JPH0379738A - High strength al alloy material - Google Patents

High strength al alloy material

Info

Publication number
JPH0379738A
JPH0379738A JP21827389A JP21827389A JPH0379738A JP H0379738 A JPH0379738 A JP H0379738A JP 21827389 A JP21827389 A JP 21827389A JP 21827389 A JP21827389 A JP 21827389A JP H0379738 A JPH0379738 A JP H0379738A
Authority
JP
Japan
Prior art keywords
alloy
strength
rapidly solidified
alloy material
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21827389A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshino
吉野 彰一
Hiroshi Isaki
伊崎 博
Yoshimichi Ogino
荻野 義道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21827389A priority Critical patent/JPH0379738A/en
Publication of JPH0379738A publication Critical patent/JPH0379738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the Al alloy material with excellent strength at an ordinary temp. and a high temp. by making the rapidly solidified powder of an Al-Cu-Mg series alloy to which a specified amt. of Zr is added into an extruded material or a cast material. CONSTITUTION:The chemical compsn. of an alloy is formed from, by weight, 1.0 to 7.0% Cu, 0.2 to 2.5% Mg, 0.1 to 1.5% Si, 0.1 to 1.5% Mn, 0.2 to 3.0% Zr and the balance substantial Al. The rapidly solidified powder of the Al alloy having the compsn. is extruded or forged into a high strength Al alloy material. Zr in the alloy compsn. has the effect of refining crystal grains, so that its strength is improved. Furthermore, at the time of incorporating about 0.2 to 1.5% Fe instead of a part of Al, the deterioration of the strength at a high temp. can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Al −Cu−Mg系高力At合金の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to improvements in Al-Cu-Mg-based high-strength At alloys.

(従来の技術と課題) 航空機用材、油圧部品やコンロッド等のエンジン部品、
VTR用シリンダー等の材料として、従来2000系の
高力M合金が使用されている。この種の合金は、常温で
の引張強度が50kgf/m11”近くまであり、しか
も200℃程度の高温における強度も30kgf/mm
”程度あり、ある程度の耐熱性をも兼備しており、広範
囲の用途を有している。
(Conventional technology and issues) Aircraft materials, engine parts such as hydraulic parts and connecting rods,
Conventionally, 2000 series high strength M alloys have been used as materials for VTR cylinders and the like. This type of alloy has a tensile strength of nearly 50 kgf/m11" at room temperature, and a strength of 30 kgf/mm at high temperatures of around 200°C.
``It has a certain degree of heat resistance, and has a wide range of uses.

しかしながら、近年、使用条件が苛酷になってきており
、強度の向上が要望されている。
However, in recent years, usage conditions have become more severe, and there is a demand for improved strength.

ところで、常温での引張強度が50kgf/m”程度の
7075系M合金が既に存在するが、この合金は常温強
度に優れるものの、200°Cでの強度は30kgf/
mm”に及ばず、2000系合金に比べて汎用的でない
By the way, there is already a 7075 series M alloy with a tensile strength of about 50 kgf/m'' at room temperature, but although this alloy has excellent room temperature strength, its strength at 200°C is only 30 kgf/m.
mm" and is less versatile than 2000 series alloys.

本発明はかかる問題に鑑みなされたもので、常温のみな
らず200°C程度の高温においても優れた強度を有す
るM合金を提供することを目的とする。
The present invention was made in view of this problem, and it is an object of the present invention to provide an M alloy that has excellent strength not only at room temperature but also at high temperatures of about 200°C.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の高力M合金
材は、化学Mi戒が重量%で、(1:u:  L、0〜
7.0%、 Mg : 0.2〜2.5%Si :  
0.1〜1.5%、 Mn:  0.1〜1.5%Zr
:  0.2〜3.0% 残部実質的にMからなる41合金急冷凝固粉末の押出材
もしくは鍛造材であることを発明の構成とする。
(Means for Solving the Problems) The high-strength M alloy material of the present invention, which has been made to achieve the above object, has a chemical Mi precept of weight% (1:u:L,0~
7.0%, Mg: 0.2-2.5%Si:
0.1-1.5%, Mn: 0.1-1.5% Zr
: 0.2 to 3.0% The remainder is substantially M. The present invention is an extruded material or a forged material of rapidly solidified alloy 41 powder.

この際、合金材の高温特性向上のため、Mの一部に代え
て、Feを0.2〜1.5%含有することができる。
At this time, in order to improve the high-temperature properties of the alloy material, 0.2 to 1.5% of Fe can be contained in place of a part of M.

(作 用) 本発明の高力M合金材の化学組成(単位−1%)は以下
の理由により限定される。
(Function) The chemical composition (unit: -1%) of the high strength M alloy material of the present invention is limited by the following reasons.

Cu :  1.o〜7.0% CuはCaAl2、Aj、CuMgとなって基地中に析
出し、引張強さ、耐力を向上させる。1.0%未満では
その効果が少なく、一方7.0%を越えると効果が飽和
し経済的でなく、また伸びが低下する。
Cu: 1. o~7.0% Cu becomes CaAl2, Aj, and CuMg and precipitates in the base, improving tensile strength and yield strength. If it is less than 1.0%, the effect will be small, while if it exceeds 7.0%, the effect will be saturated and it will be uneconomical, and the elongation will decrease.

Mg:  0.2〜2.5% MgはCuと共に強度向上に寄与し、特に常温時効性を
向上させる。0.2%未満ではその効果が少なく、一方
2.5%を越えると強度の低下を招来する。
Mg: 0.2 to 2.5% Mg contributes to improving strength together with Cu, and particularly improves room temperature aging properties. If it is less than 0.2%, the effect will be small, while if it exceeds 2.5%, the strength will decrease.

Si:0.1〜1゜5% StはMg2Siとなって析出し、高温時効性を改善す
る。0.1%未満ではその効果が少なく、一方1.5%
を越えると伸びが低下する。
Si: 0.1 to 1°5% St precipitates as Mg2Si and improves high temperature aging properties. Less than 0.1% has little effect, while 1.5%
Exceeding this will reduce elongation.

Mn:  0.1〜1.5% Mnは引張強さ、耐力の向上に寄与する。0.1%未満
ではその効果が少なく、一方1.5%を越えると伸びが
低下する。
Mn: 0.1 to 1.5% Mn contributes to improving tensile strength and yield strength. If it is less than 0.1%, the effect will be small, while if it exceeds 1.5%, the elongation will decrease.

Zr : 0.2〜3.0% Zrは結晶粒を微細化する作用をなし、その結果、強度
が向上する。0.2%未満ではその効果が少なく、一方
3.0%を越えると効果が飽和し不経済となり、また伸
びが低下する。
Zr: 0.2 to 3.0% Zr has the effect of making crystal grains finer, and as a result, the strength is improved. If it is less than 0.2%, the effect will be small, while if it exceeds 3.0%, the effect will be saturated and become uneconomical, and the elongation will decrease.

Fe:  0.2〜1.5% Feは高温での強度低下を防止する作用をなす。Fe: 0.2~1.5% Fe acts to prevent strength from decreasing at high temperatures.

0.2%未満ではその効果が少なく、一方1.5%を越
えるとAZFeSiが多量に生成するようになり、”g
zSiの析出が抑えられ、Mg、Stによる析出強化が
損われる。
If it is less than 0.2%, the effect will be small, while if it exceeds 1.5%, a large amount of AZFeSi will be generated, and "g"
Precipitation of zSi is suppressed, and precipitation strengthening by Mg and St is impaired.

上記組成のM合金急冷凝固粉末は、合金元素を過飽和に
固溶して基地の固溶体強化が図られ、また結晶粒の微細
化により基地の強化が図られる。
The M alloy rapidly solidified powder having the above-mentioned composition is capable of solid solution strengthening of the matrix by supersaturated solid solution of the alloying elements, and also of strengthening of the matrix by refining the crystal grains.

前記M合金急冷凝固粉末の押出材もしくは鍛造材は、同
功■工による強度のせん新作用によって、粉末表面に形
成されている散大程度の不活性、安定なAl酸化物被膜
の分断が行われると共に、粉末同士が一体化され、一体
止された基地中に前記分断されたM酸化物片が均一に分
散したものとなる。
In the extruded material or forged material of the rapidly solidified M alloy powder, the inert and stable Al oxide film formed on the powder surface is divided to a large extent by the strong pneumatic action of the same technique. At the same time, the powders are integrated, and the divided M oxide pieces are uniformly dispersed in the integrated base.

(実施例) 本発明のM合金材の原料となる所定成分のM合金急冷凝
固粉末は、水アトマイズ法や回転ドラム法等の適宜の手
段で製造される。回転ドラム法とは、回転する冷却ドラ
ムの内周面に冷却水層を遠心力の作用で形威し、該冷却
水層に溶融M合金を噴射し、微細に分断して急冷凝固粉
末を得る方法である。
(Example) A rapidly solidified M alloy powder having a predetermined composition, which is a raw material for the M alloy material of the present invention, is produced by an appropriate method such as a water atomization method or a rotating drum method. In the rotating drum method, a cooling water layer is formed on the inner peripheral surface of a rotating cooling drum by the action of centrifugal force, and molten M alloy is injected into the cooling water layer, which is finely divided to obtain rapidly solidified powder. It's a method.

M合金急冷凝固粉末は、粉末の状態で、あるいは圧縮成
形ビレットとして押出しコンテナに収容され、押出し加
工に供される。押出に際して、M合金粉末表面のM酸化
物被膜の分断、分散や粉末の基地(Al固溶体)同士の
一体化を十分行うために、押出比は5〜20とするのが
よく、また押出荷重の軽減および基地の拡散接合のため
に、押出温度は250〜450°Cとするのがよい。
The M alloy rapidly solidified powder is stored in an extrusion container in a powder state or as a compression molded billet, and is subjected to extrusion processing. During extrusion, in order to sufficiently divide and disperse the M oxide film on the surface of the M alloy powder and integrate the powder base (Al solid solution), the extrusion ratio is preferably set to 5 to 20, and the extrusion load is For mitigation and diffusion bonding of the matrix, the extrusion temperature is preferably between 250 and 450°C.

本発明の合金材は、押出し加工のばか鍛造加工により押
出し加工時と同等の作用がなされ、所期の合金組織を得
ることができる。この際、鍛造温度は260〜510°
Cとするのがよい。
The alloy material of the present invention has the same effect as the extrusion process through the forging process, which is an extrusion process, and the desired alloy structure can be obtained. At this time, the forging temperature is 260~510°
It is better to set it as C.

以上のようにして得られた押出材もしくは鍛造材は、適
宜、鍛造加工、切削加工等により目的とする製品形状に
加工される。また、必要に応じてT4処理(475〜5
00”Cで溶体化処理し、水冷した後、自然時効を行う
。)を施し、より高強度化を図ることができる。
The extruded material or forged material obtained as described above is processed into the desired product shape by forging, cutting, etc., as appropriate. In addition, T4 processing (475-5
After solution treatment at 00''C, water cooling, and natural aging), higher strength can be achieved.

次に具体的実施例について説明する。Next, specific examples will be described.

(1)下記第1表の化学組成(11t%、残部実質的に
47)のA1合金を溶製し、回転ドラム法によって、粒
径0.05〜1閣の急冷凝固粉末を作成した。尚、試料
No、 f〜8は本発明実施例であり、No、9.10
は2017.2024A7合金相当組威の比較例である
(1) An A1 alloy having the chemical composition shown in Table 1 below (11 t%, remainder substantially 47 t%) was melted and rapidly solidified powder with a particle size of 0.05 to 1 mm was prepared by a rotating drum method. In addition, sample No. f~8 is an example of the present invention, and sample No. 9.10
is a comparative example of the structure equivalent to 2017.2024A7 alloy.

(2)Nα1〜10の急冷凝固粉末を押出比25、押出
温度450°Cで押出し、φ25mmの棒材を得た。
(2) A rapidly solidified powder with Nα of 1 to 10 was extruded at an extrusion ratio of 25 and an extrusion temperature of 450°C to obtain a bar with a diameter of 25 mm.

(3)この押出材より試験片を採取し、T4熱処理を施
した後、室温および200’Cにおける引張強さおよび
伸びを測定した。その結果を第1表に併せて示す。
(3) A test piece was taken from this extruded material, subjected to T4 heat treatment, and then its tensile strength and elongation at room temperature and 200'C were measured. The results are also shown in Table 1.

同表より、Zr、 Fe以外が路間等の試料(例えば、
Ha 2 、5とNo、 9、No、 4 、8とNo
、10)を比較すると、実施例のM合金材は、室温にお
ける引張強さの向上が著しく、しかも200″Cにおけ
る強度向上が認められる。
From the same table, it can be seen that samples other than Zr and Fe are between roads (for example,
Ha 2, 5 and No, 9, No, 4, 8 and No
, 10), the M alloy material of the example shows a remarkable improvement in tensile strength at room temperature, and also shows an improvement in strength at 200''C.

(発明の効果) 以上説明した通り、本発明の高力A1合金材は、Zr:
0.2〜3.0%含有した特定組成のM合金急冷凝固粉
末の押出材もしくは鍛造材であるので、従来の2000
系M合金に比べて、室温における大幅な強度向上のみな
らず、200″C程度の高温においても強度の向上が図
られ、軽量高強度材として優れた特性を有する。
(Effect of the invention) As explained above, the high strength A1 alloy material of the present invention has Zr:
Since it is an extruded material or forged material of M alloy rapidly solidified powder with a specific composition containing 0.2 to 3.0%, it is different from the conventional 2000.
Compared to series M alloys, it not only has significantly improved strength at room temperature, but also at high temperatures of about 200''C, and has excellent properties as a lightweight, high-strength material.

Claims (2)

【特許請求の範囲】[Claims] (1)化学組成が重量%で、 Cu:1.0〜7.0%、Mg:0.2〜2.5%Si
:0.1〜1.5%、Mn:0.1〜1.5%Zr:0
.2〜3.0% 残部実質的にAlからなるAl合金急冷凝固粉末の押出
材もしくは鍛造材であることを特徴とする高力Al合金
材。
(1) Chemical composition in weight%: Cu: 1.0-7.0%, Mg: 0.2-2.5%Si
: 0.1-1.5%, Mn: 0.1-1.5% Zr: 0
.. A high-strength Al alloy material, characterized in that it is an extruded material or a forged material of a rapidly solidified Al alloy powder consisting of 2 to 3.0% and the remainder substantially Al.
(2)請求項(1)のAlの一部に代えて、Fe:0.
2〜1.5% を含有する高力Al合金材。
(2) In place of a part of Al in claim (1), Fe: 0.
High strength Al alloy material containing 2 to 1.5%.
JP21827389A 1989-08-23 1989-08-23 High strength al alloy material Pending JPH0379738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21827389A JPH0379738A (en) 1989-08-23 1989-08-23 High strength al alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21827389A JPH0379738A (en) 1989-08-23 1989-08-23 High strength al alloy material

Publications (1)

Publication Number Publication Date
JPH0379738A true JPH0379738A (en) 1991-04-04

Family

ID=16717283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21827389A Pending JPH0379738A (en) 1989-08-23 1989-08-23 High strength al alloy material

Country Status (1)

Country Link
JP (1) JPH0379738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140688A (en) * 1991-11-21 1993-06-08 Kubota Corp Al alloy material excellent in high temperature fatigue strength
WO2002083962A1 (en) * 1999-01-15 2002-10-24 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure
CN103276263A (en) * 2013-05-22 2013-09-04 慈溪市宜美佳电器有限公司 Rolled copper-aluminum alloy with high flexibility and high strength and manufacturing method of plate prepared from same
CN110438378A (en) * 2019-09-16 2019-11-12 营口忠旺铝业有限公司 A kind of 2 line aluminium alloy melting and casting methods
CN114015917A (en) * 2021-10-19 2022-02-08 北京工业大学 Si, Mg and Zr microalloyed AlCuMn heat-resistant aluminum alloy and heat treatment process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483637A (en) * 1987-09-25 1989-03-29 Toyo Aluminium Kk Aluminum alloy material for powder metallurgy
JPH01290740A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483637A (en) * 1987-09-25 1989-03-29 Toyo Aluminium Kk Aluminum alloy material for powder metallurgy
JPH01290740A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140688A (en) * 1991-11-21 1993-06-08 Kubota Corp Al alloy material excellent in high temperature fatigue strength
WO2002083962A1 (en) * 1999-01-15 2002-10-24 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure
CN103276263A (en) * 2013-05-22 2013-09-04 慈溪市宜美佳电器有限公司 Rolled copper-aluminum alloy with high flexibility and high strength and manufacturing method of plate prepared from same
CN110438378A (en) * 2019-09-16 2019-11-12 营口忠旺铝业有限公司 A kind of 2 line aluminium alloy melting and casting methods
CN114015917A (en) * 2021-10-19 2022-02-08 北京工业大学 Si, Mg and Zr microalloyed AlCuMn heat-resistant aluminum alloy and heat treatment process
CN114015917B (en) * 2021-10-19 2022-09-09 北京工业大学 Si, Mg and Zr microalloyed AlCuMn heat-resistant aluminum alloy and heat treatment process

Similar Documents

Publication Publication Date Title
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US7625454B2 (en) Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings
JPS63157831A (en) Heat-resisting aluminum alloy
JPH0471983B2 (en)
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0253501B2 (en)
JPH0379738A (en) High strength al alloy material
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPH1112673A (en) Aluminum alloy casting and its production
JPH09296245A (en) Aluminum alloy for casting
JP3037926B2 (en) Aluminum alloy for aluminum wheel casting
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JPH03264639A (en) Al alloy product having high strength at high temperature
JP2711296B2 (en) Heat resistant aluminum alloy
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH02194142A (en) Al-base alloy powder for sintering
JPS6157380B2 (en)
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2572832B2 (en) Al-based alloy powder for sintering
JPH03180440A (en) Heat resistant and high strength al alloy material