aluminum alloy. Therefore, the Sb content was set in the range of 0.05 to 0.15% by weight.

【0017】Fe: 不純物としてアルミニウム合金に
混入する元素であるFeは、Al−Fe−Si系化合物
となってマトリックスに分散し、伸び,靭性,耐食性等
に悪影響を与える。したがって、Fe含有量は、少なけ
れば少ないほど好ましい。しかし、過度にFe含有量を
下げることは、合金の溶製を困難にする。そこで、Fe
含有量は、実質的な悪影響がみられない0.25重量%
に上限を設定した。
Fe: Fe, which is an element mixed into the aluminum alloy as an impurity, becomes an Al—Fe—Si-based compound and is dispersed in the matrix, and has an adverse effect on elongation, toughness, corrosion resistance, and the like. Therefore, the smaller the Fe content, the better. However, excessively lowering the Fe content makes it difficult to melt the alloy. Therefore, Fe
Content is 0.25% by weight with no substantial adverse effect
Has an upper limit.

【0018】Cu: 本発明アルミニウム合金において
重要な役割を果す合金元素であり、伸びを低下させるこ
となく機械的強度,耐摩耗性等を改善する。Cu添加に
よる強度向上は、T6 等の熱処理によって析出するCu
Al2 に起因するものである。33kg/mm2 以上の
引張り強さを得るためには、0.5重量%以上のCuを
含有させることが必要である。アルミニウム合金の強度
は、Cu含有量に比例して上昇する。しかし、3.5重
量%を超えるCu含有量では、強度改善効果が飽和し、
反対に耐食性,靭性等を劣化させる原因となる。したが
って、Cu含有量は、0.5〜3.5重量%の範囲に設
定した。
Cu: an alloy element which plays an important role in the aluminum alloy of the present invention, and improves mechanical strength, wear resistance and the like without lowering elongation. Cu strength improvement by the addition, precipitated by heat treatment such as T 6 Cu
This is due to Al 2 . In order to obtain a tensile strength of 33 kg / mm 2 or more, it is necessary to contain 0.5% by weight or more of Cu. The strength of the aluminum alloy increases in proportion to the Cu content. However, when the Cu content exceeds 3.5% by weight, the strength improving effect is saturated,
On the contrary, it causes deterioration of corrosion resistance and toughness. Therefore, the Cu content was set in the range of 0.5 to 3.5% by weight.

【0019】Ti: 鋳塊の組織を微細にし、鋳塊の割
れ発生を防止すると共に、オレンジピール等の塑性加工
に伴う肌荒れが鍛造品の表面に発生することを防止する
作用を呈する。このような効果は、0.01重量%以上
のTiを含有されるとき顕著に現れる。しかし、0.1
重量%を超える多量のTiを添加するとき、TiB2
TiAl3 等の巨大な晶出物が発生し易くなり、鍛造加
工時の割れや切削加工時の表面疵を発生させる。また、
多量のTi含有により、靭性の劣化もみられる。したが
って、0.01〜0.1重量%の範囲にTi含有量を定
めた。
Ti: It has the effect of making the structure of the ingot fine, preventing cracking of the ingot, and preventing the occurrence of rough surface due to plastic working such as orange peel on the surface of the forged product. Such an effect is remarkably exhibited when 0.01% by weight or more of Ti is contained. However, 0.1
When adding a large amount of Ti exceeding weight%, TiB 2 ,
Giant crystals, such as TiAl 3, are likely to be generated, causing cracks during forging and surface flaws during cutting. Also,
Deterioration of toughness is also observed due to the large amount of Ti contained. Therefore, the Ti content is determined in the range of 0.01 to 0.1% by weight.

