JPH0713275B2 - High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy - Google Patents

High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Info

Publication number
JPH0713275B2
JPH0713275B2 JP61160773A JP16077386A JPH0713275B2 JP H0713275 B2 JPH0713275 B2 JP H0713275B2 JP 61160773 A JP61160773 A JP 61160773A JP 16077386 A JP16077386 A JP 16077386A JP H0713275 B2 JPH0713275 B2 JP H0713275B2
Authority
JP
Japan
Prior art keywords
alloy
corrosion cracking
stress corrosion
powder metallurgy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61160773A
Other languages
Japanese (ja)
Other versions
JPS6318034A (en
Inventor
喜介 浅田
武宜 土公
重則 浅見
Original Assignee
アルミニウム粉末冶金技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルミニウム粉末冶金技術研究組合 filed Critical アルミニウム粉末冶金技術研究組合
Priority to JP61160773A priority Critical patent/JPH0713275B2/en
Publication of JPS6318034A publication Critical patent/JPS6318034A/en
Publication of JPH0713275B2 publication Critical patent/JPH0713275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末冶金法によるアルミニウム基合金材に関
し、さらに詳しくは、本発明は引張強さおよび耐応力腐
食割れ性にすぐれたアルミニウム基粉末冶金合金材料に
関する。
TECHNICAL FIELD The present invention relates to an aluminum-based alloy material produced by a powder metallurgy method. More specifically, the present invention relates to an aluminum-based powder metallurgy excellent in tensile strength and stress corrosion cracking resistance. Regarding alloy materials.

(従来の技術) 従来高強度アルミニウム合金としてはAl−Cu−Mg系(20
00系)およびAl−Zn−Mg−Cu系(7000系)合金が良く知
られている。これら合金に含まれるCu、Mg、ZnはAlに対
して高温で固溶度が比較的大きく、低温で小さいため析
出硬化元素として有効であることが知られており、各種
の熱処理により望みの機械的性質を有する材料を得てい
る。またアルミニウム合金の強度を高めるもう1つの方
法として高温で固溶度が小さく、かつ拡散しにくい化合
物を形成する元素(Zr、Cr、Mnなど)を添加し、それら
の化合物による分散強化あるいは再結晶粒の粗大化防止
をはかる方法がある。
(Prior Art) Conventional high-strength aluminum alloys include Al-Cu-Mg (20
00 series) and Al-Zn-Mg-Cu series (7000 series) alloys are well known. It is known that Cu, Mg, and Zn contained in these alloys are effective as a precipitation hardening element because they have a relatively large solid solubility in Al at high temperature and a small solid solubility at low temperature. To obtain a material having specific properties. Another method for increasing the strength of aluminum alloys is to add elements (Zr, Cr, Mn, etc.) that form compounds that have low solid solubility at high temperatures and are difficult to diffuse, and strengthen the dispersion or recrystallize with these compounds. There is a method for preventing coarsening of grains.

一方、航空、宇宙分野の機器に用いられる構造材におい
ては単に高強度であるばかりでなく、腐食性環境下で応
力を受けた時に割れにくい特性が重要な材料特性として
要求される。
On the other hand, structural materials used in equipment in the fields of aviation and space are required not only to have high strength but also to be resistant to cracking when stressed in a corrosive environment.

従って、以上述べたような2つの特性、すなわち高強度
で耐応力腐食割れ性に優れる材料として、これまではAl
−Zn−Mg−Cu系の7075、7475、7050、7150合金が使用さ
れてきた。
Therefore, as a material having the above-mentioned two characteristics, that is, high strength and excellent stress corrosion cracking resistance,
-Zn-Mg-Cu based 7075, 7475, 7050, 7150 alloys have been used.

ところでこのようなアルミニウム合金の製造は従来行わ
れているアルミニウム合金の溶湯から鋳塊を作り、これ
を加工して素材とする方法を用いるが、このような方法
では、鋳塊の凝固時の冷却速度が小さいため比較的大き
な結晶粒および金属間化合物が形成され、その後の加
工、熱処理工程までその影響が残るため最終的に得られ
る材料の特性向上は限界がある。例えば7000系合金は最
高強度が得られる熱処理条件では剥離腐食あるいは応力
腐食割れが発生しやすいため、強度をある程度犠牲にし
て過時効処理を施した材料とする必要があった。
By the way, the production of such an aluminum alloy uses a method of forming a cast ingot from a molten aluminum alloy which has been conventionally performed, and then processing this into a raw material. Since the speed is low, relatively large crystal grains and intermetallic compounds are formed, and the effect remains until the subsequent processing and heat treatment steps, so there is a limit to improving the properties of the finally obtained material. For example, 7000 series alloys are prone to exfoliation corrosion or stress corrosion cracking under heat treatment conditions that give the highest strength, so it was necessary to use a material that had been overaged at the expense of strength.

一方、強度および耐応力腐食割れ性を向上させるため、
Al−Zn−Mg−Cu合金の溶湯をアトマイズし、熱間加工、
溶体化、急冷および二段の人工時効処理する方法が提案
されている。(米国特許第3,563,814号)。
On the other hand, to improve strength and stress corrosion cracking resistance,
Atomizing the molten metal of Al-Zn-Mg-Cu alloy, hot working,
Methods for solutionizing, quenching and two-step artificial aging have been proposed. (U.S. Pat. No. 3,563,814).

(発明が解決しようとする問題点) しかしながら近年、構造部材の軽量化に伴い材料特性の
より一層の向上が望まれ、従来品以上の強度及び耐応力
腐食割れ性を有する素材が要求されている。
(Problems to be Solved by the Invention) However, in recent years, as the weight of structural members has been reduced, further improvement in material properties is desired, and materials having strength and stress corrosion cracking resistance higher than those of conventional products are required. .

したがって本発明は強度および耐応力腐食割れ性が優れ
た組成の新規な高強度耐応力腐食割れ性アルミニウム基
粉末冶金合金材を提供することを目的とする。
Therefore, it is an object of the present invention to provide a novel high-strength stress-corrosion-cracking-resistant aluminum-based powder metallurgy alloy material having a composition excellent in strength and stress-corrosion cracking resistance.

(問題点を解決するための手段) 本発明者らは従来のアルミニウム合金材の欠点を克服す
べく鋭意研究を重ねた結果、Al−Zn−Mg−Cu系粉末冶金
合金材においてZrを0.3〜1%添加し、平均結晶粒径を3
0μm以下、金属間化合物粒径を5μm以下にそれぞれ
規制することにより強度および耐応力腐食割れ性を向上
しうることを見出し、この知見に基づき本発明をなすに
いたった。
(Means for Solving the Problems) As a result of intensive studies to overcome the drawbacks of the conventional aluminum alloy materials, the present inventors have found that Zr in the Al-Zn-Mg-Cu-based powder metallurgy alloy material is 0.3- Add 1% and make the average grain size 3
It was found that the strength and the stress corrosion cracking resistance can be improved by restricting the intermetallic compound particle size to 0 μm or less and 5 μm or less, respectively, and the present invention has been made based on this finding.

すなわち、本発明はZn5〜10%、Mg2〜5%、Cu0.5〜3
%、Zr0.3〜1%(以上重量%、以下同様)を含有し、
残部がAlと不可避不純物からなる合金組成を有し、かつ
30μm以下の平均結晶粒径および5μm以下の金属間化
合物粒径を有することを特徴とするアルミニウム基粉末
冶金合金材料を提供するものである。
That is, the present invention is Zn5-10%, Mg2-5%, Cu0.5-3
%, Zr 0.3-1% (above wt%, the same below),
The balance has an alloy composition consisting of Al and inevitable impurities, and
An aluminum-based powder metallurgy alloy material having an average crystal grain size of 30 μm or less and an intermetallic compound grain size of 5 μm or less.

本発明においてアルミニウム合金材料中の各成分組成を
限定した意義は次の通りである。
The meaning of limiting the composition of each component in the aluminum alloy material in the present invention is as follows.

Znは5〜10%とする。合金組成中のZnはアルミニウム中
に固溶または時効析出することにより合金の強度を高め
るが、5%未満ではその効果が少なく、10%を越えると
金属間化合物が粗大となり材料の延性が低下する。
Zn is 5-10%. Zn in the alloy composition enhances the strength of the alloy by forming a solid solution or aged precipitation in aluminum, but if less than 5%, its effect is small, and if it exceeds 10%, the intermetallic compound becomes coarse and the ductility of the material decreases. .

Mgは2〜5%とする。Mgもアルミニウム中に固溶または
時効析出することにより合金の強度を向上させるが、2
%未満ではその効果が少なく、5%を越えると金属間化
合物が粗大となり材料の延性が低下する。
Mg is 2 to 5%. Mg also improves the strength of the alloy by forming a solid solution or aged precipitation in aluminum.
If it is less than 5%, the effect is small, and if it exceeds 5%, the intermetallic compound becomes coarse and the ductility of the material decreases.

Cuは0.5〜3%とする。Cuもアルミニウム中に固溶また
は時効析出することにより合金の強度を向上させるが、
0.5%未満ではその効果が少なく、3%を越えると材料
の耐食性が低下する。
Cu is 0.5 to 3%. Cu also improves the strength of the alloy by forming a solid solution or aged precipitation in aluminum,
If it is less than 0.5%, its effect is small, and if it exceeds 3%, the corrosion resistance of the material decreases.

Zrは0.3〜1%とする。Zrはアルミニウム中での固溶度
が小さく、化合物として析出するので、これを微細均一
に分散させることによる分散強化効果として、強度が向
上し、さらには再結晶による結晶粒粗大化防止効果とし
て耐応力腐食割れ性改善が得られる。0.3%以下ではこ
れらの効果が少なく1%以上では初晶として粗大結晶が
晶出するため材料の延性が低下する。
Zr is 0.3-1%. Since Zr has a small solid solubility in aluminum and precipitates as a compound, its strength is improved as a dispersion strengthening effect by finely and uniformly dispersing it, and further, it is resistant as a crystal grain coarsening preventing effect by recrystallization. Improved stress corrosion cracking resistance can be obtained. If it is 0.3% or less, these effects are small, and if it is 1% or more, coarse crystals are crystallized as primary crystals and the ductility of the material is lowered.

なお、本発明のアルミニウム基合金材料にMn、Cr、Co、
Fe、Ni、V、Mo、Wなどを添加する必要はないが1種ま
たは2種以上少量(0.5%以下)添加しても何ら特性を
損ねるものではない。
Incidentally, the aluminum-based alloy material of the present invention, Mn, Cr, Co,
It is not necessary to add Fe, Ni, V, Mo, W, etc., but the addition of one or more small amounts (0.5% or less) does not impair the characteristics.

次に、本発明のアルミニウム基合金材料において平均結
晶粒径を30μm以下、金属間化合物径を5μm以下とす
る。平均結晶粒径が30μmを越えると耐応力腐食割れ性
の改善が十分でなく、金属間化合物粒径が5μmを越え
ると延性が劣化する。
Next, in the aluminum-based alloy material of the present invention, the average crystal grain size is 30 μm or less and the intermetallic compound diameter is 5 μm or less. If the average crystal grain size exceeds 30 μm, the stress corrosion cracking resistance is not sufficiently improved, and if the intermetallic compound grain size exceeds 5 μm, the ductility deteriorates.

本発明のアルミニウム基合金材料の製造の際、目標の平
均結晶粒径および金属間化合物径を有する粉末合金はア
ルミニウム合金の溶湯を、好ましくは冷却速度500℃/se
c以上においてガスアトマイズ法その他の方法により処
理し急冷凝固させることにより製造することができる。
During the production of the aluminum-based alloy material of the present invention, a powder alloy having a target average crystal grain size and intermetallic compound diameter is a molten aluminum alloy, preferably a cooling rate of 500 ° C / se.
It can be produced by subjecting to a treatment of c or more by a gas atomizing method or other method and rapidly solidifying.

本発明においてアトマイズ法により処理して得られるア
ルミニウム合金粉末の粒径は150μm以下である。
In the present invention, the particle size of the aluminum alloy powder obtained by the atomizing method is 150 μm or less.

通常、この粉末を真密度の70〜90%の密度になるよう予
備成形し、300〜450℃で真空脱ガスを行った後、同温度
で真密度になるよう圧縮成形しビレットとする。さらに
このビレットに熱間加工(押出、鍛造または圧延)を施
し目的の素材とする。そしてさらに常法による溶体化、
急冷、時効の熱処理を順次行い、所望の材料特性を有す
る素材とする。
Usually, this powder is preformed to a density of 70 to 90% of the true density, vacuum degassed at 300 to 450 ° C., and then compression molded to the true density at the same temperature to obtain a billet. Further, this billet is subjected to hot working (extrusion, forging or rolling) to obtain a target material. And solution treatment by the conventional method,
Quenching and aging heat treatment are sequentially performed to obtain a material having desired material properties.

(実施例) 次に実施例により本発明を詳細に説明する。(Example) Next, the present invention will be described in detail with reference to examples.

実施例1〜8 第1表に示す合金No.1〜8の組成の合金を下記に示す工
程により加工して棒状素材を作製し、それぞれ実施例の
試料1〜8とした。
Examples 1 to 8 Alloys having compositions Nos. 1 to 8 shown in Table 1 were processed by the steps shown below to prepare rod-shaped raw materials, which were Samples 1 to 8 of Examples.

〔試料作製工程〕[Sample preparation process]

1)合金調整、溶解 2)アルゴンガス下アトマイズ 冷却速度1000℃/sec以上 粉末の平均粒径100μm 3)予備成形 真密度の80% 4)脱ガス 400℃で真空脱ガス 5)熱間プレス 400℃で真密度まで圧縮成形してビレットとする。 1) Alloy preparation and melting 2) Atomizing under argon gas Cooling rate 1000 ℃ / sec or more Average particle size of powder 100μm 3) Preforming 80% of true density 4) Degassing at 400 ℃ vacuum degassing 5) Hot press 400 A billet is formed by compression molding to true density at ℃.

6)押出 400℃、押出比14で直径30mmの棒材とする。6) Extrude at 400 ° C and extrude ratio of 14 to make a rod with a diameter of 30 mm.

7)熱処理 488℃で1時間溶体化処理後水冷する。7) Heat treatment After solution treatment at 488 ° C for 1 hour, water cooling is performed.

次いで120℃で24時間さらに163℃で24時間時効処理す
る。
Then, it is aged at 120 ° C for 24 hours and further at 163 ° C for 24 hours.

得られた各試料について結晶粒径(ST面で測定)、化合
物粒径の測定および引張試験、耐応力腐食割れ試験を行
った。その結果を第2表に示す。
For each of the obtained samples, the crystal grain size (measured on the ST plane), the compound grain size, the tensile test, and the stress corrosion cracking test were performed. The results are shown in Table 2.

〔耐応力腐食割れ性試験方法〕[Stress corrosion cracking resistance test method]

試験条件 ASTN G47による。 Test conditions According to ASTN G47.

(1)応力負荷;押出丸棒の円周方向。(1) Stress load; circumferential direction of extruded round bar.

(2)サイクル;NaCl溶液に10分間浸漬、50分間乾燥。(2) Cycle: Soak in NaCl solution for 10 minutes and dry for 50 minutes.

(3)NaCl溶液;濃度3.5%、pH6.4〜7.2、温度25±3
℃、試料表面/dm2あたり3.2l以上の量使用、溶液は1
週間毎に更新。
(3) NaCl solution; concentration 3.5%, pH 6.4-7.2, temperature 25 ± 3
Use at an amount of 3.2 liters or more per sample surface / dm 2 at 1 ℃.
Updated weekly.

(4)乾 燥;温度27±1℃、温度45±6% (5)試験期間;20日間 比較例 第1表に示すNo.9、10、11、12の組成の合金を用いて下
記に示す工程により棒状素材を調製し、それぞれ比較例
としての試料9、10、11、12とし、これらの試料につい
て実施例の場合と同様の測定および試験を行った。その
結果も第2表に示す。
(4) Drying; Temperature 27 ± 1 ° C, Temperature 45 ± 6% (5) Test period: 20 days Comparative Example Using alloys with compositions No. 9, 10, 11, and 12 shown in Table 1 below. A rod-shaped material was prepared by the steps shown as Samples 9, 10, 11, and 12 as comparative examples, and these samples were subjected to the same measurements and tests as in the example. The results are also shown in Table 2.

〔試料作製工程〕[Sample preparation process]

1)合金調製、溶解、鋳造 直径80mmのビレットとする。 1) Alloy preparation, melting, casting A billet with a diameter of 80 mm is prepared.

2)均質化処理 ビレットを470℃で24時間均質化処理する。2) Homogenization treatment The billet is homogenized at 470 ° C for 24 hours.

3)押出 400℃、押出比14、直径30mmの棒材とする。3) Extrusion 400 ° C, extrusion ratio 14, rod diameter 30mm.

4)熱処理 合金No.9;466℃×1.5時間溶体化処理後水冷する。次い
で、107℃×7時間と177℃×7時間の時効処理を行う。
4) Heat treatment Alloy No. 9; 466 ℃ × 1.5 hours solution heat treatment followed by water cooling. Then, an aging treatment is carried out at 107 ° C. × 7 hours and 177 ° C. × 7 hours.

合金No.10;477℃×1.5時間溶体化処理後水冷する。次い
で、121℃×5時間と163℃×17時間の時効処理を行う。
Alloy No. 10; water-cooled after solution heat treatment for 477 ° C x 1.5 hours. Next, aging treatment is performed at 121 ° C. for 5 hours and 163 ° C. for 17 hours.

合金No.11、12;488℃で1時間溶体化処理後水冷する。
次いで120℃で24時間さらに163℃で24時間時効処理を行
う。
Alloy Nos. 11 and 12; solution-treated at 488 ° C for 1 hour and then water-cooled.
Then, aging treatment is performed at 120 ° C. for 24 hours and at 163 ° C. for 24 hours.

これらの試料について実施例の場合と同様の試験を行っ
た。その結果を第2表に示した。
Tests similar to those in the example were performed on these samples. The results are shown in Table 2.

これらの結果から明らかなように、試料1〜8は従来合
金試料9、10に比べ機械的性質が同等またはそれ以上で
あり、かつ耐応力腐食割れ性が非常に改善されている。
As is clear from these results, Samples 1 to 8 have mechanical properties equal to or higher than those of the conventional alloy samples 9 and 10, and the stress corrosion cracking resistance is greatly improved.

また試料11、12は本発明の範囲内の成分の合金である
が、平均結晶粒径および金属間化合物粒径が大きいため
機械的性質および耐応力腐食割れ性に劣る。
Further, although Samples 11 and 12 are alloys having components within the scope of the present invention, they are inferior in mechanical properties and stress corrosion cracking resistance due to large average crystal grain size and intermetallic compound grain size.

(発明の効果) 本発明の高強度耐応力腐食割れ性アルミニウム基粉末冶
金合金材は強度および耐応力腐食割れ性の点ですぐれた
構造材を与える。したがって航空機材などに代表される
高度な材料特性が要求される部材用として特に好適であ
る。
(Effect of the Invention) The high-strength, stress corrosion cracking-resistant aluminum-based powder metallurgy alloy material of the present invention provides a structural material excellent in strength and stress corrosion cracking resistance. Therefore, it is particularly suitable for members such as aircraft materials which require high material properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Zn5〜10%、Mg2〜5%、Cu0.5〜3%、Zr
0.3〜1%(以上重量%)を含有し、残部がAlと不可避
不純物からなる合金組成を有し、かつ平均30μm以下の
結晶粒径および5μm以下の金属間化合物粒径を有する
ことを特徴とする高強度耐応力腐食割れ性アルミニウム
基粉末冶金合金。
1. Zn5-10%, Mg2-5%, Cu0.5-3%, Zr
It is characterized by containing 0.3 to 1% (or more by weight), the balance being an alloy composition of Al and inevitable impurities, and having an average crystal grain size of 30 μm or less and an intermetallic compound grain size of 5 μm or less. High strength stress corrosion cracking resistant aluminum base powder metallurgy alloy.
JP61160773A 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy Expired - Fee Related JPH0713275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160773A JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160773A JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Publications (2)

Publication Number Publication Date
JPS6318034A JPS6318034A (en) 1988-01-25
JPH0713275B2 true JPH0713275B2 (en) 1995-02-15

Family

ID=15722140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160773A Expired - Fee Related JPH0713275B2 (en) 1986-07-10 1986-07-10 High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy

Country Status (1)

Country Link
JP (1) JPH0713275B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645546B1 (en) * 1989-04-05 1994-03-25 Pechiney Recherche HIGH MODULATED AL MECHANICAL ALLOY WITH HIGH MECHANICAL RESISTANCE AND METHOD FOR OBTAINING SAME
AU5455799A (en) * 1999-05-24 2000-12-12 Zakrytoe Aktsionernoe Obschestvo "Metal-Park" Aluminium-containing material and method for making articles made of said aluminium-containing material
US7691214B2 (en) 2005-05-26 2010-04-06 Honeywell International, Inc. High strength aluminum alloys for aircraft wheel and brake components
WO2008105303A1 (en) * 2007-02-28 2008-09-04 Kabushiki Kaisha Kobe Seiko Sho High-strength and high-ductility al alloy and process for production of the same
JP5059512B2 (en) * 2007-02-28 2012-10-24 株式会社神戸製鋼所 High strength, high ductility Al alloy and method for producing the same
JP6595327B2 (en) * 2015-12-15 2019-10-23 花王株式会社 Mold stacking method
DE102016001500A1 (en) * 2016-02-11 2017-08-17 Airbus Defence and Space GmbH Al-Mg-Zn alloy for the integral construction of ALM structures
KR20210044205A (en) * 2018-06-20 2021-04-22 나노알 엘엘씨 High-performance Al-Zn-Mg-Zr aluminum alloy for welding and additive manufacturing

Also Published As

Publication number Publication date
JPS6318034A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
CA2793885C (en) 2xxx series aluminum lithium alloys having low strength differential
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US4021271A (en) Ultrafine grain Al-Mg alloy product
CN112996935A (en) 7XXX series aluminum alloy products
CA2827530C (en) 2xxx series aluminum lithium alloys
JPH05345945A (en) Aluminum alloy
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
CA2870475A1 (en) 2xxx series aluminum lithium alloys
US3563814A (en) Corrosion-resistant aluminum-copper-magnesium-zinc powder metallurgy alloys
CN112626386A (en) High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
CN112501482B (en) Si microalloyed AlZnMgCu alloy and preparation method thereof
JPH0713275B2 (en) High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy
CN115896558B (en) 4Xxx series aluminum alloy forging and preparation method thereof
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JPH11286759A (en) Production of forged product using aluminum extruded material
JPH01152237A (en) Aluminum alloy material for engine member
US20210262065A1 (en) 2xxx aluminum alloys
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
EP4101941A1 (en) Aluminium-silicon casting alloy, and castings made from said alloy
JP3509163B2 (en) Manufacturing method of magnesium alloy member
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP2003147496A (en) Method for producing semi-molten cast billet of aluminum alloy for transport apparatus
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees