JPS6318034A - Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance - Google Patents

Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance

Info

Publication number
JPS6318034A
JPS6318034A JP61160773A JP16077386A JPS6318034A JP S6318034 A JPS6318034 A JP S6318034A JP 61160773 A JP61160773 A JP 61160773A JP 16077386 A JP16077386 A JP 16077386A JP S6318034 A JPS6318034 A JP S6318034A
Authority
JP
Japan
Prior art keywords
alloy
grain size
aluminum
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61160773A
Other languages
Japanese (ja)
Other versions
JPH0713275B2 (en
Inventor
Kisuke Asada
浅田 喜介
Takenobu Dokou
武宜 土公
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP61160773A priority Critical patent/JPH0713275B2/en
Publication of JPS6318034A publication Critical patent/JPS6318034A/en
Publication of JPH0713275B2 publication Critical patent/JPH0713275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy having high strength and excellent is stress corrosion cracking resistance, by preparing an Al-base powder metallurgical alloy which contains specific percentages of Zn, Mg, Cu, and Zr and in which the grain size of an intermetallic compound as well as crystalline grain size are specified. CONSTITUTION:An Al alloy consisting of, by weight, 5-10% Zn, 2-5% Mg, 0.5-3% Cu, 0.3-1% Zr, and the balance Al with inevitable impurities is refined. Further, this alloy may contain Mn, Cr, Co, Fe, Ni, V, Mo, W, etc., by <=about 0.5%. This molten Al alloy is rapidly solidified by gas atomizing method, etc., preferably at <=about 500 deg.C/sec cooling rate to be formed into a powder of <=about 150mu grain size, so that crystalline grain size and the grain size of the intermetallic compound are regulated to <=30mu in average and <=about 5mu, respectively. By forming the required member by the use of this Al alloy, a member having material characteristics suitable for use in aircraft material can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末冶金法によるアルミニウム基合金材に関し
、さらに詳しくは、本発明は引張強さおよび耐応力腐食
割れ性にすぐれたアルミニウム基粉末冶金合金材料に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an aluminum-based alloy material produced by powder metallurgy, and more specifically, the present invention relates to an aluminum-based powder metallurgy material having excellent tensile strength and stress corrosion cracking resistance. Regarding alloy materials.

(従来の技術) 従来高強度アルミニウム合金としてはAl−Cu −M
 g系(2000系)およびA l −Z n −Mg
−Cu系(7000系)合金が良く知られている。これ
ら合金に含まれるCu、Mg、ZnはAJIに対して高
温で固溶度か比較的大きく、低温で小さいため析出硬化
元素として有効であることが知られており、各種の熱処
理により望みの機械的性質を有する材料を得ている。ま
たアルミニウム合金の強度を高めるもう1つの方法とし
て高温て固溶度が小さく、かつ拡散しにくい化合物を形
成する元素(Zr、Cr、Mnなど)を添加し、それら
の化合物による分散強化あるいは再結晶粒の粗大化防止
をはかる方法がある。
(Prior art) As a conventional high-strength aluminum alloy, Al-Cu -M
g series (2000 series) and A l -Z n -Mg
-Cu-based (7000-based) alloys are well known. Cu, Mg, and Zn contained in these alloys are known to be effective as precipitation hardening elements because their solid solubility relative to AJI is relatively large at high temperatures and small at low temperatures. We have obtained a material with specific properties. Another method to increase the strength of aluminum alloys is to add elements (Zr, Cr, Mn, etc.) that form compounds that have low solid solubility and are difficult to diffuse at high temperatures, and to strengthen the aluminum alloy by dispersion strengthening or recrystallization. There are ways to prevent grains from becoming coarse.

一方、航空、宇宙分野の機器に用いられる構造材におい
ては単に高強度であるばかりでなく、腐食性環境下で応
力を受けた時に割れにくい特性が重要な材料特性として
要求される。
On the other hand, important material properties for structural materials used in equipment in the aviation and space fields are not only high strength but also resistance to cracking when subjected to stress in corrosive environments.

従って、以上述べたような2つの特性、すなわち高強度
で耐応力腐食割れ性に優れる材料として、これまてはA
M−Zn−Mg−Cu系の7075.7475.705
0.7150合金が使用されてきた。
Therefore, as a material with the above two characteristics, namely high strength and excellent stress corrosion cracking resistance, A
M-Zn-Mg-Cu series 7075.7475.705
0.7150 alloy has been used.

ところてこのようなアルミニウム合金の製造は従来性わ
れているアルミニウム合金の溶湯から鋳塊を作り、これ
を加工して素材とする方法を用いるか、このような方法
ては、鋳塊の凝固時の冷却速度か小さいため比較的大き
な結晶粒および金属間化合物が形成され、その後の加工
、熱処理工程まてその影響か残るため最終的に得られる
材料の特性向上は限界がある。例えば7000系合金は
最高強度か得られる熱処理条件では剥離腐食あるいは応
力腐食割れか発生しやすいため、強度をある程度犠牲に
して過時効処理を施した材料とする必要かあった。
However, in order to manufacture such aluminum alloys, the conventional method is to create an ingot from molten aluminum alloy and process this into a raw material. Because the cooling rate is slow, relatively large crystal grains and intermetallic compounds are formed, and their effects remain in subsequent processing and heat treatment steps, so there is a limit to the improvement in the properties of the final material. For example, 7000 series alloys are prone to exfoliation corrosion or stress corrosion cracking under heat treatment conditions that provide the highest strength, so it was necessary to sacrifice some strength and use an over-aged material.

一方、強度および耐応力腐食割れ性を向上させるため、
A文−Z n −M g −Cu合金の溶湯をアトマイ
ズし、熱間加工、溶体化、急冷および二段の人工時効処
理する方法か提案されている。(米国特許第3,563
,814号)。
On the other hand, to improve strength and stress corrosion cracking resistance,
A method has been proposed in which a molten metal of A-Zn-Mg-Cu alloy is atomized, followed by hot working, solution treatment, rapid cooling, and two-stage artificial aging treatment. (U.S. Patent No. 3,563
, No. 814).

(発明か解決しようとする問題点) しかしなから近年、構造部材の軽量化に伴い材料特性の
より一層の向上が望まれ、従来品以上の強度及び耐応力
腐食割れ性を有する素材か要求されている。
(Problem to be solved by the invention) However, in recent years, as structural members have become lighter, there has been a desire for further improvements in material properties, and materials with greater strength and stress corrosion cracking resistance than conventional products are required. ing.

したかって本発明は強度および耐応力腐食割れ性が優れ
た組成の新規な高強度耐応力腐食割れ性アルミニウム基
粉末冶金合金材を提供することを目的とする。
Therefore, an object of the present invention is to provide a novel high-strength, stress corrosion cracking resistant aluminum-based powder metallurgical alloy material having a composition excellent in strength and stress corrosion cracking resistance.

(問題点を解決するための手段) 本発明者らは従来のアルミニウム合金材の欠点を克服す
べく鋭意研究を重ねた結果、A、Q−Zn−pJi g
 −Cu系粉末冶金合金材においてZrを0.3〜1%
添加し、平均結晶粒径を30#Lm以下、金属間化合物
粒径な5μm以下にそれでれ規制することにより強度お
よび耐応力腐食割れ性を向上しうることを見出し、この
知見に基づき本発明をなすにいたった。
(Means for Solving the Problems) As a result of intensive research by the present inventors to overcome the drawbacks of conventional aluminum alloy materials, A, Q-Zn-pJig
-0.3 to 1% Zr in Cu-based powder metallurgy alloy material
It was discovered that the strength and stress corrosion cracking resistance could be improved by controlling the average crystal grain size to 30 #Lm or less and the intermetallic compound grain size to 5 μm or less, and based on this knowledge, the present invention was developed. It turned out to be eggplant.

すなわち、本発明はZn5〜lO%、Mg2〜5%、C
uO,5〜3%、ZrO,3〜1%(以上重量%、以下
同様)を含有し、残部かAnと不可避不純物からなる合
金組成を有し、かつ30Bm以下のモ均結晶粒径および
5gm以下の金属間化合物粒径な有することを特徴とす
るアルミニウム基粉末冶金合金材料を提供するものであ
る。
That is, in the present invention, Zn5-10%, Mg2-5%, C
It has an alloy composition containing uO, 5 to 3%, ZrO, 3 to 1% (the above weight %, the same applies hereinafter), the balance consisting of An and unavoidable impurities, and has a uniform crystal grain size of 30 Bm or less and 5 gm The present invention provides an aluminum-based powder metallurgical alloy material characterized by having the following intermetallic compound particle size.

本発明においてアルミニウム合金材料中の各成分組成を
限定した意義は次の通りである。
The significance of limiting the composition of each component in the aluminum alloy material in the present invention is as follows.

Znは5〜lO%とする。合金組成中のZnはアルミニ
ウム中に固溶または時効析出することにより合金の強度
を高めるか、5%未満ではその効果が少なく、10%を
越えると金属間化合物が粗大となり材料の延性か低下す
る。
Zn is 5 to 10%. Zn in the alloy composition improves the strength of the alloy by forming a solid solution in aluminum or precipitating during aging. If it is less than 5%, the effect is small, and if it exceeds 10%, the intermetallic compounds become coarse and the ductility of the material decreases. .

Mgは2〜5%とする。Mgもアルミニウム中に固溶ま
たは時効析出することにより合金の強度を向上させるか
、2%未満ではその効果か少なく、5%を越えると金属
間化合物か粗大となり材料の延性か低Fする。
Mg should be 2 to 5%. Mg also improves the strength of the alloy by being dissolved in aluminum or precipitated during aging, but if it is less than 2%, the effect is small, and if it exceeds 5%, intermetallic compounds become coarse and the ductility of the material decreases.

Cuは0.5〜3%とする。Cuもアルミニウム中に固
溶または時効析出することにより合金の強度を向1−さ
せるか、0.5%未満てはその効果か少なく、3%を越
えると材料の耐食性か低下する。
Cu is set to 0.5 to 3%. Cu also improves the strength of the alloy by forming a solid solution in aluminum or precipitating during aging. If it is less than 0.5%, the effect is small, and if it exceeds 3%, the corrosion resistance of the material is reduced.

Zrは0.3〜1%とする。Zrはアルミニウム中ての
固溶度か小さく、化合物として析出するので、これを微
細均一に分散させることによる分散強化効果として、強
度か向上し、さらには再結晶による結晶粒粗大化防止効
果として耐応力腐食割れ性改善か得られる。0.3%以
下ではこれらの効果か少なく1%以上では初晶として粗
大結晶か晶出するため材料の延性が低下する。
Zr is set to 0.3 to 1%. Zr has a low solid solubility in aluminum and precipitates as a compound, so dispersing it finely and uniformly improves strength as a dispersion strengthening effect, and further improves resistance by preventing crystal grain coarsening due to recrystallization. Stress corrosion cracking resistance can be improved. If it is less than 0.3%, these effects will be diminished, and if it is more than 1%, coarse crystals will crystallize as primary crystals, resulting in a decrease in the ductility of the material.

なお、本発明のアルミニウム基合金材料にMn、Cr、
Co、Fe、Ni、V、Mo、Wなどを添加する必要は
ないか1種または2種以上少量(0,5%以下)添加し
ても何ら特性を損ねるものではない。
Note that the aluminum-based alloy material of the present invention contains Mn, Cr,
There is no need to add Co, Fe, Ni, V, Mo, W, etc., or even if one or more of them are added in small amounts (0.5% or less), the properties will not be impaired in any way.

次に、本発明のアルミニウム基合金材料において平均結
晶粒径を30μm以下、金属間化合物径を5#Lm以下
とする。平均結晶粒径か30μmを越えると耐応力腐食
割れ性の改善か十分でなく、金属間化合物粒径か5gm
を越えると延性か劣化する。
Next, in the aluminum-based alloy material of the present invention, the average crystal grain size is set to 30 μm or less, and the intermetallic compound diameter is set to 5 #Lm or less. If the average crystal grain size exceeds 30 μm, the improvement in stress corrosion cracking resistance is insufficient, and the intermetallic compound grain size exceeds 5 gm.
Exceeding this will result in deterioration of ductility.

本発明のアルミニウム基合金材料の製造の際、目標の平
均結晶粒径および金属間化合物径を有する粉末合金はア
ルミニウム合金の溶湯な、好ましくは冷却速度500℃
/ s e c以上においてガスアトマイズ法その他の
方法により処理し急冷凝固させることにより製造するこ
とができる。
In producing the aluminum-based alloy material of the present invention, the powder alloy having the target average grain size and intermetallic compound size is a molten aluminum alloy, preferably at a cooling rate of 50°C.
/ sec or more by a gas atomization method or other method, followed by rapid solidification.

本発明においてアトマイズ法により処理して得られるア
ルミニウム合金粉末の粒径は 150終m以下である。
In the present invention, the particle size of the aluminum alloy powder obtained by processing by the atomization method is 150 mm or less.

通常、この粉末を真密度の70〜90%の密度になるよ
う予備成形し、300〜450℃で真空脱ガスを行った
後、同温度で真密度になるよう圧縮成形しビレットとす
る。さらにこのビレットに熱間加工(押出、鍛造または
圧延)を施し目的の素材とする。そしてさらに常法によ
る溶体化、急冷、時効の熱処理を順次行い、所望の材料
特性を有する素材とする。
Usually, this powder is preformed to a density of 70 to 90% of the true density, vacuum degassed at 300 to 450°C, and then compression molded to the true density at the same temperature to form a billet. Further, this billet is subjected to hot processing (extrusion, forging, or rolling) to obtain the desired material. Then, heat treatments such as solution treatment, quenching, and aging are sequentially performed using conventional methods to obtain a material having desired material properties.

(実施例) 次に実施例により本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail with reference to Examples.

実施例1〜8 第1表に示す合金No、1〜8の組成の合金を下記に示
す工程により加工して棒状素材を作製し、それぞれ実施
例の試料1〜8とした。
Examples 1 to 8 Bar-shaped materials were produced by processing alloys having the compositions of Alloy Nos. 1 to 8 shown in Table 1 through the steps shown below, and were designated as Samples 1 to 8 of Examples, respectively.

(試料作製工程) l)合金調製、溶解 2)アルゴンガス下アトマイズ 冷却速度1000’c/sec以上 粉末の平均粒径100終m 3)予@成形 真密度の80% 4)脱ガス 400℃で真空脱ガス 5)熱間プレス 400℃で真密度まで圧縮成形してビレットとする。(Sample preparation process) l) Alloy preparation and melting 2) Atomization under argon gas Cooling rate 1000'c/sec or more Powder average particle size 100m 3) Pre-forming 80% of true density 4) Degassing Vacuum degassing at 400℃ 5) Hot press Compression molding is performed at 400°C to true density to form a billet.

6)押出 400℃、押出比14で直径30mmの棒材とする。6) Extrusion A bar with a diameter of 30 mm is prepared at 400° C. and at an extrusion ratio of 14.

7)熱処理 488℃で1時間溶体化処理後水冷する。7) Heat treatment After solution treatment at 488° C. for 1 hour, it is cooled with water.

次いで120℃で24時間さらに163℃で24時間時
効処理する。
Then, aging treatment is performed at 120°C for 24 hours and further at 163°C for 24 hours.

得られた各試料について結晶粒径(ST面で測定)、化
合物粒径の測定および引張試験、耐応力腐食割れ試験を
行った。その結果を第2表に示す。
Each of the obtained samples was subjected to measurements of crystal grain size (measured on the ST plane), compound particle size, tensile test, and stress corrosion cracking resistance test. The results are shown in Table 2.

(耐応力腐食割れ性試験方法) 試験条件  ASTM  G47による。(Stress corrosion cracking resistance test method) Test conditions: Based on ASTM G47.

(1)応力負荷:押出丸棒の円周方向。(1) Stress load: circumferential direction of extruded round bar.

(2)サイクルHNaC文溶液溶液0分間浸漬、50分
間乾燥。
(2) Cycle immersion in HNaC solution for 0 minutes and drying for 50 minutes.

(3)N a Cl溶液:濃度3.5%、PH6,4〜
7.2、温度25±3°C1試 料表面/dゴあた93.2文 以上の量使用、溶液は1週間 毎に更新。
(3) NaCl solution: concentration 3.5%, PH6.4~
7.2, Temperature: 25±3°C 1 Sample surface/d go at 93.2 min or more, solution updated every week.

(4)乾  燥:温度27±1’C1温度45±6%(
5)試験期間:20日間 比較例 第1表に示すNo、9.10.11.12の組成の合金
を用いて下記に示す工程により棒状素材を調製し、それ
ぞれ比較例としての試料9.1o、11.12とし、こ
れらの試料について実施例の場合と同様の測定および試
験を行った。その結果も第2表に示す。
(4) Drying: Temperature 27±1'C1 Temperature 45±6% (
5) Test period: 20 days Comparative example Rod-shaped materials were prepared using the alloys No. 9, 9, 10, 11 and 12 shown in Table 1 according to the steps shown below, and Sample 9.1o was used as a comparative example. , 11.12, and the same measurements and tests as in the examples were performed on these samples. The results are also shown in Table 2.

(試料作製工程) l)合金調製、溶解、鋳造 直径80mmのビレットとする。(Sample preparation process) l) Alloy preparation, melting, casting A billet with a diameter of 80 mm is made.

2)均質化処理 ビレットを470℃で24時間均質化処理する。2) Homogenization treatment The billet is homogenized at 470° C. for 24 hours.

3)押出 400℃、押出比14、直径30mmの棒材とする。3) Extrusion The temperature is 400°C, the extrusion ratio is 14, and the bar is 30 mm in diameter.

4)熱処理 合金No、9;466°CX1.5時間溶体化処理後水
冷する。次いで、107℃×7時間と177°Cx7時
間の時効処理を行う。
4) Heat treatment alloy No. 9: Solution treatment at 466° C. for 1.5 hours and then water cooling. Next, aging treatments are performed at 107°C for 7 hours and at 177°C for 7 hours.

合金No、lO;477°CX1.5時間溶体化処理後
水冷する。次いで、121″C×5時間と163℃×1
7時間の時効処理を行う。
Alloy No., 1O: Solution treatment at 477° C. for 1.5 hours, followed by water cooling. Next, 121″C x 5 hours and 163°C x 1
Perform aging treatment for 7 hours.

合金No、11.12.488℃で1時間溶体化処理後
水冷する0次いで120℃で24時間さらに163°C
で24時間時効処理を行う。
Alloy No. 11. 12. Solution treated at 488°C for 1 hour and then water cooled at 120°C for 24 hours and further at 163°C.
Aging treatment is performed for 24 hours.

これらの試料について実施例の場合と同様の試験を行っ
た。その結果を第2表に示した。
The same tests as in the examples were conducted on these samples. The results are shown in Table 2.

これらの結果から明らかなように、試料1〜8は従来合
金試料9、lOに比べ機械的性質が同等またはそれ以上
であり、かつ耐応力腐食割れ性が非常に改善されている
As is clear from these results, Samples 1 to 8 have mechanical properties equivalent to or better than conventional alloy samples 9 and 1O, and have greatly improved stress corrosion cracking resistance.

また試料11.12は本発明の範囲内の成分の合金であ
るが、平均結晶粒径および金属間化合物粒径か大きいた
め機械的性質および耐応力腐食割(発明の効果) 本発明の高強度耐応力腐食割れ性アルミニウム基粉末冶
金合金材は強度および耐応力腐食割れ性の点ですぐれた
構造材を与える。したかって航空機材などに代表される
高度な材料特性が要求される部材用として特に好適であ
る。
Samples 11 and 12 are alloys with components within the range of the present invention, but the average crystal grain size and intermetallic compound particle size are large, resulting in poor mechanical properties and stress corrosion resistance (effects of the invention).High strength of the present invention. Stress corrosion cracking resistant aluminum-based powder metallurgy alloy materials provide structural materials with excellent strength and stress corrosion cracking resistance. Therefore, it is particularly suitable for use in parts that require advanced material properties, such as aircraft materials.

Claims (1)

【特許請求の範囲】[Claims] Zn5〜10%、Mg2〜5%、Cu0.5〜3%、Z
r0.3〜1%(以上重量%)を含有し、残部がAlと
不可避不純物からなる合金組成を有し、かつ平均30μ
m以下の結晶粒径および5μm以下の金属間化合物粒径
を有することを特徴とする高強度耐応力腐食割れ性アル
ミニウム基粉末冶金合金。
Zn5-10%, Mg2-5%, Cu0.5-3%, Z
It has an alloy composition containing 0.3 to 1% r (more than 1% by weight), the balance consisting of Al and unavoidable impurities, and has an average of 30μ
A high-strength, stress corrosion cracking-resistant aluminum-based powder metallurgical alloy characterized by having a crystal grain size of not more than 5 μm and an intermetallic compound grain size of not more than 5 μm.
JP61160773A 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy Expired - Fee Related JPH0713275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160773A JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160773A JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Publications (2)

Publication Number Publication Date
JPS6318034A true JPS6318034A (en) 1988-01-25
JPH0713275B2 JPH0713275B2 (en) 1995-02-15

Family

ID=15722140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160773A Expired - Fee Related JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Country Status (1)

Country Link
JP (1) JPH0713275B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
US6585932B1 (en) * 1999-05-24 2003-07-01 Mantraco International, Inc. Aluminum-based material and a method for manufacturing products from aluminum-based material
EP1726671A2 (en) * 2005-05-26 2006-11-29 Honeywell International, Inc. High strength aluminium alloys for aircraft wheel and brake components
WO2008105303A1 (en) * 2007-02-28 2008-09-04 Kabushiki Kaisha Kobe Seiko Sho High-strength and high-ductility al alloy and process for production of the same
JP2008240141A (en) * 2007-02-28 2008-10-09 Kobe Steel Ltd HIGH STRENGTH AND HIGH DUCTILITY Al ALLOY, AND METHOD FOR PRODUCING THE SAME
JP2017109212A (en) * 2015-12-15 2017-06-22 花王株式会社 Method for laminating and shaping casting mold
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
US6585932B1 (en) * 1999-05-24 2003-07-01 Mantraco International, Inc. Aluminum-based material and a method for manufacturing products from aluminum-based material
EP1726671A2 (en) * 2005-05-26 2006-11-29 Honeywell International, Inc. High strength aluminium alloys for aircraft wheel and brake components
EP1726671A3 (en) * 2005-05-26 2008-07-16 Honeywell International, Inc. High strength aluminium alloys for aircraft wheel and brake components
US7691214B2 (en) 2005-05-26 2010-04-06 Honeywell International, Inc. High strength aluminum alloys for aircraft wheel and brake components
WO2008105303A1 (en) * 2007-02-28 2008-09-04 Kabushiki Kaisha Kobe Seiko Sho High-strength and high-ductility al alloy and process for production of the same
JP2008240141A (en) * 2007-02-28 2008-10-09 Kobe Steel Ltd HIGH STRENGTH AND HIGH DUCTILITY Al ALLOY, AND METHOD FOR PRODUCING THE SAME
GB2460780A (en) * 2007-02-28 2009-12-16 Kobe Steel Ltd High strength and high-ductility Al alloy and process for production of the same
GB2460780B (en) * 2007-02-28 2011-06-01 Kobe Steel Ltd High strength and high-ductility Al alloy and process for production of the same
US8444777B2 (en) 2007-02-28 2013-05-21 Kobe Steel, Ltd. High-strength and high-ductility Al alloy and process for production of the same
JP2017109212A (en) * 2015-12-15 2017-06-22 花王株式会社 Method for laminating and shaping casting mold
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES

Also Published As

Publication number Publication date
JPH0713275B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
JP3194742B2 (en) Improved lithium aluminum alloy system
US4021271A (en) Ultrafine grain Al-Mg alloy product
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
US20060021683A1 (en) An Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings
EP2049696A2 (en) High strength, heat treatable al-zn-mg aluminum alloy
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
US3563814A (en) Corrosion-resistant aluminum-copper-magnesium-zinc powder metallurgy alloys
JPH06256880A (en) Aluminum alloy cast member for forging
JPH1171623A (en) Aluminum alloy sheet for automotive body panel and its production
CN112501482B (en) Si microalloyed AlZnMgCu alloy and preparation method thereof
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
US20210262065A1 (en) 2xxx aluminum alloys
KR100904503B1 (en) High-strength wrought aluminum alloy
US3544394A (en) Aluminum-copper-magnesium-zinc powder metallurgy alloys
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
EP0137180B1 (en) Heat-resisting aluminium alloy
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH01242749A (en) Heat-resistant aluminum alloy
JPH0379738A (en) High strength al alloy material
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material
CN115896558A (en) 4xxx series aluminum alloy forging and preparation method thereof
JP2022506542A (en) 2XXX Aluminum Lithium Alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees