JPH0234740A - Heat-resistant aluminum alloy material and its manufacture - Google Patents

Heat-resistant aluminum alloy material and its manufacture

Info

Publication number
JPH0234740A
JPH0234740A JP63183666A JP18366688A JPH0234740A JP H0234740 A JPH0234740 A JP H0234740A JP 63183666 A JP63183666 A JP 63183666A JP 18366688 A JP18366688 A JP 18366688A JP H0234740 A JPH0234740 A JP H0234740A
Authority
JP
Japan
Prior art keywords
aluminum alloy
powder
alloy material
heat
resistant aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63183666A
Other languages
Japanese (ja)
Inventor
Hidemoto Matsumoto
松本 英幹
Minoru Hayashi
稔 林
Kisuke Asada
浅田 喜介
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP63183666A priority Critical patent/JPH0234740A/en
Publication of JPH0234740A publication Critical patent/JPH0234740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title alloy material having excellent compactibility by rapidly cooling the molten metal of an Al alloy constituted of specific compsn. at specific cooling speed into solidified powder, compacting the powder and subjecting it to age-hardening treatment at specific temp. CONSTITUTION:The molten metal of an Al alloy contg., by weight, 0.7 to 8% Cr, 0.3 to 8% Zr and 0.5 to 8% Mn, contg. one or more kinds among 0.3 to 3% Si, 0.1 to 5% Mg and 0.3 to 10% Ce, in which the total amt. of the elements to be added is regulated to <25% and the balance Al with inevitable impurities is rapidly cooled at >=10<2> deg.C/sec cooling speed and is solidified into powder having <=1mu average size of an intermetallic compound. The powder is then compacted at about <=400 deg.C and is thereafter subjected to age-hardening treatment at 300 to 500 deg.C. By this method, the heat resistant Al alloy having excellent compactibility and suitable for engine parts, etc., can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性に優れるアルミニウム合金材及び粉末冶
金法によるその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum alloy material with excellent heat resistance and a method for manufacturing the same using a powder metallurgy method.

(従来の技術) 自動車用エンジン部品、ガスタービンのインペラー、航
空機部材などの材料は100〜400℃での高温強度が
必要とされる。これらの材料をアルミニウム合金とすれ
ば、軽量化に伴う多くの利点が得られる。しかし、アル
ミニウム及びその合金は、一般に高温での強度が低い0
例えば室温での強度に優れるアルミニウム合金(AA2
018.2218.4032など)においても200°
C以上の温度では強度が著しく低下する。
(Prior Art) Materials for automobile engine parts, gas turbine impellers, aircraft parts, etc. are required to have high-temperature strength at 100 to 400°C. If these materials are aluminum alloys, many advantages associated with weight reduction can be obtained. However, aluminum and its alloys generally have low strength at high temperatures.
For example, aluminum alloy (AA2) has excellent strength at room temperature.
018.2218.4032 etc.) is also 200°
At temperatures above C, the strength decreases significantly.

これに対し、近年、アルミニウムに種々の遷移元素を多
量に添加し、溶湯を急冷IM固させて得られる粉末又は
リボン状薄帯な高温圧縮加工して耐熱性アルミニウム合
金材とするアルミニウム粉末冶金法が開発され、AJI
−8Fe−4Ce、Al−8Fe−2M0.Al1−8
Fe−2Goなどの合金材が提案されている。
In contrast, in recent years, an aluminum powder metallurgy method has been developed in which a large amount of various transition elements are added to aluminum, and the molten metal is rapidly cooled and solidified by IM, and the resulting powder or ribbon-like thin strip is subjected to high-temperature compression processing to produce a heat-resistant aluminum alloy material. was developed and AJI
-8Fe-4Ce, Al-8Fe-2M0. Al1-8
Alloy materials such as Fe-2Go have been proposed.

(発明が解決しようとする課題) しかしながら、上記AfL−8Fe−4Ce。(Problem to be solved by the invention) However, the above AfL-8Fe-4Ce.

Al−8Fe−2M0.Al1−8Fe−2Goなどの
合金は、溶湯を急冷擬固させることによって熱的に安定
な金属間化合物を微細に分散させ、それら化合物の分散
強化によって高い高温強度を得るものである。したがっ
て、急冷凝固粉末をアルミニウム粉末冶金法で成形加工
する場合、加熱による化合物の粗大化と強度低下が生じ
ないように押出加工、鍛造加工等における熱間加工温度
を低くしなければならない。しかし、これら合金は低温
での成形加工性が悪く、高い成形力が必要になるという
問題かあった。
Al-8Fe-2M0. In alloys such as Al1-8Fe-2Go, thermally stable intermetallic compounds are finely dispersed by rapidly cooling and pseudo-solidifying the molten metal, and high high-temperature strength is obtained by dispersion strengthening of these compounds. Therefore, when rapidly solidified powder is processed by aluminum powder metallurgy, the hot processing temperature during extrusion processing, forging processing, etc. must be kept low to prevent coarsening of the compound and decrease in strength due to heating. However, these alloys have problems in that they have poor formability at low temperatures and require high forming forces.

したがって、本発明の目的は成形加工性に優れる耐熱性
アルミニウム合金材及びその製造方法を提供することに
ある。
Therefore, an object of the present invention is to provide a heat-resistant aluminum alloy material with excellent formability and a method for manufacturing the same.

(課題を解決するための手段) 本発明者らは上記課題を解決するため鋭意研究を行った
結果、特定のアルミニウム合金組成の溶湯から急冷凝固
粉末を形成し、これを圧縮成形加工した後に高温で時効
処理することにより上記目的を達成しうることを見出し
、この知見に基づき本発明を完成するにいたった。
(Means for Solving the Problems) As a result of intensive research conducted by the present inventors to solve the above problems, the present inventors formed rapidly solidified powder from a molten metal of a specific aluminum alloy composition, compressed it, and then processed it to a high temperature. It was discovered that the above object could be achieved by aging treatment, and based on this knowledge, the present invention was completed.

すなわち、本発明は (1) Cr 0.7〜8重量%(以下、単に%と記す
。)、Zr0.3〜8%、Mn0.5〜8%を含み、か
つ、Si0.3〜3%、Mg0.1〜5%、Ce0.3
〜10%のうち1種又は2種以上を含み、添加元素の総
量が25%を越えない量であり、残部Alと不可避的不
純物を有してなり、金属間化合物の平均サイズが1gm
以下であることを特徴とする耐熱性アルミニウム合金材
(J!下、第1発明という)、 (2) Cr  0.7〜8%、Zr0.3〜8%、M
n005〜8%を含み、かつ、Si0.:1〜3%、M
gO11〜5%、Ce 0.:1〜10%のうち1種又
は2種以上を含み、ざらにCu 0.5〜10%、Fe
0.1〜8%、Ni0.3〜8%、Co0.1〜8%、
V0.1〜5%、w0.i〜s%、Ti0.1〜5%、
Mo0.1〜5%のうち1種又は2種以上を含み、添加
元素の総量が25%を越えない量であり、残部A!;L
と不可避的不純物を有してなり、金属間化合物の平均サ
イズが1ルm以下であることを特徴とする耐熱性アルミ
ニウム合金材(以下、第2発明という)、 (:l) Cr  0.7−8%、Zr0.3〜8%、
Mn0.5〜8%を含み、かつ、Si0.3〜3%、M
g0.1〜5%、Ce 0.3〜10%のうち1種又は
2種以上を含み、添加元素の総量が25%を越えない量
であり、残部Alと不可避的不純物を有してなるアルミ
ニウム合金溶湯から102℃/sec以上の冷却速度で
急冷凝固粉末を形成し、これを圧縮成形加工した後に3
00〜soo’cで時効硬化処理を行うことを特徴とす
る耐熱性アルミニウム合金材の製造方法(以下、第3発
明という)及び(4) Cr  0.7〜8%、Zr0
j〜8%、Mn0.5〜8%を含み、かつ、Si0.3
〜3%、Mg0.i〜s%、Ce 0.3〜10%のう
ち1種又は2種以上を含み、ざらにCu 0.5〜10
%、Fe0.1〜8%、Ni0.3〜8%、Co0.1
〜8%、V0.1〜5%、W0.1〜5%、Ti0.1
〜5%、Mo0.1〜5%のうち1種又は2種以上を含
み、添加元素の総量が25%を越えない量であり、残部
Alと不可避的不純物を有してなるアルミニウム合金溶
湯から102°(:/sec以上の冷却速度で急冷!2
固粉末を形成し、これを圧縮成形加工した後に300〜
500℃で時効硬化処理を行うことな特徴とする耐熱性
アルミニウム合金材の製造方法(以下、第4発明という
) を提供するものである。
That is, the present invention includes (1) 0.7 to 8% by weight of Cr (hereinafter simply referred to as %), 0.3 to 8% of Zr, 0.5 to 8% of Mn, and 0.3 to 3% of Si. , Mg0.1-5%, Ce0.3
~10%, the total amount of added elements does not exceed 25%, the balance is Al and unavoidable impurities, and the average size of the intermetallic compound is 1 gm
A heat-resistant aluminum alloy material characterized by the following (J! below, referred to as the first invention): (2) Cr 0.7-8%, Zr 0.3-8%, M
n005 to 8%, and Si0. :1~3%, M
gO11-5%, Ce 0. : Contains one or more of 1 to 10%, Cu 0.5 to 10%, Fe
0.1-8%, Ni0.3-8%, Co0.1-8%,
V0.1-5%, w0. i~s%, Ti0.1~5%,
Contains one or more of Mo0.1 to 5%, the total amount of added elements does not exceed 25%, and the remainder is A! ;L
A heat-resistant aluminum alloy material (hereinafter referred to as the second invention) characterized in that it has inevitable impurities and the average size of the intermetallic compound is 1 lm or less, (:l) Cr 0.7 -8%, Zr0.3-8%,
Contains 0.5-8% Mn, and 0.3-3% Si, M
Contains one or more of g0.1 to 5% and Ce 0.3 to 10%, the total amount of added elements does not exceed 25%, and the balance is Al and unavoidable impurities. Rapidly solidified powder is formed from molten aluminum alloy at a cooling rate of 102°C/sec or more, and after compression molding,
A method for producing a heat-resistant aluminum alloy material characterized by performing an age hardening treatment at 00 to soo'c (hereinafter referred to as the third invention) and (4) Cr 0.7 to 8%, Zr0
j~8%, Mn0.5~8%, and Si0.3
~3%, Mg0. Contains one or more of i to s%, Ce 0.3 to 10%, and roughly Cu 0.5 to 10
%, Fe0.1-8%, Ni0.3-8%, Co0.1
~8%, V0.1~5%, W0.1~5%, Ti0.1
5%, Mo 0.1 to 5%, the total amount of added elements does not exceed 25%, and the balance is Al and inevitable impurities. Rapid cooling at a cooling rate of 102° (:/sec or more!2
After forming a solid powder and compression molding it,
The present invention provides a method for producing a heat-resistant aluminum alloy material (hereinafter referred to as the fourth invention) characterized in that an age hardening treatment is performed at 500°C.

本発明によるアルミニウム合金材中の各成分の作用及び
その含有量を限定した理由は次の通りである。
The action of each component in the aluminum alloy material according to the present invention and the reason for limiting its content are as follows.

第1、第2、第3及び第4発明において、Crの含有量
は0.7〜8%とし、Zrの含′#量は0.3〜8%と
し、Mnの含有量は0.5〜8%とする。Cr、Zr、
Mnは急冷凝固時にその大部分か/Ml中に固溶し、成
形加工後300〜500°Cで所定の時間時効硬化処理
を行うことによって微細な金属間化合物として析出し、
室温強度及び高温強度を高める作用をする。この作用は
Cr、Zr及びMnの含有量がそれぞれの下限よりも少
ない場合は十分ではなく、Cr、Zr及びMnの含有量
がそれぞれの上限を越えるとその作用の度合が飽和する
ばかりでなく、急冷凝固時に固溶しきれず晶出する化合
物が多くなり加工性を低下させる。
In the first, second, third and fourth inventions, the Cr content is 0.7 to 8%, the Zr content is 0.3 to 8%, and the Mn content is 0.5%. ~8%. Cr, Zr,
Most of Mn is dissolved in solid solution in Ml during rapid solidification, and is precipitated as fine intermetallic compounds by performing age hardening treatment at 300 to 500 °C for a predetermined time after forming.
It acts to increase room temperature strength and high temperature strength. This effect is not sufficient when the contents of Cr, Zr, and Mn are less than their respective lower limits, and when the contents of Cr, Zr, and Mn exceed their respective upper limits, the degree of this effect not only becomes saturated, but also During rapid cooling and solidification, many compounds cannot be dissolved and crystallize, reducing processability.

第1、第2、第3及び第4発明においてSi、Mg、C
eを、Si 013〜3%、Mg0.1〜5%、Ce0
.3〜10%の範囲の含有量で1種又は2種以上複合添
加する。Siは成形加工後に行う時効硬化処理時のCr
、Zr及びMnの析出を促進させ、さらに析出物を微細
にする作用がある。この作用はSi含有量が0.3%よ
りも少ない場合は十分ではなく、Si含有量か3%を越
えるとその作用が飽和する。MgはC「、Zr、Mnと
同様に急冷凝固時にへ文中に固溶し、成形圧縮加工後の
時効硬化処理で微細に析出し強度を高める作用がある。
In the first, second, third and fourth inventions, Si, Mg, C
e, Si013~3%, Mg0.1~5%, Ce0
.. One type or a combination of two or more types is added at a content in the range of 3 to 10%. Si is Cr during the age hardening treatment performed after molding.
, Zr, and Mn, and has the effect of making the precipitates finer. This effect is not sufficient when the Si content is less than 0.3%, and the effect is saturated when the Si content exceeds 3%. Like C, Zr, and Mn, Mg forms a solid solution in the steel during rapid solidification, and precipitates finely during the age hardening treatment after molding and compression processing, which has the effect of increasing strength.

この作用はMgの含有量が091%より少ない場合は十
分ではなく、Mgの含有量が5%を越えるとその作用か
飽和する。Ceは時効処理時の析出物を微細化し強度を
高める作用がある。この作用はCe含有量が0.3%よ
りも少ない場合は十分ではなく、Ca含有量が10%を
越えるとその作用が飽和する。
This effect is not sufficient when the Mg content is less than 0.91%, and the effect is saturated when the Mg content exceeds 5%. Ce has the effect of making precipitates finer during aging treatment and increasing strength. This effect is not sufficient when the Ce content is less than 0.3%, and the effect is saturated when the Ca content exceeds 10%.

また第2及び第4発明において、Cu、Fe、Ni、C
0.V、W、Ti、MoをCu 0.5〜lO%、 F
e0.1〜8  %、 Ni0.3〜8  %、 Co
0.1〜8 %、V0.1〜5  %、 W0.1〜5
  %、 Ti  0.1〜5%、Mo0.1〜5%の
範囲の含有量て1種または2種以上含有する。
Further, in the second and fourth inventions, Cu, Fe, Ni, C
0. V, W, Ti, Mo with Cu 0.5~1O%, F
e0.1~8%, Ni0.3~8%, Co
0.1~8%, V0.1~5%, W0.1~5
%, Ti 0.1 to 5%, and Mo 0.1 to 5%.

CuはMg同様八へ中に固溶し、成形加工後の圧縮成形
加工後の時効硬化処理で微細に析出し強度を高める作用
かある。この作用はCu含有量か下限よりも少ない場合
は十分ではなく、Cu含有量が上限を越えるとその作用
が飽和する。Fe、Ni、C0.V、W、Ti、Moは
溶湯の急冷凝固時に熱的に安定な金属間化合物として微
細に分散し、高温強度を高める作用がある。この作用は
Fe、N i、C0.V、W、Ti、Moの含有量がそ
れぞれの下限より少ない場合は十分てはなく、それぞれ
の含有量が上限を越えるとその作用が飽和するばかりで
はなく、成形加工性が低下する。
Cu, like Mg, is dissolved in solid solution in the steel, and is finely precipitated during the age hardening treatment after compression molding after molding, and has the effect of increasing strength. This effect is not sufficient when the Cu content is less than the lower limit, and the effect is saturated when the Cu content exceeds the upper limit. Fe, Ni, C0. V, W, Ti, and Mo are finely dispersed as thermally stable intermetallic compounds during rapid solidification of the molten metal, and have the effect of increasing high-temperature strength. This effect is caused by Fe, Ni, C0. When the content of V, W, Ti, and Mo is less than the respective lower limit, it is not sufficient, and when each content exceeds the upper limit, not only the effect is saturated, but also the moldability is reduced.

また本発明において、添加元素の総量は25%を越えな
い量とする。添加元素の総量が25%を越えるとその作
用が飽和するばかりでなく成形加工性が低下する。
Further, in the present invention, the total amount of added elements does not exceed 25%. If the total amount of added elements exceeds 25%, not only will their effects become saturated, but moldability will deteriorate.

またAJI中にBe、B、Na、Ca等の不可避不純物
か0.5〜500pμm含まれていてもその特性に影響
を受けない。
Further, even if 0.5 to 500 p.mu.m of unavoidable impurities such as Be, B, Na, and Ca are contained in AJI, the characteristics are not affected.

次に、本発明において上記組成を有するアルミニウム合
金の金属間化合物の平均サイズは1μm以下とする。
Next, in the present invention, the average size of the intermetallic compounds in the aluminum alloy having the above composition is 1 μm or less.

第3及び第4発明において、アルミニウム合金材の製造
に当たり、上記組成を有するアルミニウム合金溶湯から
102°(/sec以上の冷却速度で急冷凝固粉末を形
成し、これを圧縮加工した後に300〜500°Cで時
効硬化処理を行う。
In the third and fourth inventions, in manufacturing the aluminum alloy material, rapidly solidified powder is formed from the molten aluminum alloy having the above composition at a cooling rate of 102°/sec or more, and after compression processing, the powder is compressed at 300-500°. Age hardening treatment is performed at C.

溶湯の冷却速度か102°C/see未満であるとCr
、Zr、Mn、Mg、CuはAl中に十分に固溶しなく
なり、Fe、Ni、C0.V、W、Ti、Moか形成す
る金属間化合物の平均サイズが1μmを越えて粗大化し
、加工性及び強度が低下する。なお、工02°C/se
c以上の冷却速度が達成される急冷凝固法にはアトマイ
ズ法、急冷ロール法、メルトスピニング法などがあるが
、これらの何れの方法を用いても問題はない。
If the cooling rate of the molten metal is less than 102°C/see, Cr
, Zr, Mn, Mg, and Cu are no longer sufficiently dissolved in Al, and Fe, Ni, C0. The average size of the intermetallic compounds formed by V, W, Ti, and Mo becomes coarse, exceeding 1 μm, and the workability and strength decrease. In addition, the engineering temperature is 02°C/se
Examples of rapid solidification methods that achieve a cooling rate of c or more include an atomization method, a rapid cooling roll method, and a melt spinning method, and there is no problem in using any of these methods.

急冷凝固粉末の圧縮成形温度は400″C以下とするの
が好ましい0本発明合金材は急冷凝固法を用いてCr、
Zr、Mn、Mg、Cuを過飽和に固溶させることによ
って成形加工性の良い凝固材とし、これを成形加工した
後に析出処理を行って高強度とするものであるから、成
形加工温度が高くなりすぎるとその予熱時に析出か生じ
てしまい、加工性が低下してしまう。したがって、成形
加工温度は析出が進行しない温度とし、その予熱時間は
できる限り短時間とするのが好ましい。
The compression molding temperature of the rapidly solidified powder is preferably 400"C or less. The alloy material of the present invention is made of Cr, Cr,
By making Zr, Mn, Mg, and Cu into a supersaturated solid solution, it is made into a solidified material with good moldability, and after being molded, precipitation treatment is performed to give it high strength, so the molding temperature is high. If the temperature is too high, precipitation may occur during preheating, resulting in reduced workability. Therefore, it is preferable that the molding temperature be set to a temperature at which precipitation does not proceed, and that the preheating time be as short as possible.

次に、成形加工後に行う時効硬化処理する温度か300
°Cより低い場合析出速度が低くピーク強度を得るため
の処理時間が数十時間以上と著しく長くなり、生産性を
低下させる。処理温度か500°Cより高い場合は析出
速度か大きく処理時間か30分以下と短くなりすぎるた
め、そのピーク強度を得る時間の制御が困難となる。
Next, the temperature for age hardening treatment performed after molding is 300℃.
If the temperature is lower than .degree. C., the precipitation rate is low and the processing time to obtain the peak strength is significantly long, several tens of hours or more, resulting in a decrease in productivity. If the treatment temperature is higher than 500°C, the precipitation rate will be high and the treatment time will be too short to 30 minutes or less, making it difficult to control the time to obtain the peak intensity.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例 第1表に示す化学組成を有するA文合金(試料N0.1
〜20)溶湯からArガスアトマイズ法によって平均粒
径70μmの粉末を製造した。アトマイズ法における冷
却速度はlO〜104℃/secてあった。
Example A alloy having the chemical composition shown in Table 1 (sample No. 0.1)
~20) Powder with an average particle size of 70 μm was produced from the molten metal by Ar gas atomization. The cooling rate in the atomization method was 10 to 104°C/sec.

得られた各合金粉末を用いてそれぞれ冷間予備成形(真
密度の80%まで圧縮、直径100mm、iさ200m
m)→アルミニウム缶封入→高温真空脱ガス(300℃
)→熱間プレス成形(真密度まで)→外削・脱缶の工程
により、直径80mm、長さ150mmのビレットを作
製し、これを300℃の温度で押出し、直径30mmの
押出棒とした。この押出操作におけるビレットにかかる
面圧を測定した。
Each of the obtained alloy powders was cold preformed (compressed to 80% of true density, diameter 100 mm, i.d. 200 m).
m) → Aluminum can enclosure → High temperature vacuum degassing (300℃
)→Hot press molding (up to true density)→External cutting/decanning to produce a billet with a diameter of 80 mm and a length of 150 mm, which was extruded at a temperature of 300° C. to form an extruded rod with a diameter of 30 mm. The surface pressure applied to the billet during this extrusion operation was measured.

次に、合金試料N0.1〜17の押出棒ついて400℃
の温度でピーク強度となる所要の時間(1〜3時間)時
効硬化処理を行った。
Next, the extruded rods of alloy samples No. 1 to 17 were heated to 400°C.
Age hardening treatment was performed for the required time (1 to 3 hours) to reach peak strength at a temperature of .

以上のようにして得られた各合金押出試料にっいて透過
型電子顕微鏡を用いて金属間化合物の平均サイズを測定
し、引張試験機を用いて室温及び300″C(保持時間
100時間)における機械的性質を測定した。結果を第
2表に示す。
The average size of intermetallic compounds in each alloy extrusion sample obtained as described above was measured using a transmission electron microscope, and the Mechanical properties were measured and the results are shown in Table 2.

/ 第2表の結果から明らかなように、本発明のアルミニウ
ム合金材(試料N091〜17)は金属間化合物の平均
サイズがIJLm以下であり、押出時の面圧は比較例(
試料N0.18〜20)に比べて極めて低く、押出成形
性に優れており、室温及び高温強度は比較例のそれと同
等又はまたはそれ以上である。すなわち、本発明合金材
は成形加工性に優れ、高温強度(耐熱強度)に優れてい
る。
/ As is clear from the results in Table 2, the average size of intermetallic compounds in the aluminum alloy materials of the present invention (samples N091 to 17) is IJLm or less, and the surface pressure during extrusion is equal to that of the comparative example (
The extrusion moldability is extremely low compared to samples No. 0.18 to 20), and the room temperature and high temperature strengths are equal to or higher than those of the comparative examples. That is, the alloy material of the present invention has excellent moldability and high temperature strength (heat resistance strength).

(発明の効果) 本発明によれば、急冷凝固粉末法により耐熱強度を必要
とするエンジン部品、タービン・インペラー、航空機部
材などに好適な耐熱性アルミニウム合金材を得ることが
できる。本発明のアルミニウム合金材は成形加工性に優
れ、上記部品ないしは部材の軽量化とともに量産及びコ
スト低下に顕著な優れた効果を奏する。
(Effects of the Invention) According to the present invention, a heat-resistant aluminum alloy material suitable for engine parts, turbine impellers, aircraft parts, etc. that require heat-resistant strength can be obtained by a rapidly solidified powder method. The aluminum alloy material of the present invention has excellent moldability and has remarkable effects on reducing the weight of the above-mentioned parts or members, as well as mass production and cost reduction.

Claims (4)

【特許請求の範囲】[Claims] (1)Cr 0.7〜8%、Zr 0.3〜8%、Mn
 0.5〜8%を含み、かつ、Si 0.3〜3%、M
g 0.1〜5%、Ce 0.3〜10%のうち1種又
は2種以上を含み、添加元素の総量が25%を越えない
量(以上%は重量%を示す。)であり、残部Alと不可
避的不純物を有してなり、金属間化合物の平均サイズが
1μm以下であることを特徴とする耐熱性アルミニウム
合金材。
(1) Cr 0.7-8%, Zr 0.3-8%, Mn
Contains 0.5-8%, and Si 0.3-3%, M
Contains one or more of g 0.1 to 5% and Ce 0.3 to 10%, and the total amount of added elements does not exceed 25% (the above % indicates weight %), A heat-resistant aluminum alloy material, characterized in that the balance is Al and unavoidable impurities, and the average size of intermetallic compounds is 1 μm or less.
(2)Cr 0.7〜8%、Zr 0.3〜8%、Mn
 0.5〜8%を含み、かつ、Si 0.3〜3%、M
g 0.1〜5%、Ce 0.3〜10%のうち1種又
は2種以上を含み、さらにCu 0.5〜10%、Fe
 0.1〜8%、Ni 0.3〜8%、Co 0.1〜
8%、V 0.1〜5%、W 0.1〜5%、Ti 0
.1〜5%、Mo 0.1〜5%のうち1種又は2種以
上を含み、添加元素の総量が25%を越えない量(以上
%は重量%を示す。)であり、残部Alと不可避的不純
物を有してなり、金属間化合物の平均サイズが1μm以
下であることを特徴とする耐熱性アルミニウム合金材。
(2) Cr 0.7-8%, Zr 0.3-8%, Mn
Contains 0.5-8%, and Si 0.3-3%, M
Contains one or more of g 0.1 to 5%, Ce 0.3 to 10%, and further Cu 0.5 to 10%, Fe
0.1-8%, Ni 0.3-8%, Co 0.1-8%
8%, V 0.1-5%, W 0.1-5%, Ti 0
.. 1 to 5%, Mo 0.1 to 5%, the total amount of added elements does not exceed 25% (the above % indicates weight %), and the balance is Al and A heat-resistant aluminum alloy material containing unavoidable impurities and having an average size of intermetallic compounds of 1 μm or less.
(3)Cr 0.7〜8%、Zr 0.3〜8%、Mn
 0.5〜8%を含み、かつ、Si 0.3〜3%、M
g 0.1〜5%、Ce 0.3〜10%のうち1種又
は2種以上を含み、添加元素の総量が25%を越えない
量(以上%は重量%を示す。)であり、残部Alと不可
避的不純物を有してなるアルミニウム合金溶湯から10
^2℃/sec以上の冷却速度で急冷凝固粉末を形成し
、これを圧縮成形加工した後に300〜500℃で時効
硬化処理を行うことを特徴とする耐熱性アルミニウム合
金材の製造方法。
(3) Cr 0.7-8%, Zr 0.3-8%, Mn
Contains 0.5-8%, and Si 0.3-3%, M
Contains one or more of g 0.1 to 5% and Ce 0.3 to 10%, and the total amount of added elements does not exceed 25% (the above % indicates weight %), 10 from a molten aluminum alloy containing the balance Al and unavoidable impurities
A method for producing a heat-resistant aluminum alloy material, which comprises forming a rapidly solidified powder at a cooling rate of ^2°C/sec or more, compression molding the powder, and then subjecting it to age hardening at 300 to 500°C.
(4)Cr 0.7〜8%、Zr 0.3〜8%、Mn
 0.5〜8%を含み、かつ、Si 0.3〜3%、M
g 0.1〜5%、Ce 0.3〜10%のうち1種又
は2種以上を含み、さらにCu 0.5〜10%、Fe
 0.1〜8%、Ni 0.3〜8%、Co 0.1〜
8%、V 0.1〜5%、W 0.1〜5%、Ti 0
.1〜5%、Mo 0.1〜5%のうち1種又は2種以
上を含み、添加元素の総量が25%を越えない量(以上
%は重量%を示す。)であり、残部Alと不可避的不純
物を有してなるアルミニウム合金溶湯から10^2℃/
sec以上の冷却速度で急冷凝固粉末を形成し、これを
圧縮成形加工した後に300〜500℃で時効硬化処理
を行うことを特徴とする耐熱性アルミニウム合金材の製
造方法。
(4) Cr 0.7-8%, Zr 0.3-8%, Mn
Contains 0.5-8%, and Si 0.3-3%, M
Contains one or more of g 0.1 to 5%, Ce 0.3 to 10%, and further Cu 0.5 to 10%, Fe
0.1-8%, Ni 0.3-8%, Co 0.1-8%
8%, V 0.1-5%, W 0.1-5%, Ti 0
.. 1 to 5%, Mo 0.1 to 5%, the total amount of added elements does not exceed 25% (the above % indicates weight %), and the balance is Al and From molten aluminum alloy containing unavoidable impurities to 10^2℃/
A method for producing a heat-resistant aluminum alloy material, which comprises forming a rapidly solidified powder at a cooling rate of sec or more, compression molding the powder, and then subjecting the powder to an age hardening treatment at 300 to 500°C.
JP63183666A 1988-07-25 1988-07-25 Heat-resistant aluminum alloy material and its manufacture Pending JPH0234740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183666A JPH0234740A (en) 1988-07-25 1988-07-25 Heat-resistant aluminum alloy material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183666A JPH0234740A (en) 1988-07-25 1988-07-25 Heat-resistant aluminum alloy material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0234740A true JPH0234740A (en) 1990-02-05

Family

ID=16139805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183666A Pending JPH0234740A (en) 1988-07-25 1988-07-25 Heat-resistant aluminum alloy material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0234740A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273935A (en) * 1988-09-08 1990-03-13 Honda Motor Co Ltd High strength aluminum alloy for machine structural body
JPH03264639A (en) * 1990-03-12 1991-11-25 Kubota Corp Al alloy product having high strength at high temperature
JPH046240A (en) * 1990-04-25 1992-01-10 Kubota Corp Al alloy material excellent in high temperature fatigue strength
JPH0525575A (en) * 1990-11-19 1993-02-02 Inco Alloys Internatl Inc High temperature aluminum alloy
JPH05140688A (en) * 1991-11-21 1993-06-08 Kubota Corp Al alloy material excellent in high temperature fatigue strength
EP0908527A1 (en) * 1997-10-08 1999-04-14 ALUMINIUM RHEINFELDEN GmbH Aluminium casting alloy
EP0911420A1 (en) * 1997-10-08 1999-04-28 ALUMINIUM RHEINFELDEN GmbH Aluminium casting alloy
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY
WO2015041867A1 (en) 2013-09-19 2015-03-26 United Technologies Corporation Age hardenable dispersion strengthened aluminum alloys
CN109680193A (en) * 2019-03-01 2019-04-26 中南大学 A kind of 6 ××× line aluminium alloy aging thermal treating process
EP3739073A1 (en) * 2013-07-10 2020-11-18 United Technologies Corporation Aluminum alloys and manufacture methods
DE102019209458A1 (en) * 2019-06-28 2020-12-31 Airbus Defence and Space GmbH Cr-rich Al alloy with high compressive and shear strength

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116352A (en) * 1982-09-03 1984-07-05 アルカン・インタ−ナシヨナル・リミテイド Structural aluminum base alloy
JPS6274042A (en) * 1985-09-18 1987-04-04 フエアアイニヒテ・アルミニウム−ヴエルケ・アクチエンゲゼルシヤフト Highly heat resistant aluminum alloy, its production and production of aluminum object
JPS6483637A (en) * 1987-09-25 1989-03-29 Toyo Aluminium Kk Aluminum alloy material for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116352A (en) * 1982-09-03 1984-07-05 アルカン・インタ−ナシヨナル・リミテイド Structural aluminum base alloy
JPS6274042A (en) * 1985-09-18 1987-04-04 フエアアイニヒテ・アルミニウム−ヴエルケ・アクチエンゲゼルシヤフト Highly heat resistant aluminum alloy, its production and production of aluminum object
JPS6483637A (en) * 1987-09-25 1989-03-29 Toyo Aluminium Kk Aluminum alloy material for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273935A (en) * 1988-09-08 1990-03-13 Honda Motor Co Ltd High strength aluminum alloy for machine structural body
JPH03264639A (en) * 1990-03-12 1991-11-25 Kubota Corp Al alloy product having high strength at high temperature
JPH046240A (en) * 1990-04-25 1992-01-10 Kubota Corp Al alloy material excellent in high temperature fatigue strength
JPH0525575A (en) * 1990-11-19 1993-02-02 Inco Alloys Internatl Inc High temperature aluminum alloy
JPH05140688A (en) * 1991-11-21 1993-06-08 Kubota Corp Al alloy material excellent in high temperature fatigue strength
EP0911420A1 (en) * 1997-10-08 1999-04-28 ALUMINIUM RHEINFELDEN GmbH Aluminium casting alloy
EP0908527A1 (en) * 1997-10-08 1999-04-14 ALUMINIUM RHEINFELDEN GmbH Aluminium casting alloy
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY
EP3739073A1 (en) * 2013-07-10 2020-11-18 United Technologies Corporation Aluminum alloys and manufacture methods
WO2015041867A1 (en) 2013-09-19 2015-03-26 United Technologies Corporation Age hardenable dispersion strengthened aluminum alloys
EP3047043A4 (en) * 2013-09-19 2017-04-26 United Technologies Corporation Age hardenable dispersion strengthened aluminum alloys
US10508321B2 (en) 2013-09-19 2019-12-17 United Technologies Corporation Age hardenable dispersion strengthened aluminum alloys
CN109680193A (en) * 2019-03-01 2019-04-26 中南大学 A kind of 6 ××× line aluminium alloy aging thermal treating process
CN109680193B (en) * 2019-03-01 2020-12-11 中南大学 6 xxx series aluminum alloy aging heat treatment process
DE102019209458A1 (en) * 2019-06-28 2020-12-31 Airbus Defence and Space GmbH Cr-rich Al alloy with high compressive and shear strength

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS627828A (en) Al alloy with high li and si content and its production
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy
JP5287171B2 (en) Aluminum alloy and method for producing the same
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH01316434A (en) Heat-resistant aluminum alloy material and its manufacture
EP0137180B1 (en) Heat-resisting aluminium alloy
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JPH02194142A (en) Al-base alloy powder for sintering
JPH0234738A (en) Heat-resistant aluminum alloy material and its manufacture
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
RU2819677C1 (en) Method of producing deformed semi-finished products from aluminium alloy
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture