JPH02194142A - Al-base alloy powder for sintering - Google Patents

Al-base alloy powder for sintering

Info

Publication number
JPH02194142A
JPH02194142A JP1274989A JP1274989A JPH02194142A JP H02194142 A JPH02194142 A JP H02194142A JP 1274989 A JP1274989 A JP 1274989A JP 1274989 A JP1274989 A JP 1274989A JP H02194142 A JPH02194142 A JP H02194142A
Authority
JP
Japan
Prior art keywords
alloy powder
sintered body
strength
toughness
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1274989A
Other languages
Japanese (ja)
Inventor
Hidetoshi Inoue
秀敏 井上
Toshihisa Suemitsu
末光 利久
Shigenori Kusumoto
栄典 楠本
Tsukasa Shiomi
塩見 司
Katsuyuki Yoshikawa
吉川 克之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1274989A priority Critical patent/JPH02194142A/en
Publication of JPH02194142A publication Critical patent/JPH02194142A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an Al-base alloy powder for forming a sintered compact excellent in fatigue characteristics and toughness by incorporating specific percentages of Zr, Cr, and Fe to Al and specifying the total content of Cr and Fe. CONSTITUTION:An alloy having a composition which contains, as essential components, 0.5-2%, by weight, Zr, 2-5% Cr, and 0.5-3% Fe and has the balance Al with inevitable impurities and further contains, if necessary, 0.1-2%, in total, of one or >=2 kinds selected from 0.5-2% Mn, 0.1-0.6% B, 0.1-0.5% W, 0.5-2% Mo, and 0.5-2% Ti and in which total content of Cr and Fe is controlled to 3-6% is refined and formed into fine powder by a rapid solidification process. By using this alloy powder, a superior sintered compact of Al-base alloy powder having high strength at ordinary temp. and high temp. and also having sufficient toughness and fatigue characteristics can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車、航空機、鉄道車輌、船舶等の各種産
業機械分野で広く使用されているA1基合金粉末焼結体
の原料素材となる焼結用Al基合金粉末に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention serves as a raw material for A1-based alloy powder sintered bodies that are widely used in various industrial machinery fields such as automobiles, aircraft, railway vehicles, and ships. This invention relates to Al-based alloy powder for sintering.

[従来の技術] 近年、A1粉末冶金の新しい技術として、急冷凝固法を
応用してAlに各種の遷穆元素を含有させたA1基合金
粉末を得、該Al基合金粉末を用いて焼結体を成形する
ことにより熱間強度の高い焼結体を製造する技術が数多
く開発されている。
[Prior art] In recent years, as a new technology of A1 powder metallurgy, a rapid solidification method has been applied to obtain an A1-based alloy powder in which Al contains various transitional elements, and this Al-based alloy powder is used to sinter. Many techniques have been developed for manufacturing sintered bodies with high hot strength by molding bodies.

上記技術は、急冷凝固粉末を用いた場合には、通常なら
ば平衡状態のものとしては得られない組成のAl−Fe
、Al−Cr、Al−Zr、Al−81等のA1合金を
製造することが可能であることに着目して急冷凝固技術
を応用したものであり、この方法によると、結晶粒の大
きさや微細混合物を調節することができ、耐熱性、耐摩
耗性及び込れ強さの優れた新素材を得ることができる。
In the above technology, when rapidly solidified powder is used, Al-Fe with a composition that cannot normally be obtained in an equilibrium state is produced.
, Al-Cr, Al-Zr, Al-81, and other A1 alloys can be produced by applying rapid solidification technology. According to this method, the size and fineness of crystal grains can be The mixture can be controlled and a new material with excellent heat resistance, abrasion resistance, and embedding strength can be obtained.

例えば特開昭59−43802号公報、同60−234
936号公報、同60−248860号公報、同61−
49551号公報、同61−96051号公報、同51
−130451号公報等に数多くの技術が開示されてお
り、更には米国特許第4,464,199号にも同様の
技術が開示されている。
For example, Japanese Unexamined Patent Publication No. 59-43802, No. 60-234
No. 936, No. 60-248860, No. 61-
No. 49551, No. 61-96051, No. 51
A number of techniques are disclosed in Japanese Patent No. 130451, and a similar technique is also disclosed in US Pat. No. 4,464,199.

上記文献に見られる技術はいずれも、概ね8〜!2%の
Feを含む他、Ce等の希土類元素若しくはV、Zr、
Mo等の遷穆金属元素をAl中に含有させたA l−F
e系合金粉末を急冷凝固法によって得、該粉末を焼結し
てAlマトリックス中にAl−Fe−X化合物(Xは前
記Ce、V。
All of the techniques found in the above documents are approximately 8~! In addition to containing 2% Fe, rare earth elements such as Ce or V, Zr,
Al-F containing a transition metal element such as Mo in Al
E-based alloy powder is obtained by a rapid solidification method, and the powder is sintered to form an Al-Fe-X compound (X is Ce or V as described above) in an Al matrix.

Zr、、Mo等)を分散させ、熱間強度耐熱性を高めた
A1基合金粉末焼結体に関するものである。
The present invention relates to an A1-based alloy powder sintered body in which hot strength and heat resistance are improved by dispersing Zr, Mo, etc.).

上に見られるAl−Fe系合金粉末以外のAl基合金粉
末についても多くの研究開発が行なわれており、例えば
特開昭59−116352号公報にはAl中にCrやZ
r等を含有させて耐熱性を向上させたAl−Cr−Zr
系合金粉末焼結体について開示されている。
Much research and development has been carried out on Al-based alloy powders other than the Al-Fe alloy powders shown above.
Al-Cr-Zr with improved heat resistance by containing r etc.
A sintered body of alloy powder is disclosed.

[発明が解決しようとするiD] 前記Al−Fe系合金粉末から得られる焼結体は、いず
れも常温から300℃程度までの温度範囲では高い引張
強度を有している。
[ID to be Solved by the Invention] All of the sintered bodies obtained from the Al-Fe alloy powder have high tensile strength in the temperature range from room temperature to about 300°C.

しかしながら本発明者らがAl−Fe系合金粉末焼結体
について各種の検討を行なったところ、当該焼結体は応
力集中条件下における疲労特性が悪いことが判明した。
However, when the present inventors conducted various studies on the Al-Fe alloy powder sintered body, it was found that the sintered body had poor fatigue properties under stress concentration conditions.

即ち金属材料は一般に切欠き等の応力集中部において疲
労強度が低下することが知られているが、Al−Fe系
合金粉末焼結体においては全般的にこの疲労強度低下の
程度(切欠き感受性)が著しく高いことが分かった。
In other words, it is known that the fatigue strength of metal materials generally decreases at stress concentration parts such as notches, but in Al-Fe alloy powder sintered bodies, the degree of decrease in fatigue strength (notch susceptibility) generally decreases. ) was found to be significantly high.

そればかりか、この焼結体は靭性も低いことが分かった
Moreover, it was found that this sintered body had low toughness.

A l−Fe系合金粉末焼結体では、強度向上の目的で
多量のFeや他の元素を添加して分散相の体積率を高め
ているのであるが、この分散相は魔性を有し且つ亀裂伝
播サイトとなって亀裂の進展を助長するので、該焼結体
は疲労特性が悪く且つ靭性が低くなるものと考えられる
In the Al-Fe alloy powder sintered body, a large amount of Fe and other elements are added to increase the volume fraction of the dispersed phase for the purpose of improving strength, but this dispersed phase has magical properties and It is thought that the sintered body becomes a crack propagation site and promotes crack propagation, resulting in poor fatigue properties and low toughness of the sintered body.

又分散相の体積率を下げて疲労特性及び靭性を改善しよ
うとしても、逆に引張強度の低下を招くという問題があ
った。従ってAl−Fe系合金粉末焼結体においては、
引張強度、靭性及び疲労特性のいずれをも同時に満足さ
せることは極めて困難である。こうした問題点は、例え
ばコンロッド等の様に複雑な形状を有し一定の応力集中
状態下で作動する各種部品に適用する場合に特に大きな
障害となっている。
Furthermore, even if an attempt was made to improve fatigue properties and toughness by lowering the volume fraction of the dispersed phase, there was a problem in that the tensile strength conversely deteriorated. Therefore, in the Al-Fe alloy powder sintered body,
It is extremely difficult to simultaneously satisfy tensile strength, toughness, and fatigue properties. These problems pose a particular problem when applied to various parts, such as connecting rods, which have complex shapes and operate under certain stress concentration conditions.

一方前記Al−Cr−Zr系合金粉末焼結体は、急冷凝
固法で粉末を製造する際にCr及びZrがAl中に強制
的に固溶したものであることが知られている。CrやZ
rが強制固溶された急冷凝固粉末を300〜450℃の
温度で加熱すると、Alマトリックス中からCuA17
゜ZrA15等の金属間化合物が微細に析出し、析出強
化が期待できる。しかも上記析出化合物は熱処理温度(
300〜450℃程度)以下の温度域ではほとんど粗大
化しないので、300℃以下の温度域では高強度を発現
し得るものとして期待される。
On the other hand, it is known that the Al-Cr-Zr alloy powder sintered body is a product in which Cr and Zr are forcibly dissolved in Al when the powder is manufactured by a rapid solidification method. Cr and Z
When the rapidly solidified powder in which r is forcibly dissolved is heated at a temperature of 300 to 450°C, CuA17 is removed from the Al matrix.
゜Intermetallic compounds such as ZrA15 are finely precipitated, and precipitation strengthening can be expected. Moreover, the above-mentioned precipitated compounds are formed at the heat treatment temperature (
Since it hardly becomes coarse in the temperature range of 300 to 450°C or lower, it is expected to exhibit high strength in the temperature range of 300°C or lower.

しかしながらAl−Cr−Zr系合金粉末焼結体につい
てのこれまでの研究は、そのほとんどがAl−0r−Z
rB元合金素材自体に関するものであり、押出棒や鍛造
材として実用上十分な強度レベルを発現するに至ってい
ないのが現状である。即ちAl基合金粉末焼結体は前述
した趣旨のもとで開発されたものであり、焼結・熱間成
形後において普通の鋳塊と同様に熱間の鋳造、圧延及び
押出しなどの加工が行なわれるのが一般的であり、これ
らの加工後においても実用上十分な強度レベルを発現さ
せる必要がある。
However, most of the previous studies on Al-Cr-Zr alloy powder sintered bodies have focused on Al-0r-Z
This relates to the rB base alloy material itself, and the current situation is that it has not yet reached a level of strength that is practically sufficient for extruded rods and forged materials. That is, the Al-based alloy powder sintered body was developed based on the above-mentioned purpose, and after sintering and hot forming, it can be processed by hot casting, rolling, extrusion, etc. in the same way as ordinary ingots. Even after these processes, it is necessary to develop a practically sufficient strength level.

尚上記趣旨から明らかであるが、本発明における「焼結
体」とは、製品に加工する前の成形材(これを単にAl
基合金と呼ぶのが一般的である)をも含んだ意味である
As is clear from the above purpose, the "sintered body" in the present invention refers to a molded material (simply referred to as Al) before being processed into a product.
The meaning also includes (generally referred to as base alloy).

前記特開昭59−116352号公報に開示された技術
は、Al−Cr−Zrの3元合金に更にMnを添加し、
得られる焼結体の強度を高めたものであるが、この焼結
体には次に示す様な問題点があった。
The technique disclosed in JP-A-59-116352 further adds Mn to the ternary alloy of Al-Cr-Zr,
Although the resulting sintered body has increased strength, this sintered body has the following problems.

例えば1986年4月に発行された16j6rials
Science and Technology、Vo
l、2の第394〜399頁には、Al−Cr−Zr−
Mn合金粉末に関する研究が発表されており、それによ
るとこの合金粉末から得られる焼結体は熱間押出等にお
ける加熱条件の影響を受は易いことが開示されている。
For example, 16j6rials issued in April 1986
Science and Technology, Vo
1, 2, pages 394-399, Al-Cr-Zr-
Research on Mn alloy powder has been published, and it is disclosed that sintered bodies obtained from this alloy powder are easily affected by heating conditions during hot extrusion and the like.

従ってこのA1基合金粉末から得られる焼結体に十分な
強度を発現させるには、常温押出し等の比較的低温度で
の特殊な加工方法を採用する必要があるので実用化が困
難であった。
Therefore, in order to develop sufficient strength in the sintered body obtained from this A1-based alloy powder, it is necessary to use a special processing method at relatively low temperatures such as room temperature extrusion, making it difficult to put it into practical use. .

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的とするところは、耐熱性は勿論の
こと靭性及び応力集中条件下での疲労特性のいずれにも
優れた焼結体の原料素材となるAl基合金粉末を提供す
る点にある。
The present invention has been made to solve these technical problems, and its purpose is to create a sintered material that is excellent not only in heat resistance but also in toughness and fatigue properties under stress concentration conditions. The purpose of the present invention is to provide an Al-based alloy powder that is a raw material for the body.

[課題を解決する為の手段] 上記目的を達成し得た本発明のAl基合金粉末とは、Z
 r : 0.5〜2%、Cr:2〜5%及びF e 
: 0.5〜3%を必須成分として含むと共に、C「と
Feの合計が3〜6%であり、残部がA1及び不可避不
純物からなる点に要旨を有するものである。
[Means for solving the problem] The Al-based alloy powder of the present invention that achieves the above object is Z
r: 0.5-2%, Cr: 2-5% and Fe
: It contains 0.5 to 3% as an essential component, and the total of C' and Fe is 3 to 6%, and the remainder consists of A1 and inevitable impurities.

又上記各成分に加え、M n : 0.5〜2%、B:
0.1〜0.5%、W : 0.1〜0.5%、M o
 : 0.5〜2%、Ti:0.5〜2%からなる群か
ら選択される1f!1又は2種以上を合計で0゜1〜2
%含有させれば、本発明の目的が更に有効に達成される
In addition to the above components, Mn: 0.5 to 2%, B:
0.1-0.5%, W: 0.1-0.5%, Mo
1f selected from the group consisting of: 0.5-2%, Ti: 0.5-2%! 1 or 2 or more types in total 0°1-2
%, the object of the present invention can be achieved more effectively.

[作用] 本発明者らは、前記Al−Cr−Zr系合金粉末焼結体
における靭性及び応力集中条件下での疲労特性が前記A
l=Fe系合金粉末焼結体に比べて優れている点に着目
し、Al−Cr−Zr系合金粉末焼結体の強度を改善す
ることができれば、全体的な特性バランスの高い新しい
耐熱A1基合金粉末焼結体が実現できるのではないかと
の着想のもとで、かねてから鋭意研究を重ねてきた。
[Function] The present inventors have discovered that the toughness and fatigue properties under stress concentration conditions of the Al-Cr-Zr alloy powder sintered body are as follows.
If we focus on the superiority of the l=Fe alloy powder sintered body and improve the strength of the Al-Cr-Zr alloy powder sintered body, we can create a new heat-resistant A1 with a high overall property balance. Based on the idea that it might be possible to create a sintered body of base alloy powder, we have been conducting intensive research for some time.

前述した様にA l−Fe系合金粉末焼結体では前記A
l−Fe−X化合物による分散相の高い体積率によって
高強度を実現しているのであるが、本発明者らの研究に
よるとこれらの分散相は同時に個々の大きさが比較的粗
大である為亀裂の発生源となり、靭性や疲労特性を低下
させる要因となっている。これに対し、Al−Cr−Z
r系合金粉末焼結体では、添加元素量がAl−Fe系に
比べて少ないので高強度は得られにくいものの、靭性や
疲労特性が良好である。
As mentioned above, in the Al-Fe alloy powder sintered body, the above-mentioned A
High strength is achieved by the high volume fraction of the dispersed phase formed by the l-Fe-X compound, but according to research by the present inventors, these dispersed phases are also relatively coarse in individual size. It becomes a source of cracks and causes a decrease in toughness and fatigue properties. On the other hand, Al-Cr-Z
In the r-based alloy powder sintered body, since the amount of added elements is smaller than that of the Al-Fe-based material, it is difficult to obtain high strength, but it has good toughness and fatigue properties.

そこで本発明者らはAl−Cr−Zr、%合金粉末焼結
体を基本とし、この焼結体に対する各種元素の添加効果
を調査したところ、Feを適量配合すれば焼結体の靭性
や疲労特性を低下させることなく強度を向上させること
ができることを見出した。
Therefore, the present inventors investigated the effects of adding various elements to this sintered body based on an Al-Cr-Zr% alloy powder sintered body, and found that if an appropriate amount of Fe is added, the toughness and fatigue of the sintered body can be improved. It has been found that strength can be improved without deteriorating properties.

本発明に係るA1基合金粉末における各成分の作用及び
それらの数値限定理由は下記の通りである。
The effects of each component in the A1-based alloy powder according to the present invention and the reasons for limiting their numerical values are as follows.

Z  r  :  0.5 〜2% 急冷凝固法によって過飽和に強制固溶されたZrは、そ
の後の工程で析出し、焼結体の常温及び高温強度を高め
る作用を有する。この効果を発揮させる為にはZrは0
.5%以上添加する必要があるが、2%を超えて添加す
ると如何に急冷しても強制固溶されない過剰なZrが晶
出し、焼結体の靭性が低下する。
Zr: 0.5 to 2% Zr, which is forcibly dissolved into a supersaturated solid solution by the rapid solidification method, precipitates in the subsequent process and has the effect of increasing the room temperature and high temperature strength of the sintered body. In order to exhibit this effect, Zr must be 0.
.. It is necessary to add 5% or more, but if it is added in excess of 2%, excessive Zr that is not forcibly dissolved no matter how rapidly it is cooled will crystallize, reducing the toughness of the sintered body.

Cu:2〜5% F e  :  0.5 〜3% Crは一部強制固溶後析出して強化に寄与する他、Al
及びFeと化合物を形成しマトリックス中に分散して耐
熱性を高める。特にCrとFeを同時添加した化合物は
、高温でも粗大化しにくいので、熱間加工後においても
高い常温・高温強度を発現する。そしてこの作用を得る
為には、2%以上のCrと0.5%以上のFe(合計で
は3%以上)を同時添加する必要があるが、各成分が上
記上限を超えるか又は合計で6%を超えると焼結体の靭
性及び疲労特性が低下する。
Cu: 2-5% Fe: 0.5-3% Cr partially precipitates after forced solid solution and contributes to strengthening, and also
It forms a compound with Fe and disperses in the matrix to improve heat resistance. In particular, a compound in which Cr and Fe are added at the same time is difficult to coarsen even at high temperatures, so it exhibits high room temperature and high temperature strength even after hot working. In order to obtain this effect, it is necessary to simultaneously add 2% or more Cr and 0.5% or more Fe (3% or more in total), but if each component exceeds the above upper limit or the total %, the toughness and fatigue properties of the sintered body deteriorate.

Mn:0.5〜2% B  :0.1〜0.5% W  :0.1〜0.5% Mo:0.5〜2% Ti:0.5〜2% からなる群から選択される1種又は2種以上 (但し合計でo、i〜2%) 上記Zr、Cr、Feの同時添加によって、焼結体の引
張強度、靭性及び疲労特性のいずれをも満足させること
がでミるのであるが、これらの各成分に加え、Mn、B
、W、Mo、Tiからなる群から選択される1種又は2
種以上を適量含有させれば、本発明の効果が更に有効に
達成される。
Mn: 0.5-2% B: 0.1-0.5% W: 0.1-0.5% Mo: 0.5-2% Ti: 0.5-2% By simultaneously adding Zr, Cr, and Fe, it is possible to satisfy all of the tensile strength, toughness, and fatigue properties of the sintered body. In addition to these components, Mn, B
, W, Mo, and one or two selected from the group consisting of Ti.
The effects of the present invention can be more effectively achieved by containing an appropriate amount of at least one species.

即ちこれらの成分は、Cr及びZrの析出強化作用を助
長して焼結体の強化に寄与する。この作用を発揮させる
為には上記範囲内で添加する必要があるが、これらの範
囲を超えて添加すると靭性の低下を招く。
That is, these components promote the precipitation strengthening effect of Cr and Zr and contribute to strengthening the sintered body. In order to exhibit this effect, it is necessary to add within the above range, but adding beyond these ranges will result in a decrease in toughness.

尚本発明に係るA1基合金粉末は前述した如く、平衡状
態では固溶限の小さな元素を大量に添加する目的で、溶
解した合金を急冷凝固法によって微細な粉末にするもの
であり、その具体的な手段については各種のアトマイズ
法が例示でき何ら限定するものではないが、希望する微
細粉末を得るには急冷速度を102deg/sec以上
とするのが好ましい。
As mentioned above, the A1-based alloy powder according to the present invention is made by turning a melted alloy into a fine powder by rapid solidification in order to add a large amount of an element with a small solid solubility limit in an equilibrium state. Various atomization methods can be used as examples, but the method is not limited in any way, but in order to obtain the desired fine powder, it is preferable to set the quenching rate to 102 deg/sec or more.

[実施例] 下記第1表に示した各種組成の合金を溶製し、N2ガス
アトマイズ法によって急冷凝固し粒径74μm以下の粉
末を得た。尚このときの冷却速度は、同一方法により作
成された7075合金粉末のミクロ組織観察から10’
 K/sec程度と推第  1 表 (%) 得られた各粉末を70IIIlφのアルミニウム合金(
AA規格5052)製カプセルに充填し、該カプセルを
300℃に加熱しつつ、カプセルの一端に設けられた脱
気管より内部を真空脱気して前記粉末をカプセル内に真
空封入した。尚脱気に要した時間は約2時間であった。
[Example] Alloys having various compositions shown in Table 1 below were melted and rapidly solidified by N2 gas atomization to obtain powders with a particle size of 74 μm or less. The cooling rate at this time was determined to be 10' based on microstructure observation of 7075 alloy powder prepared by the same method.
Table 1 (%) Each of the obtained powders was mixed into a 70IIIlφ aluminum alloy (
The powder was filled into a capsule manufactured by AA Standard 5052), and while the capsule was heated to 300° C., the inside was vacuum-evacuated through a degassing tube provided at one end of the capsule, and the powder was vacuum-sealed into the capsule. The time required for deaeration was approximately 2 hours.

次に前記カプセルを350℃で約1時間加熱して熱間押
出加工し、得られた押出棒からカプセルの外皮を旋削・
除去して約15mmφの丸棒(Al基合金粉末焼結体)
を得た。尚押出時のカプセル温度は約330℃であり、
又押出比は約15であった。
Next, the capsules are heated at 350°C for about 1 hour to undergo hot extrusion processing, and the outer skin of the capsules is lathed from the resulting extruded rod.
Removed round rod of approximately 15mmφ (Al-based alloy powder sintered body)
I got it. The capsule temperature during extrusion was approximately 330°C.
Also, the extrusion ratio was about 15.

得られた丸棒試料のうち、Cr、Zrを同時に含むNo
、1〜9.No、11〜13の各焼結体については、更
に350℃×24時間の熱処理を施した。これらの押出
棒から試験片を採取し、下記の各種試験を実施した。
Among the obtained round bar samples, No. 1 containing Cr and Zr at the same time
, 1-9. Each of the sintered bodies No. 11 to 13 was further heat-treated at 350° C. for 24 hours. Test pieces were taken from these extruded rods, and the following various tests were conducted.

く常温引張試験〉 ASTM  8557M(平滑試験片)及びASTM 
 602(切欠試験片)に準拠し、常温における平滑試
験片の0.2%耐力(σ。、2)1強度(a6)及び破
断伸び(δ)並びに切欠試験片の強度(σ87! )を
測定した。そして前記耐力(cj、、、)及び強度(σ
NTg )の測定結果に基づき(5Nrs/σo、zを
計算し、靭性評価パラメーターとした。
Normal temperature tensile test> ASTM 8557M (smooth test piece) and ASTM
602 (notched test piece), measure the 0.2% proof stress (σ., 2) 1 strength (a6) and elongation at break (δ) of a smooth test piece at room temperature and the strength (σ87!) of a notched test piece. did. Then, the proof stress (cj, ,) and strength (σ
Based on the measurement results of NTg), (5Nrs/σo,z) was calculated and used as a toughness evaluation parameter.

く高温引張試験〉 ASTM  E2mに準拠し、試験温度を250℃とし
、250℃X100時間の予熱温度を施した試験片につ
いて(70,2+ 06及びδを測定した。
High Temperature Tensile Test> In accordance with ASTM E2m, the test temperature was 250°C and the test pieces were preheated at 250°C for 100 hours (70, 2+06 and δ were measured).

〈回転曲げ疲労試験〉 応力集中係数が6の環状切欠を有する試験片を用い、応
力振幅(σ、)が10 kgf/mm2での破断までの
繰返数(破断サイクル)を測定し、疲労特性を評価した
<Rotating bending fatigue test> Using a test piece with an annular notch with a stress concentration factor of 6, the number of repetitions until rupture (rupture cycle) at a stress amplitude (σ, ) of 10 kgf/mm2 was measured, and the fatigue properties were determined. was evaluated.

これらの結果を原料粉末No、と対応させて下記第2表
に示すが、この結果から明らかな様に、本発明のAl基
合金粉末から得られる焼結体(No。
These results are shown in Table 2 below in correspondence with the raw material powder No. As is clear from the results, the sintered body (No.

1〜8)は、常温・高温強度、靭性及び疲労特性がバラ
ンス良く良好な値を示している。
Nos. 1 to 8) exhibit good values with well-balanced room temperature/high temperature strength, toughness, and fatigue properties.

これに対しNo、15に示した従来のAl−Fe−Ce
系合金粉末から得られた焼結体は、靭性及び疲労特性の
点で、Al−Cr−Zr系合金粉末焼結体に劣っている
。又No、14のAl−Cr−Zr−Mn系合金粉末か
ら得られた焼結体は、本発明のA1基合金から得られる
焼結体を比べて常温及び高温における強度が劣っている
In contrast, the conventional Al-Fe-Ce shown in No. 15
Sintered bodies obtained from Al-Cr-Zr based alloy powders are inferior to Al-Cr-Zr based alloy powder sintered bodies in terms of toughness and fatigue properties. Moreover, the sintered bodies obtained from the Al-Cr-Zr-Mn alloy powders of No. 14 are inferior in strength at room temperature and high temperature compared to the sintered bodies obtained from the A1-based alloy of the present invention.

一方No、10. 11に示す焼結体と本発明のAl基
合金粉末から得られた焼結体を比較すれば明らかである
が、ZrやFeのいずれかが欠けても十分な強度が得ら
れず、又低強度に起因すると見られる疲労特性低下が認
められる。又No、9゜12.13に示した焼結体の特
性から明らかであるが、Fe及びOrの添加量が本発明
で規定する上限を超えると靭性及び疲労特性の低下が認
められる。
On the other hand, No. 10. It is clear from a comparison of the sintered body shown in No. 11 and the sintered body obtained from the Al-based alloy powder of the present invention that sufficient strength cannot be obtained even if either Zr or Fe is missing, and A decrease in fatigue properties, which appears to be due to strength, is observed. Furthermore, as is clear from the characteristics of the sintered body shown in No. 9° 12.13, when the amounts of Fe and Or added exceed the upper limit defined by the present invention, a decrease in toughness and fatigue properties is observed.

[発明の効果] 以上述べた如く本発明によれば、上記組成のAl基合金
粉末を用いることによって、常温及び高温における強度
が高く且つ十分な靭性及び疲労特性を有する優れたAl
基合金粉末焼結体が実現できる。そしてこの焼結体はコ
ンロッドの様に高温環境下で繰返し荷重を受ける各種エ
ンジン部品や高温環境下にさらされる航空機や各種飛翔
体の外装材等に最適であり、その他各種の産業機械部品
への幅広い適用が期待される。
[Effects of the Invention] As described above, according to the present invention, by using the Al-based alloy powder having the above composition, an excellent Al having high strength at room temperature and high temperature and sufficient toughness and fatigue properties can be obtained.
A base alloy powder sintered body can be realized. This sintered body is ideal for various engine parts such as connecting rods that are subjected to repeated loads in high-temperature environments, exterior materials for aircraft and various flying objects that are exposed to high-temperature environments, and is also suitable for use in various other industrial machinery parts. It is expected to have wide application.

Claims (2)

【特許請求の範囲】[Claims] (1)Zr:0.5〜2%(重量%の意味、以下同じ)
、Cr:2〜5%及びFe:0.5〜3%を必須成分と
して含むと共に、CrとFeの合計が3〜6%であり、
残部がAl及び不可避不純物からなることを特徴とする
焼結用Al基合金粉末。
(1) Zr: 0.5-2% (meaning of weight %, same below)
, Cr: 2 to 5% and Fe: 0.5 to 3% as essential components, and the total of Cr and Fe is 3 to 6%,
An Al-based alloy powder for sintering, characterized in that the remainder consists of Al and inevitable impurities.
(2)Mn:0.5〜2%、B:0.1〜0.5%、W
:0.1〜0.5%、Mo:0.5〜2%、Ti:0.
5〜2%からなる群から選択される1種又は2種以上を
合計で0.1〜2%含む請求項(1)に記載の焼結用A
l基合金粉末。
(2) Mn: 0.5-2%, B: 0.1-0.5%, W
:0.1~0.5%, Mo:0.5~2%, Ti:0.
A for sintering according to claim (1), wherein the A for sintering according to claim 1 contains a total of 0.1 to 2% of one or more selected from the group consisting of 5 to 2%.
L-based alloy powder.
JP1274989A 1989-01-21 1989-01-21 Al-base alloy powder for sintering Pending JPH02194142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274989A JPH02194142A (en) 1989-01-21 1989-01-21 Al-base alloy powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274989A JPH02194142A (en) 1989-01-21 1989-01-21 Al-base alloy powder for sintering

Publications (1)

Publication Number Publication Date
JPH02194142A true JPH02194142A (en) 1990-07-31

Family

ID=11814068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274989A Pending JPH02194142A (en) 1989-01-21 1989-01-21 Al-base alloy powder for sintering

Country Status (1)

Country Link
JP (1) JPH02194142A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007595A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material
JP2020007594A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material
JP2020007596A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material
DE102019209458A1 (en) * 2019-06-28 2020-12-31 Airbus Defence and Space GmbH Cr-rich Al alloy with high compressive and shear strength
CN112805106A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN113166856A (en) * 2018-11-02 2021-07-23 Am金属有限公司 High strength aluminum alloy for additive manufacturing of three-dimensional objects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943802A (en) * 1982-08-30 1984-03-12 マ−コ・マテリアルズ・インコ−ポレ−テツド Aluminum-transition metal alloy from quick coagulating powder and manufacture
JPS62250146A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250145A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPH01147037A (en) * 1987-12-01 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943802A (en) * 1982-08-30 1984-03-12 マ−コ・マテリアルズ・インコ−ポレ−テツド Aluminum-transition metal alloy from quick coagulating powder and manufacture
JPS62250146A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250145A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPH01147037A (en) * 1987-12-01 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007595A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material
JP2020007594A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material
JP2020007596A (en) * 2018-07-05 2020-01-16 昭和電工株式会社 Aluminum alloy material
CN112805106A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805106B (en) * 2018-10-05 2023-12-29 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN113166856A (en) * 2018-11-02 2021-07-23 Am金属有限公司 High strength aluminum alloy for additive manufacturing of three-dimensional objects
DE102019209458A1 (en) * 2019-06-28 2020-12-31 Airbus Defence and Space GmbH Cr-rich Al alloy with high compressive and shear strength

Similar Documents

Publication Publication Date Title
EP0144898B1 (en) Aluminum alloy and method for producing same
JPS63157831A (en) Heat-resisting aluminum alloy
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
EP0675209B1 (en) High strength aluminum-based alloy
US3767385A (en) Cobalt-base alloys
JPH06299280A (en) Molybdenum - rhenium alloy
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
US5169462A (en) Low density aluminum alloy for engine pistons
US4832737A (en) High temperature-resistant aluminum alloy and process for its production
JPH02194142A (en) Al-base alloy powder for sintering
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JP2711296B2 (en) Heat resistant aluminum alloy
JP2726929B2 (en) Aluminum alloy powder and aluminum alloy material for powder metallurgy
US3544394A (en) Aluminum-copper-magnesium-zinc powder metallurgy alloys
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JPS63277738A (en) Al based alloy
EP0137180B1 (en) Heat-resisting aluminium alloy
US4481034A (en) Process for producing high hafnium carbide containing alloys
JPH03264639A (en) Al alloy product having high strength at high temperature
JP2572832B2 (en) Al-based alloy powder for sintering
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
Freche et al. Continued Investigation of an Advanced-Temperature, Tantalum-Modified, Nickel-Base Alloy
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
DE3808163C2 (en) Process for the production of hardenable beta-titanium alloys