【0020】Mg: Cuと同様にアルミニウム合金の
強度を向上させる上で、必須の合金成分である。Mgを
添加した本発明アルミニウム合金においては、T6 等の
熱処理によって微細なMg2 Siがマトリックスに析出
し、強度を向上させる。Mg含有量が0.2重量%未満
では、Mg添加による強度改善効果がほとんどみられな
い。しかし、0.6重量%を超える多量のMgを含有さ
せると、析出硬化による強度改善効果が飽和するばかり
でなく、割れ感受性,靭性等が低下し、押出し,鍛造等
の加工性が悪くなる。そこで、Mg含有量は、0.2〜
0.6重量%の範囲に設定した。
Mg: Similar to Cu, Mg is an essential alloy component for improving the strength of an aluminum alloy. In the aluminum alloy of the present invention to which Mg is added, fine Mg 2 Si precipitates in the matrix by heat treatment such as T 6 , and the strength is improved. If the Mg content is less than 0.2% by weight, almost no effect of improving the strength by adding Mg is observed. However, when a large amount of Mg exceeding 0.6% by weight is contained, not only the strength improving effect due to precipitation hardening is saturated, but also crack sensitivity, toughness and the like are reduced, and workability such as extrusion and forging is deteriorated. Therefore, the Mg content is 0.2 to
It was set in the range of 0.6% by weight.

【0021】B: Tiと同様に結晶粒の微細化に有効
な合金元素であり、0.0005重量%以上の含有量で
その効果がみられる。しかし、0.02重量%を超えて
Bを含有させると、巨大なTiB2 等の晶出物が発生し
易くなり、鍛造,切削等の加工性を低下させる。そこ
で、B含有量を0.0005〜0.02重量%の範囲に
設定した。
B: Like Ti, it is an effective alloying element for refining crystal grains, and its effect is seen at a content of 0.0005% by weight or more. However, when B is contained in an amount exceeding 0.02% by weight, a large amount of crystallized matter such as TiB 2 is likely to be generated, and the workability such as forging and cutting is reduced. Therefore, the B content was set in the range of 0.0005 to 0.02% by weight.

【0022】選択成分として添加されるCr,Mn及び
Srは、次の作用を呈する。 Cr: 押出し,鍛造及び後続する熱処理時に結晶粒の
成長を抑制し、熱処理後の組織を微細にする上で有効な
合金元素である。これにより、高い強度,伸び及び靭性
が確保される。この作用は、0.05重量%以上のCr
を含有させるとき顕著にみられる。しかし、0.3重量
%を超えて多量のCrを含有させると、Al−Si−F
e−Cr系等の硬くて脆い金属間化合物の析出量が多く
なり、加工性に悪影響を与える伸び,靭性等の低下がみ
られる。したがって、Crを含有させる場合には、その
含有量を0.05〜0.3重量%の範囲に定める。
The Cr, Mn and Sr added as selective components have the following effects. Cr: An alloy element effective in suppressing the growth of crystal grains during extrusion, forging and subsequent heat treatment, and making the structure after heat treatment fine. This ensures high strength, elongation and toughness. This effect is caused by the presence of 0.05% by weight or more of Cr.
Is remarkable when it is contained. However, if a large amount of Cr is contained in excess of 0.3% by weight, Al—Si—F
The amount of precipitation of hard and brittle intermetallic compounds such as e-Cr-based alloys is increased, and reductions in elongation and toughness, which adversely affect workability, are observed. Therefore, when Cr is contained, its content is determined in the range of 0.05 to 0.3% by weight.

【0023】Mn: Crと同様に結晶粒の粗大化を抑
制し、強度,伸び,靭性等を改良する合金元素である。
Mn添加の効果は、0.05重量%以上で顕著になる。
しかし、0.5重量%を超えてMnを含有させると、A
l−Si−Fe−Mn系等の硬くて脆い金属間化合物の
析出量が多くなり、加工性に悪影響を与える伸び,靭性
等の低下がみられる。したがって、Mnを含有させる場
合、その含有量を0.05〜0.5重量%の範囲に定め
る。
Mn: Like Cr, it is an alloying element that suppresses coarsening of crystal grains and improves strength, elongation, toughness and the like.
The effect of Mn addition becomes remarkable at 0.05% by weight or more.
However, when Mn is contained in an amount exceeding 0.5% by weight, A
The precipitation amount of hard and brittle intermetallic compounds such as l-Si-Fe-Mn system increases, and elongation and toughness, which adversely affect workability, are reduced. Therefore, when Mn is contained, its content is set in the range of 0.05 to 0.5% by weight.

【0024】Sr: Sbと同様に共晶Siを微細化
し、衝撃値や伸びを向上させる上で有効な合金元素であ
る。また、溶体化処理時間の短縮や鍛造性の向上にも有
効に作用する。このようなSrの作用は、含有量が0.
001重量%以上のとき顕著に現れる。しかし、0.0
5重量%を超えてSrを含有させると、金属間化合物の
発生に起因した加工性の低下や、アルミニウム溶湯に対
するガス,介在物等の混入を促進させる。したがって、
Srを含有させる場合には、その含有量を0.001〜
0.05重量%の範囲に定める。
Sr: Like Sb, Sr is an alloy element effective for refining eutectic Si and improving impact value and elongation. Further, it effectively acts to shorten the solution treatment time and improve the forgeability. The effect of such Sr is as follows.
When the content is more than 001% by weight, it appears remarkably. However, 0.0
When Sr is contained in an amount exceeding 5% by weight, the workability is reduced due to the generation of intermetallic compounds, and the incorporation of gas, inclusions, and the like into the molten aluminum is promoted. Therefore,
When Sr is contained, the content is 0.001 to
It is set in the range of 0.05% by weight.

【0025】[0025]

【実施例】表2に示した成分及び塑性をもつ各種アルミ
ニウム合金を溶製し、半連続鋳造によって外径325m
m,長さ600mmのビレットを製造した。なお、表1
における本発明例1及び2は、それぞれ請求項1及び2
で特定されたアルミニウム合金に相当する。得られたビ
レットを510℃に4時間保持した後、更に400〜4
50℃に加熱し、直径45mmの丸棒を押し出した。
EXAMPLE Various aluminum alloys having the components and plasticity shown in Table 2 were melted, and the outer diameter was 325 m by semi-continuous casting.
m, a billet having a length of 600 mm was produced. Table 1
Examples 1 and 2 of the present invention are claims 1 and 2, respectively.
It corresponds to the aluminum alloy specified by. After the obtained billet was kept at 510 ° C. for 4 hours,
The mixture was heated to 50 ° C., and a round bar having a diameter of 45 mm was extruded.

【0026】[0026]

【表2】 [Table 2]

【0027】次いで、押出し材を温度450℃及び加工
率75%で熱間鍛造し、T6 熱処理を施した。鍛造後の
6 熱処理としては、510℃に4時間保持した後、水
冷し、48時間室温に放置し、170℃で10時間焼き
戻す熱履歴を採用した。熱処理が施された各試験片につ
いて結晶組織を観察し、粒径を測定した。また、引張り
強さ,耐力及び伸びを調査した。調査結果を表3に示
す。
Next, the extruded material was hot forged at a temperature of 450 ° C. and a working ratio of 75%, and subjected to a T 6 heat treatment. As the T 6 heat treatment after forging, a heat history of holding at 510 ° C. for 4 hours, cooling with water, leaving at room temperature for 48 hours, and tempering at 170 ° C. for 10 hours was employed. The crystal structure of each heat-treated test piece was observed, and the particle size was measured. In addition, the tensile strength, proof stress and elongation were investigated. Table 3 shows the survey results.

【0028】更に、室温で行う冷間鍛造及び350℃,
400℃,450℃の各温度で行う熱間鍛造による据込
み試験によって鍛造品表面に肌荒れ現象を観察し、その
良否に基づいて押出し丸棒の鍛造性を評価した。このと
き使用した試験片としては、冷間鍛造試験用には押出し
丸棒を410℃に1時間保持した後で徐冷した焼鈍材
を、また熱間鍛造試験用には押し出したままの丸棒を使
用した。何れの試験にあっても、押出し丸棒から削り出
された直径14mm及び高さ26mmの円柱状の試験片
を使用した。これらの試験片を、25トンの油圧電気式
サーボパルサー試験機を使用し100mm/秒の速度で
5mmの厚さまで圧縮し、加工率(据込み率)80%に
おいて測定面の肌荒れ状態を観察した。据え込み鍛造に
よって再結晶が促進され、400〜500μmの粗い再
結晶粒が発生したものもあったが、本発明合金では何れ
も150〜350μmの細かい再結晶粒であり、鍛造時
の肌荒れ防止が効果的に抑えられていた。
Further, cold forging performed at room temperature and 350 ° C.
The surface roughening phenomenon was observed on the surface of the forged product by an upsetting test by hot forging performed at each temperature of 400 ° C. and 450 ° C., and the forgeability of the extruded round bar was evaluated based on the quality. As the test piece used at this time, an extruded round bar was held at 410 ° C. for 1 hour for a cold forging test, and then annealed material was gradually cooled. For a hot forging test, an extruded round bar was used. It was used. In each test, a cylindrical test piece having a diameter of 14 mm and a height of 26 mm cut from an extruded round bar was used. These test pieces were compressed to a thickness of 5 mm at a speed of 100 mm / sec using a 25-ton hydraulic electric servo pulser testing machine, and the roughened surface of the measurement surface was observed at a processing rate (upsetting rate) of 80%. . Recrystallization was promoted by the upsetting forging, and coarse recrystallized grains of 400 to 500 μm were generated. However, in the alloys of the present invention, fine recrystallized grains of 150 to 350 μm were used. It was effectively suppressed.

【0029】表面状態の観察結果を、表3に併せ示す。
なお、表3において、鍛造品の測定面が平滑で且つ金属
光沢を保っているものを◎,やや凹凸があるものの金属
光沢が維持されているものを○,全周に凹凸が発生して
いるものを△,大きな深さの凹凸が形成され金属光沢を
失っているものを×,凹凸数が多く段差が激しく、しか
も一部に割れが発生しているものをXXとして評価した。
Table 3 also shows the observation results of the surface condition.
In Table 3, ◎ indicates that the measured surface of the forged product was smooth and maintained the metallic luster, ○ indicates that the forged product was slightly uneven, but the metallic luster was maintained, and irregularities were generated all around. The sample was evaluated as △, the sample having large depths of irregularities and losing metallic luster was evaluated as ×, and the sample having many irregularities and a large step was evaluated as XX.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から明らかなように、本発明例1及び
2のアルミニウム合金は、何れも33kgf/mm2
上の高い引っ張り強度をもっており、しかも鍛造後の結
晶組織が細かく、肌荒れが発生した外観を呈するものは
皆無であった。これは、Sb及びCuの相乗効果に由来
するものと推察される。すなわち、Sb添加によって共
晶Siが微細化すると共に、Al−Ti−B系金属間化
合物による微細化効果がCu添加で促進され、これらが
相乗して優れた機械的特性及び加工性が呈せられる。し
かも、伸びδの低下が小さく、耐力σ0.2 が大幅に向上
している。
As is clear from Table 3, the aluminum alloys of Examples 1 and 2 of the present invention both have a high tensile strength of 33 kgf / mm 2 or more, have a fine crystal structure after forging, and have a rough appearance. None of them exhibited. This is presumed to be due to the synergistic effect of Sb and Cu. That is, the eutectic Si is refined by the addition of Sb, and the refinement effect of the Al-Ti-B-based intermetallic compound is promoted by the addition of Cu, and these provide a synergistic mechanical property and workability. Can be In addition, the decrease in elongation δ is small, and the proof stress σ 0.2 is significantly improved.

【0032】これに対し、比較合金7及び9では、Cu
無添加のために強度が出ておらず、比較合金8ではAl
−Ti−B及びCu無添加のために鍛造品の肌荒れが激
しくなっている。また、比較合金10では、Sb及びC
uを添加していないことから共晶Si及び再結晶粒であ
るマクロ粒子が共に粗く、強度,伸び及び肌荒れの全て
の点において本発明合金に劣っている。
On the other hand, in comparative alloys 7 and 9, Cu
No strength was obtained due to no addition.
-The roughening of the forged product is severe due to the absence of Ti-B and Cu. In the comparative alloy 10, Sb and C
Since u was not added, the eutectic Si and the macroparticles as recrystallized grains were both coarse, and were inferior to the alloy of the present invention in all points of strength, elongation, and surface roughness.

【0033】耐摩耗性の評価試験には、乾式の大越式試
験機を使用し、相手材としてFC28の回転円板を用い
た。そして、荷重2.1kg,摩擦速度1.21m/
秒,2.24m/秒及び3,88m/秒で試験片を相手
材に摺擦し、FC28の回転円板によって削り取られた
試験片の量を算出し、算出結果を表4に示した。
In the wear resistance evaluation test, a dry Ogoshi type testing machine was used, and a rotating disk of FC28 was used as a mating material. Then, a load of 2.1 kg and a friction speed of 1.21 m /
The test piece was rubbed against the mating material at a speed of 2.24 m / sec and 3.88 m / sec, and the amount of the test piece scraped off by the rotating disk of FC28 was calculated. The calculation results are shown in Table 4.

【表4】 [Table 4]

【0034】表4から明らかなように、試験番号2の本
発明合金では、Cu無添加の試験番号9の合金に比較し
て、何れの速度領域においても摩耗量が小さく、耐摩耗
性が6〜22%向上していることが判る。耐摩耗性が向
上する主たる理由は、次の二つである。 Cuの添加によってマトリックスの硬さ及び強度が
高くなり、結果として耐摩耗性に最も大きく影響する共
晶Siを固定化する力が大きくなり、摩擦によって剥離
されることが防止されること。 Cuの添加によって凝固速度が低くなり徐冷される
ため、Al−Ti−Bの効果がより顕著に発現され、鋳
塊の結晶粒が微細化及び均一化されることに加え、それ
らの結晶粒界で凝固する共晶Si自体も形状が丸みを帯
びて均一な分布になること。
As is clear from Table 4, the alloy of the present invention of Test No. 2 has a smaller amount of wear and a wear resistance of 6 in all speed ranges as compared with the alloy of Test No. 9 containing no Cu. It can be seen that it has been improved by ~ 22%. The main reasons why the wear resistance is improved are the following two. The addition of Cu increases the hardness and strength of the matrix, and as a result, increases the force for fixing eutectic Si, which has the greatest effect on wear resistance, and prevents peeling due to friction. The addition of Cu lowers the solidification rate and slows the cooling, so that the effect of Al-Ti-B is more remarkably exhibited, and the crystal grains of the ingot are refined and uniformized. The eutectic Si itself solidified in the boundary is also rounded in shape and has a uniform distribution.

【0035】[0035]

【発明の効果】以上に説明したように、本発明において
は、Sb,Ti,B等による結晶粒微細化作用及びC
u,Mg等によるマトリックス強化を利用し、これら合
金成分の間でバランスを図った合金設計を採用すること
により、押出し加工性,鍛造加工性に優れると共に、耐
肌荒れ性及び機械的特性が良好な押出し・鍛造用アルミ
ニウム合金を得ている。このアルミニウム合金は、従来
の鍛造用アルミニウム合金に比較して引張り強さ,耐力
等が大幅に向上しているため、たとえばボルト締結部等
が多数ある自動車用構造材料として好適である。
As described above, in the present invention, the crystal grain refining action by Sb, Ti, B, etc.
Utilization of matrix reinforcement by u, Mg, etc., and adoption of an alloy design that balances these alloy components, excels in extrudability and forgeability, as well as good surface roughness resistance and mechanical properties. We have obtained aluminum alloys for extrusion and forging. Since this aluminum alloy has significantly improved tensile strength, proof stress, and the like as compared with conventional aluminum alloys for forging, it is suitable as a structural material for automobiles having many bolted portions, for example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Al−Si−Mg系合金の引張り強さ及び伸
びに与えるSi含有量の影響を表したグラフ
FIG. 1 is a graph showing the influence of Si content on the tensile strength and elongation of an Al—Si—Mg based alloy.

フロントページの続き (56)参考文献 特開 平1−268839(JP,A) 特開 平3−166333(JP,A) 特開 昭63−259045(JP,A)Continuation of the front page (56) References JP-A 1-268839 (JP, A) JP-A 3-166333 (JP, A) JP-A 63-259045 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:3.5〜6.5重量%,Sb:
0.05〜0.15重量%,Fe:0.25重量%以
下,Cu:0.5〜3.5重量%,Ti:0.01〜
0.1重量%,Mg:0.2〜0.6重量%及びB:
0.0005〜0.02重量%を含有し、残部が実質的
にAlの組成をもち、T6処理後のマトリックスに微細
なAl2 Cuが分散析出していることを特徴とする押出
し・鍛造用アルミニウム合金。
1. Si: 3.5 to 6.5% by weight, Sb:
0.05 to 0.15 wt%, Fe: 0.25 wt% or less, Cu: 0.5 to 3.5 wt%, Ti: 0.01 to
0.1% by weight, Mg: 0.2-0.6% by weight and B:
Extrusion / forging characterized by containing 0.0005 to 0.02% by weight, with the balance having a substantially Al composition and fine Al 2 Cu dispersed and precipitated in the matrix after T6 treatment. Aluminum alloy.
【請求項2】 Si:3.5〜6.5重量%,Sb:
0.05〜0.15重量%,Fe:0.25重量%以
下,Cu:0.5〜3.5重量%,Ti:0.01〜
0.1重量%,Mg:0.2〜0.6重量%,B:0.
0005〜0.02重量%を含み、更にMn:0.05
〜0.5重量%及び/又はCr:0.05〜0.3重量
を含有し、残部が実質的にAlの組成をもち、T6処
理後のマトリックスに微細なAl2 Cuが分散析出して
いることを特徴とする押出し・鍛造用アルミニウム合
金。
2. Si: 3.5 to 6.5% by weight, Sb:
0.05 to 0.15 wt%, Fe: 0.25 wt% or less, Cu: 0.5 to 3.5 wt%, Ti: 0.01 to
0.1% by weight, Mg: 0.2-0.6% by weight, B: 0.
0005-0.02% by weight, and further Mn: 0.05
To 0.5% by weight and / or Cr: 0.05 to 0.3% by weight
% . The aluminum alloy for extrusion and forging, characterized in that the balance has a substantially Al composition and fine Al 2 Cu is dispersed and precipitated in the matrix after T6 treatment.
【請求項3】 Si:3.5〜6.5重量%,Sb:
0.05〜0.15重量%,Fe:0.25重量%以
下,Cu:0.5〜3.5重量%,Ti:0.01〜
0.1重量%,Mg:0.2〜0.6重量%,B:0.
0005〜0.02重量%を含み、更にSr:0.00
1〜0.05重量%を含有し、残部が実質的にAlの組
成をもち、T6処理後のマトリックスに微細なAl2
uが分散析出していることを特徴とする押出し・鍛造用
アルミニウム合金。
3. Si: 3.5 to 6.5% by weight, Sb:
0.05 to 0.15 wt%, Fe: 0.25 wt% or less, Cu: 0.5 to 3.5 wt%, Ti: 0.01 to
0.1% by weight, Mg: 0.2-0.6% by weight, B: 0.
0005-0.02% by weight, and Sr: 0.00
1 to 0.05% by weight , with the balance having a substantially Al composition, and a fine Al 2 C
An aluminum alloy for extrusion and forging, wherein u is dispersed and precipitated.
【請求項4】 Si:3.5〜6.5重量%,Sb:
0.05〜0.15重量%,Fe:0.25重量%以
下,Cu:0.5〜3.5重量%,Ti:0.01〜
0.1重量%,Mg:0.2〜0.6重量%,B:0.
0005〜0.02重量%を含み、更にMn:0.05
〜0.5重量%及び/又はCr:0.05〜0.3重量
%及びSr:0.001〜0.05重量%を含有し、残
部が実質的にAlの組成をもち、T6処理後のマトリッ
クスに微細なAl2 Cuが分散析出していることを特徴
とする押出し・鍛造用アルミニウム合金。
4. Si: 3.5 to 6.5% by weight, Sb:
0.05 to 0.15 wt%, Fe: 0.25 wt% or less, Cu: 0.5 to 3.5 wt%, Ti: 0.01 to
0.1% by weight, Mg: 0.2-0.6% by weight, B: 0.
0005-0.02% by weight, and further Mn: 0.05
To 0.5% by weight and / or Cr: 0.05 to 0.3% by weight
% And Sr: 0.001 to 0.05 % by weight , with the balance having a substantially Al composition, and fine Al 2 Cu dispersed and precipitated in the matrix after T6 treatment. Aluminum alloy for extrusion and forging.
JP4143405A 1992-05-08 1992-05-08 Aluminum alloy for extrusion and forging Expired - Fee Related JP2743709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143405A JP2743709B2 (en) 1992-05-08 1992-05-08 Aluminum alloy for extrusion and forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143405A JP2743709B2 (en) 1992-05-08 1992-05-08 Aluminum alloy for extrusion and forging

Publications (2)

Publication Number Publication Date
JPH05311306A JPH05311306A (en) 1993-11-22
JP2743709B2 true JP2743709B2 (en) 1998-04-22

Family

ID=15338012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143405A Expired - Fee Related JP2743709B2 (en) 1992-05-08 1992-05-08 Aluminum alloy for extrusion and forging

Country Status (1)

Country Link
JP (1) JP2743709B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072839A1 (en) * 2002-02-28 2003-09-04 Aisin Keikinzoku Co., Ltd. Wear-resistant aluminum alloy excellent in staking property and extruded product made thereof
JP4189974B2 (en) * 2003-09-01 2008-12-03 アイシン軽金属株式会社 Aluminum alloy extruded material with excellent machinability, caulking properties, and wear resistance
US20080299001A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
FR3060606B1 (en) * 2016-12-19 2018-12-07 Constellium Neuf-Brisach ALUMINUM ALLOY FOR WIRELESS LASER WELDING

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259045A (en) * 1987-04-16 1988-10-26 Mitsubishi Motors Corp Aluminum alloy for casting
JPH0665732B2 (en) * 1988-04-19 1994-08-24 日本軽金属株式会社 Aluminum alloy for processing with excellent elongation
JPH03166333A (en) * 1989-11-24 1991-07-18 Showa Denko Kk Aluminum alloy for forging

Also Published As

Publication number Publication date
JPH05311306A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
JP2697400B2 (en) Aluminum alloy for forging
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP7182425B2 (en) Al-Mg-Si-based aluminum alloy extruded material and method for producing the same
JP2506115B2 (en) High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
JP7182435B2 (en) Al-Mg-Si based aluminum alloy extruded material
JP3332885B2 (en) Aluminum-based alloy for semi-solid processing and method for manufacturing the processed member
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JP3982849B2 (en) Aluminum alloy for forging
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
GB2065516A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
JP2743709B2 (en) Aluminum alloy for extrusion and forging
JPH09249949A (en) Production of aluminum extruded material forged product
JPH07145440A (en) Aluminum alloy forging stock
JPH11286758A (en) Production of forged product using aluminum casting material
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH11286759A (en) Production of forged product using aluminum extruded material
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JP3471421B2 (en) Manufacturing method of aluminum alloy forging
JP2004277762A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP3654695B2 (en) Wear resistant aluminum alloy
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JPH09296245A (en) Aluminum alloy for casting

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees