JP2007039748A - HEAT RESISTANT Al-BASED ALLOY - Google Patents

HEAT RESISTANT Al-BASED ALLOY Download PDF

Info

Publication number
JP2007039748A
JP2007039748A JP2005225758A JP2005225758A JP2007039748A JP 2007039748 A JP2007039748 A JP 2007039748A JP 2005225758 A JP2005225758 A JP 2005225758A JP 2005225758 A JP2005225758 A JP 2005225758A JP 2007039748 A JP2007039748 A JP 2007039748A
Authority
JP
Japan
Prior art keywords
intermetallic compound
based alloy
alloy
elements
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225758A
Other languages
Japanese (ja)
Other versions
JP4764094B2 (en
Inventor
Katsura Kajiwara
桂 梶原
Toshiaki Takagi
敏晃 高木
Hideo Hatake
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005225758A priority Critical patent/JP4764094B2/en
Publication of JP2007039748A publication Critical patent/JP2007039748A/en
Application granted granted Critical
Publication of JP4764094B2 publication Critical patent/JP4764094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight heat resistant Al-based alloy having excellent heat resistant strength and wear resistance. <P>SOLUTION: The Al-based alloy has a composition consisting of 15 to 35%, in total, of 5 to 15% Zr, 1 to 8% Fe, 1 to 8% Cr, 1 to 8% Mn, 0.5 to 5% Ti, 0.5 to 5% Ni, 0.5 to 5% Si and 0.5 to 5% V and the balance Al with inevitable impurities. The structure of the Al-based alloy consists of, by volume fraction, 35 to 80% intermetallic compound phase and the balance Al matrix. The above intermetallic compound phase contains Al-Zr intermetallic compound phase, and one or more elements among the above Fe, Cr, Mn, Ti, Ni, Si, and V are allowed to enter into solid solution in the Al-Zr intermetallic compound phase and the total of these elements in the state of solid solutions is made to ≥7 mass%. In this way, heat resistant strength and wear resistance can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐磨耗性、剛性とに優れたAl基合金であって、自動車や航空機などのエンジン部品(ピストン、コンロッド)などの用途の内、300〜400℃程度までの耐熱強度(高温強度とも言う)と軽量性を要求される機械部品に用いて好適な、耐熱性Al基合金に関するものである。   The present invention is an Al-based alloy that is excellent in wear resistance and rigidity, and has a heat resistance strength (high temperature) of about 300 to 400 ° C. among applications such as engine parts (pistons, connecting rods) of automobiles and aircrafts. It also relates to a heat-resistant Al-based alloy suitable for use in machine parts that are required to be lightweight.

従来の溶解鋳造合金では、Al−Cu系合金(2618などの2000系Al合金)を始め、種々の耐熱合金が開発されているが、使用温度が150℃を超える高温下では、十分な耐熱強度を得ることができなかった。Al−Cu系合金では時効硬化による微細析出物で強度を確保しているため、使用温度が150℃を超えると、この析出物相が粗大化し、著しく強度が低下するからである。   Various heat-resistant alloys such as Al-Cu alloys (2000-type Al alloys such as 2618) have been developed as conventional melt-cast alloys. However, sufficient heat-resistant strength is achieved at high temperatures exceeding 150 ° C. Could not get. This is because Al—Cu-based alloys ensure strength with fine precipitates obtained by age hardening, and therefore, when the use temperature exceeds 150 ° C., the precipitate phase becomes coarse and the strength is significantly reduced.

そこで、従来から、急冷凝固法を適用したAl基合金が開発されてきた。急冷凝固法の一つである急冷粉末冶金法によれば、Fe、Cr、Mn、Ni、Ti、Zrなどの合金元素の添加量を、前記溶解鋳造Al合金よりも増すことができる。したがって、これら合金元素を多量に添加したAl合金を急冷凝固によって粉末化し、これを固化成型することで、使用温度が150℃を超える高温下でも、耐熱強度に優れたAl基合金を得ることができる(特許文献1、2参照)。これは、前記合金元素によって、高温でも安定なAlとの金属間化合物を組織中に分散させて、耐熱強度を高くしている。   Thus, conventionally, Al-based alloys to which the rapid solidification method is applied have been developed. According to the rapid powder metallurgy method, which is one of the rapid solidification methods, the amount of addition of alloy elements such as Fe, Cr, Mn, Ni, Ti, Zr, etc. can be increased as compared with the melt cast Al alloy. Therefore, an Al alloy containing a large amount of these alloy elements is pulverized by rapid solidification and solidified and molded to obtain an Al-based alloy having excellent heat resistance even at high temperatures exceeding 150 ° C. Yes (see Patent Documents 1 and 2). This is because the alloy element disperses an intermetallic compound with Al that is stable even at a high temperature in the structure, thereby increasing the heat resistance strength.

更に、前記金属間化合物の微細化により、金属間化合物の分率を増加させ、高強度化を図る技術も提案されている(特許文献3参照)。   Furthermore, a technique for increasing the strength by increasing the fraction of the intermetallic compound by miniaturizing the intermetallic compound has been proposed (see Patent Document 3).

また、急冷凝固法の一つであるスプレイフォーミング法による、Fe、V、Mo、Zr、Tiなどの合金元素を添加し、これら合金元素とAlとの金属間化合物を微細化させた、軽量化耐熱Al基合金も開発されており、過剰のSiを添加し、初晶のSiを微細化させて、耐磨耗性を兼備させた高強度Al基合金も開発されている(特許文献4参照)。   In addition, alloying elements such as Fe, V, Mo, Zr, and Ti are added by spray forming, which is one of the rapid solidification methods, and the intermetallic compound between these alloying elements and Al is refined to reduce weight. A heat-resistant Al-based alloy has also been developed, and a high-strength Al-based alloy that also has wear resistance has been developed by adding excess Si and refining primary crystal Si (see Patent Document 4). ).

更に、上記以外の種々の合金元素を添加して非晶質化させた耐熱Al基合金(特許文献5参照)や、2種以上の遷移元素を添加した過飽和固溶体からなるマトリックス中に準結晶を均一分散させた耐熱Al基合金(特許文献6参照)や、Al−Fe系急冷凝固Al基合金を熱間押出加工し、更に熱間鍛造加工した羽根車なども提案されている(特許文献7参照)。
特許2911708号公報(全文) 特公平7−62189号公報(全文) 特開平5−195130号公報(全文) 特開平9−125180号公報(全文) 特公平6−21326号公報(全文) 特許第3142659号公報(全文) 特開平10−26002号公報(全文)
Furthermore, a quasicrystal is formed in a matrix made of a heat-resistant Al-based alloy (see Patent Document 5) made amorphous by adding various alloy elements other than the above, and a supersaturated solid solution added with two or more transition elements. A heat-dispersed Al-based alloy (see Patent Document 6) uniformly dispersed, an impeller obtained by hot extrusion of an Al—Fe-based rapidly solidified Al-based alloy and further hot forging have been proposed (Patent Document 7). reference).
Japanese Patent No. 2911708 (full text) Japanese Patent Publication No. 7-62189 (full text) Japanese Patent Laid-Open No. 5-195130 (full text) JP-A-9-125180 (full text) Japanese Patent Publication No. 6-21326 (full text) Japanese Patent No. 3142659 (full text) Japanese Patent Laid-Open No. 10-26002 (full text)

前記特許文献1〜7などの急冷粉末冶金法によれば、合金元素の添加量を増せば、Al基合金の耐熱強度を高くできる(約300℃で300MPaレベル)。しかし、合金元素の添加量を増加し過ぎると、金属間化合物サイズの粗大化を招くため、耐摩耗性が必要な構造材においては、この粗大な化合物から、チッピングを起こし、耐摩耗性を低下させる。   According to the quenching powder metallurgy method such as Patent Documents 1 to 7, the heat resistance strength of the Al-based alloy can be increased (the level of 300 MPa at about 300 ° C.) by increasing the addition amount of the alloy element. However, if the amount of alloying elements added is increased too much, the size of intermetallic compounds will be increased, so in structural materials that require wear resistance, chipping will occur from these coarse compounds and the wear resistance will be reduced. Let

また、これらAl基合金は、金属Alマトリックスと金属間化合物相とで構成され、軟らかい金属Alマトリックス中に、硬い金属間化合物相が分散した、分散強化型組織となっている。   These Al-based alloys are composed of a metal Al matrix and an intermetallic compound phase, and have a dispersion strengthened structure in which a hard intermetallic compound phase is dispersed in a soft metal Al matrix.

このような分散強化型組織においては、金属Alマトリックスの強度が比較的低いために、耐熱強度と軽量性を要求される機械部品に使用された場合、硬い金属間化合物相を表面に保持できず、耐摩耗性や剛性が低下するという問題もある。   In such a dispersion strengthened structure, the strength of the metal Al matrix is relatively low, so when used in machine parts that require heat resistance and light weight, a hard intermetallic compound phase cannot be retained on the surface. There is also a problem that wear resistance and rigidity are lowered.

本発明は、かかる問題に鑑みなされたもので、耐熱強度と耐磨耗性とに優れた耐熱性Al基合金を提供することを目的とする。   This invention is made | formed in view of this problem, and it aims at providing the heat resistant Al group alloy excellent in heat resistance strength and abrasion resistance.

この目的を達成するために、本発明の耐磨耗性と剛性とに優れた耐熱性Al基合金の要旨は、質量%にて、Zr :5〜15%、Fe:1〜8%、Cr:1〜8%、Mn:1〜8%、Ti:0.5〜5%、Ni:0.5〜5%、Si:0.5〜5%、V:0.5〜5%を各々含み、かつ、これらの元素の含有量の総和が15〜35%であり、残部がAlおよび不可避的不純物からなるAl基合金であって、このAl基合金組織が体積分率で35〜80%の金属間化合物相と残部が金属Alマトリックスとで構成され、前記金属間化合物相組織中に、Al−Zr系の金属間化合物相を有するとともに、このAl−Zr系の金属間化合物相に前記Fe、Cr、Mn、Ti、Ni、Si、V、の1種以上が固溶しており、これら固溶した元素の総和が7質量%以上であることとする。   In order to achieve this object, the gist of the heat-resistant Al-based alloy having excellent wear resistance and rigidity according to the present invention is, in mass%, Zr: 5-15%, Fe: 1-8%, Cr : 1-8%, Mn: 1-8%, Ti: 0.5-5%, Ni: 0.5-5%, Si: 0.5-5%, V: 0.5-5%, respectively And the total content of these elements is 15 to 35%, and the balance is an Al-based alloy composed of Al and inevitable impurities, and the Al-based alloy structure has a volume fraction of 35 to 80%. The intermetallic compound phase and the balance are composed of a metal Al matrix, and the intermetallic compound phase structure has an Al-Zr-based intermetallic compound phase, and the Al-Zr-based intermetallic compound phase includes the above-described intermetallic compound phase. One or more of Fe, Cr, Mn, Ti, Ni, Si, and V are in solid solution, and the total of these dissolved elements is And it is mass% or more.

なお、本発明では、個々の金属間化合物粒子を金属間化合物と称し、これら個々の金属間化合物粒子が複数個互いに隣接した集合体(連続体)を金属間化合物相と言う。また、本発明で言う、Al−Zr系の金属間化合物とは、後述する分析方法によって、Zrを含む金属間化合物の構成元素(分析元素)の内、Alを除いて、Zrの含有量が最も高い値を示す金属間化合物を指す。   In the present invention, each intermetallic compound particle is referred to as an intermetallic compound, and an aggregate (continuous body) in which a plurality of these individual intermetallic compound particles are adjacent to each other is referred to as an intermetallic compound phase. In addition, the Al—Zr-based intermetallic compound referred to in the present invention means that the content of Zr is excluded except for Al among constituent elements (analytical elements) of an intermetallic compound containing Zr by an analysis method described later. It refers to the intermetallic compound showing the highest value.

本発明に係るAl基合金は、金属Alマトリックス(金属のAlからなる母相、以下、単にAlマトリックス、Al母相とも言う)と上記多量の金属間化合物相とで構成され、軟らかいAlマトリックス中に、硬い金属間化合物相が分散した、分散強化型組織となっている。このような分散強化型組織においては、前記した通り、Alマトリックスの強度が比較的低いために、耐熱強度と軽量性を要求される機械部品に使用された場合、硬い金属間化合物相を表面に保持できず、耐摩耗性や剛性が低下するという問題がある。   The Al-based alloy according to the present invention is composed of a metallic Al matrix (a matrix composed of metallic Al, hereinafter simply referred to as Al matrix or Al matrix) and a large amount of the intermetallic compound phase. In addition, a dispersion strengthened structure in which hard intermetallic compound phases are dispersed. In such a dispersion strengthened structure, as described above, since the strength of the Al matrix is relatively low, a hard intermetallic compound phase is formed on the surface when used in machine parts that require heat resistance and light weight. There is a problem that it cannot be held and wear resistance and rigidity are lowered.

更に、本発明のように、合金元素の添加量が多くなり、金属間化合物相が多くなると、Al基合金の耐摩耗性は、Alマトリックスの強度がより律速するようになる。即ち、前記耐熱機械部品に使用された場合に、硬い金属間化合物相を表面に保持できるだけのAlマトリックスの強度がより必要となる課題もある。   Furthermore, as in the present invention, when the amount of the alloy element added is increased and the intermetallic compound phase is increased, the wear resistance of the Al-based alloy becomes more limited in the strength of the Al matrix. In other words, when used in the heat-resistant machine parts, there is a problem that the strength of the Al matrix that can hold the hard intermetallic compound phase on the surface is more required.

このようなAl基合金において、本発明者らは、耐熱性向上のための合金元素として汎用されるZr を必須に含むAl基合金の場合、合金元素の組み合わせによって、耐熱強度と耐磨耗性とが大きく異なることを知見した。   In such an Al-based alloy, the present inventors, in the case of an Al-based alloy that essentially contains Zr, which is widely used as an alloy element for improving heat resistance, has a combination of heat resistance and wear resistance depending on the combination of the alloy elements. And found that the difference is greatly different.

即ち、Zr を必須に含むAl基合金の場合、Zr 単独は勿論、Zr に合金元素を更に加えた、Zr −Fe−V系や、Zr −Fe−V−Si系などの組み合わせでは、耐熱強度と耐磨耗性との向上効果が少ない。これに対して、合金元素の数を更に増して、Fe、Cr、Mn、Ti、Ni、Si、V、などの特定の合金元素7種を、Zr とともに含有した場合に、始めて、実用的な意味での耐熱強度と耐磨耗性との向上効果が見られた。   That is, in the case of an Al-based alloy containing Zr as an essential component, not only Zr alone, but also a combination of Zr-Fe-V system or Zr-Fe-V-Si system in which an alloy element is further added to Zr, There is little improvement effect with wear resistance. On the other hand, when the number of alloy elements is further increased and seven specific alloy elements such as Fe, Cr, Mn, Ti, Ni, Si, and V are contained together with Zr, it is practical only for the first time. The improvement effect of the heat resistance strength and the wear resistance in the sense was seen.

これらFe、Cr、Mn、Ti、Ni、Si、V、などの特定の合金元素7種は、Al基合金を急冷凝固法により製造した場合に、Zr とともにL12型Al3 Zr の安定な金属間化合物を形成する。また、これら特定の合金元素7種は、Al基合金を急冷凝固法により製造した場合に、更に、このAl−Zr系の金属間化合物相に1種以上固溶する。   Seven specific alloy elements such as Fe, Cr, Mn, Ti, Ni, Si, and V are stable intermetallic compounds of L12 type Al3 Zr together with Zr when an Al-based alloy is produced by a rapid solidification method. Form. In addition, when the Al-based alloy is produced by a rapid solidification method, one or more of these specific alloy elements are further dissolved in the Al-Zr intermetallic compound phase.

この結果、本発明Al基合金は、上記Zr の安定な金属間化合物を形成しない場合や、上記Zr の安定な金属間化合物相に前記元素が更に固溶しない場合に比して、耐熱性、耐摩耗性とを著しく向上させることができる。   As a result, the Al-based alloy of the present invention has higher heat resistance than when the Zr stable intermetallic compound is not formed or when the element does not further dissolve in the Zr stable intermetallic phase. Abrasion resistance can be remarkably improved.

(Al基合金組成)
本発明Al基合金の化学成分組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。
(Al-based alloy composition)
The chemical component composition (unit: mass%) of the Al-based alloy of the present invention will be described below including the reasons for limiting each element.

本発明Al基合金の基本的な化学成分組成は、前記した通り、質量%にて、Zr :5〜15%、Fe:1〜8%、Cr:1〜8%、Mn:1〜8%、Ti:0.5〜5%、Ni:0.5〜5%、Si:0.5〜5%、V:0.5〜5%を各々含み、かつ、これらの元素の含有量の総和が15〜35%であり、残部がAlおよび不可避的不純物からなるものとする。   As described above, the basic chemical composition of the Al-based alloy of the present invention is, in mass%, Zr: 5 to 15%, Fe: 1 to 8%, Cr: 1 to 8%, Mn: 1 to 8%. Ti: 0.5-5%, Ni: 0.5-5%, Si: 0.5-5%, V: 0.5-5%, respectively, and the total content of these elements Is 15 to 35%, and the balance is made of Al and inevitable impurities.

本発明Al基合金では、これらの基本的な化学成分組成に加えて、更に、Cu:0.5〜5%、Mg:0.5〜3%の1種または2種、および/または、更にNd:0.2〜2%、Sc:0.1〜2%、Ag:0.1〜2%の1種または2種以上を選択的に含んでも良い。   In the Al-based alloy of the present invention, in addition to these basic chemical component compositions, one or two of Cu: 0.5-5%, Mg: 0.5-3%, and / or One or two or more of Nd: 0.2 to 2%, Sc: 0.1 to 2%, and Ag: 0.1 to 2% may be selectively included.

(Zr)
Zr は、Fe、Cr、Mn、Ti、Ni、Si、V、などの特定の合金元素7種とともに、Al基合金を急冷凝固法により製造した場合に、Zr とともにL12型Al3 Zr などの安定な金属間化合物を形成する。そして、Alマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。これらの効果を発揮させるため、Zr 含有量の範囲は5〜15%とする。5%の下限未満では、十分な金属間化合物量(数)やAlマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、15 %の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Zr 含有量の範囲は5〜15%とする。
(Zr)
Zr is, Fe, Cr, Mn, Ti , Ni, Si, V, along with certain alloying elements seven such, when prepared by the Al-based alloy rapid solidification, Zr with such L 12 type Al 3 Zr Forms stable intermetallic compounds. And it also dissolves in the Al matrix to improve the heat resistance and wear resistance. In order to exert these effects, the Zr content is set to 5 to 15%. If it is less than the lower limit of 5%, a sufficient amount (number) of intermetallic compounds and a solid solution amount in the Al matrix cannot be obtained, and the characteristics such as the heat resistance strength and wear resistance cannot be improved. On the other hand, if the upper limit of 15% is exceeded, a coarse compound is formed and, on the contrary, these properties are impaired. Therefore, the range of the Zr content is 5 to 15%.

(Fe)
Feは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。1%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、8%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Fe含有量の範囲は1〜8%とする。
(Fe)
Fe forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 1%, a sufficient amount (number) of intermetallic compounds or a solid solution amount in an intermetallic compound or an Al matrix cannot be obtained, and the characteristics such as heat resistance and wear resistance cannot be improved. On the other hand, if the upper limit of 8% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Fe content is 1 to 8%.

(Cr)
Crは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。1%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、8%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Cr含有量の範囲は1〜8%とする。
(Cr)
Cr forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 1%, a sufficient amount (number) of intermetallic compounds or a solid solution amount in an intermetallic compound or an Al matrix cannot be obtained, and the characteristics such as heat resistance and wear resistance cannot be improved. On the other hand, if the upper limit of 8% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Cr content shall be 1-8%.

(Mn)
Mnは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。1%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、8%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Mn含有量の範囲は1〜8%とする。
(Mn)
Mn forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 1%, a sufficient amount (number) of intermetallic compounds or a solid solution amount in an intermetallic compound or an Al matrix cannot be obtained, and the characteristics such as heat resistance and wear resistance cannot be improved. On the other hand, if the upper limit of 8% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Mn content is 1 to 8%.

(Ti)
Tiは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。0.5%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、5%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Ti含有量の範囲は0.5〜5%とする。
(Ti)
Ti forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 0.5%, a sufficient amount (number) of intermetallic compounds or solid solution amounts in the intermetallic compound or Al matrix cannot be obtained, and the above characteristics such as heat resistance and wear resistance are improved. Can not. On the other hand, if the upper limit of 5% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Ti content is 0.5 to 5%.

(Ni)
Niは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。0.5%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、5%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Ni含有量の範囲は0.5〜5%とする。
(Ni)
Ni forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 0.5%, a sufficient amount (number) of intermetallic compounds or solid solution amounts in the intermetallic compound or Al matrix cannot be obtained, and the above characteristics such as heat resistance and wear resistance are improved. Can not. On the other hand, if the upper limit of 5% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Ni content is 0.5 to 5%.

(Si)
Siは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。0.5%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、5%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、Si含有量の範囲は0.5〜5%とする。
(Si)
Si forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 0.5%, a sufficient amount (number) of intermetallic compounds or solid solution amounts in the intermetallic compound or Al matrix cannot be obtained, and the above characteristics such as heat resistance and wear resistance are improved. Can not. On the other hand, if the upper limit of 5% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of Si content is 0.5 to 5%.

(V)
Vは、Zr や他の特定の合金元素6種とともに、L12型Al3 Zr などの安定な金属間化合物を形成する。そして、この金属間化合物やAlマトリックス中にも固溶し、耐熱強度と耐磨耗性とを向上させる。0.5%の下限未満では、十分な金属間化合物量(数)や、金属間化合物乃至Alマトリックス中への固溶量が得られず、上記耐熱強度、耐磨耗性などの特性を向上できない。一方、5%の上限を超えると、粗大な化合物を形成して、却って、これらの特性を阻害する。したがって、V含有量の範囲は0.5〜5%とする。
(V)
V forms a stable intermetallic compound such as L 12 type Al 3 Zr together with Zr and six other specific alloy elements. And it dissolves also in this intermetallic compound and Al matrix, and improves heat-resistant strength and abrasion resistance. If the amount is less than the lower limit of 0.5%, a sufficient amount (number) of intermetallic compounds or solid solution amounts in the intermetallic compound or Al matrix cannot be obtained, and the above characteristics such as heat resistance and wear resistance are improved. Can not. On the other hand, if the upper limit of 5% is exceeded, a coarse compound is formed and, on the contrary, these properties are inhibited. Therefore, the range of V content is 0.5 to 5%.

(8種の元素の総和)
本発明では、L12型Al3 Zr などの安定な金属間化合物形成量や、この金属間化合物やAlマトリックス中への合金元素の固溶量を確保し、耐熱性、耐摩耗性向上を確実なものとするために、更に、これらZr 、Fe、Cr、Mn、Ti、Ni、Si、V、などの8種の合金元素の総和でも規定する。即ち、これら8種の元素含有量の総和(これら8種の元素の合計含有量)を15〜35%と規定する。
(Total of 8 elements)
In the present invention, the amount of stable intermetallic compound formation such as L 12 type Al 3 Zr and the solid solution amount of alloy elements in the intermetallic compound and Al matrix are ensured, and the heat resistance and wear resistance are reliably improved. In order to achieve this, it is further defined by the sum of these eight kinds of alloy elements such as Zr, Fe, Cr, Mn, Ti, Ni, Si, and V. That is, the total of the content of these eight elements (the total content of these eight elements) is defined as 15 to 35%.

金属Alマトリックスと金属間化合物相とで構成されている本発明Al基合金において、金属Alマトリックスは軟らかく、金属間化合物相は硬い。したがって、本発明Al基合金では、このような、軟らかい金属Alマトリックス中に、硬い金属間化合物相が分散した組織となっている。そして、この硬い金属間化合物相が、Al基合金に、耐熱性と耐磨耗性を持たせる主相となる。一方、軟らかい金属Alマトリックスは、これら硬い金属間化合物相のバインダーあるいは、これら硬い土台となって、金属間化合物相の機能を発揮させる役割を担う。   In the Al-based alloy of the present invention composed of a metal Al matrix and an intermetallic compound phase, the metal Al matrix is soft and the intermetallic compound phase is hard. Therefore, the Al-based alloy of the present invention has a structure in which hard intermetallic compound phases are dispersed in such a soft metal Al matrix. This hard intermetallic compound phase becomes the main phase for imparting heat resistance and wear resistance to the Al-based alloy. On the other hand, the soft metal Al matrix serves as a binder for these hard intermetallic compound phases or serves as a hard foundation for exerting the function of the intermetallic compound phases.

これらの金属間化合物相や金属Alマトリックスの機能は、金属間化合物相やAl母相中へ、合金元素が固溶することによって、より発揮される。したがって、上記8種の元素含有量の総和が下限15%未満では、金属間化合物相およびAl母相中への合金元素の固溶量が各々不足する。   The functions of these intermetallic compound phases and the metal Al matrix are more exhibited when the alloy elements are dissolved in the intermetallic compound phase and the Al matrix phase. Therefore, if the total content of the above eight elements is less than 15%, the amount of solid solution of the alloy element in the intermetallic compound phase and the Al matrix is insufficient.

一方、上記8種の元素の総和が35%の上限を超えた場合、金属間化合物相と、この金属間化合物相やAl母相中にいずれかの合金元素が固溶した組織が例え得られたとしても、靭性が低下して、Al基合金の耐熱強度を却って低下させる。   On the other hand, when the sum of the above eight elements exceeds the upper limit of 35%, an intermetallic compound phase and a structure in which any alloy element is dissolved in this intermetallic compound phase or Al matrix can be obtained. Even so, the toughness is reduced and the heat resistance strength of the Al-based alloy is reduced.

以下、これ以外の選択的な添加元素について説明する。
(Cu、Mgの1種または2種)
Cu、Mgはともに、上記8種の元素とともに金属間化合物を形成し、また、金属間化合物相やAl母相中へ固溶することによって、耐熱性と耐磨耗性を向上させる。Cu、Mgは0.5%以上の含有でこれらの効果がある。しかし、Cuが5%、Mgが3%を超えると、粗大な化合物を形成して、却って耐熱強度が低下する。したがって、Cu、Mgの1種または2種を選択的に含有させる場合の含有量の範囲はCu:0.5〜5%、Mg:0.5〜3%の範囲とする。
Hereinafter, other selective additive elements will be described.
(One or two of Cu and Mg)
Both Cu and Mg form an intermetallic compound together with the above eight elements, and improve the heat resistance and wear resistance by forming a solid solution in the intermetallic compound phase or the Al matrix phase. Cu and Mg have these effects when contained at 0.5% or more. However, if Cu exceeds 5% and Mg exceeds 3%, a coarse compound is formed, and the heat resistance strength is lowered. Therefore, the range of content when selectively including one or two of Cu and Mg is Cu: 0.5 to 5%, and Mg: 0.5 to 3%.

(Nd、Sc、Agの1種または2種以上)
Nd、Sc、Agはともに、上記8種の元素とともに、金属間化合物を形成し、耐熱強度(耐熱性)を向上させる。Ndは0.2%以上の含有で、Sc、Agは各々0.1%以上の含有でこの効果がある。しかし、Nd、Sc、Agが各々2%を超えると、却って耐熱強度や靱性が低下する。したがって、これらの1種または2種以上を選択的に含有させる場合の含有量の範囲は各々、Nd:0.2〜2%、Sc:0.1〜2%、Ag:の0.1〜2%範囲とする。
(One or more of Nd, Sc and Ag)
Nd, Sc and Ag together with the above eight elements form an intermetallic compound and improve the heat resistance strength (heat resistance). Nd is contained in an amount of 0.2% or more, and Sc and Ag are each contained in an amount of 0.1% or more. However, when Nd, Sc, and Ag each exceed 2%, the heat resistance strength and toughness are deteriorated. Therefore, the range of the content in the case of selectively containing one or more of these is Nd: 0.2-2%, Sc: 0.1-2%, Ag: 0.1-0.1 The range is 2%.

(金属間化合物相の体積分率)
図1は、本発明Al基合金(後述する実施例の発明例1)の2000倍のSEMによる組織写真である。図1において、多数の白い粒子部分が金属間化合物であり、これらの集合体が金属間化合物相である。一方、黒い(模様)部分が、金属Alのマトリックス(母相)部分である。
(Volume fraction of intermetallic compound phase)
FIG. 1 is a 2000-magnographic SEM photograph of an Al-based alloy of the present invention (Invention Example 1 of Examples described later). In FIG. 1, many white particle | grain parts are intermetallic compounds, and these aggregates are intermetallic compound phases. On the other hand, the black (pattern) portion is a matrix (matrix) portion of metal Al.

図1の通り、本発明Al基合金では、金属間化合物相の体積分率を35%以上と多くしているので、複数の(個々の)金属間化合物(粒子)が互いに隣接して集合体(連続体)、即ち、金属間化合物相を形成しているのが分かる。言い換えると、Alのマトリックス部分が、細かく、金属間化合物相によって区切られている(仕切られている)ことが分かる。このような組織状態が、Al基合金の耐熱強度と耐磨耗性を保障する。   As shown in FIG. 1, in the Al-based alloy of the present invention, the volume fraction of the intermetallic compound phase is increased to 35% or more, so that a plurality of (individual) intermetallic compounds (particles) are aggregated adjacent to each other. It can be seen that (continuous), that is, an intermetallic compound phase is formed. In other words, the Al matrix portion is finely divided (partitioned) by the intermetallic compound phase. Such a structural state ensures the heat resistance strength and wear resistance of the Al-based alloy.

Al基合金において、上記合金元素によって形成される金属間化合物相の体積分率が少な過ぎると、これら金属間化合物相が不足する一方で、Alのマトリックス部分の体積分率が大きくなり、Al基合金の耐熱性、耐摩耗性が低下する。これに対して、これら金属間化合物相の体積分率が多過ぎると、粗大な化合物を形成して、却って耐熱性、耐摩耗性が低下する。また、Alのマトリックス部分の量が少なくなりすぎ、Al基合金の靱性が低下して脆くなる。このため、耐熱Al基合金として使用できなくなる。したがって、これら金属間化合物相は、Al基合金組織中に、体積分率で35〜80%、好ましくは40〜75%を占めるように存在させる。   In an Al-based alloy, if the volume fraction of the intermetallic compound phase formed by the above alloy elements is too small, these intermetallic compound phases are insufficient, while the volume fraction of the Al matrix portion increases, and the Al The heat resistance and wear resistance of the alloy are reduced. On the other hand, when the volume fraction of these intermetallic compound phases is too large, a coarse compound is formed, and on the contrary, heat resistance and wear resistance are lowered. Further, the amount of the Al matrix portion becomes too small, and the toughness of the Al-based alloy is lowered and becomes brittle. For this reason, it cannot be used as a heat-resistant Al-based alloy. Therefore, these intermetallic compound phases are present in the Al-based alloy structure so as to occupy 35 to 80%, preferably 40 to 75% in volume fraction.

(金属間化合物の平均サイズ)
本発明では、Al基合金の耐熱性、耐摩耗性を向上させるために、好ましくは、Al基合金組織中に存在する、上記金属間化合物の平均サイズを7μm以下に微細化させる。このように上記金属間化合物の平均サイズを微細化した場合、Al基合金の靱性も向上する。より好ましくは、4.5μm以下である。
(Average size of intermetallic compounds)
In the present invention, in order to improve the heat resistance and wear resistance of the Al-based alloy, the average size of the intermetallic compound present in the Al-based alloy structure is preferably refined to 7 μm or less. Thus, when the average size of the intermetallic compound is refined, the toughness of the Al-based alloy is also improved. More preferably, it is 4.5 μm or less.

本発明では、各合金元素の含有量や金属間化合物の量が多くなるほど、耐熱強度は向上する。しかし、一方で、合金元素量や金属間化合物量が少ないAl基合金に比して、金属間化合物の平均サイズの靱性への影響が大きくなる。この点、金属間化合物の平均サイズが7μmを超えて大きくなった場合には、前記各要件を満足しても、Al基合金の諸特性や靱性が低下する可能性がある。   In the present invention, as the content of each alloy element and the amount of intermetallic compounds increase, the heat resistance strength improves. However, on the other hand, the influence on the toughness of the average size of the intermetallic compound is larger than that of the Al-based alloy having a small amount of alloying element or intermetallic compound. In this respect, when the average size of the intermetallic compound is larger than 7 μm, the characteristics and toughness of the Al-based alloy may be lowered even if the above requirements are satisfied.

(金属間化合物平均サイズの測定)
金属間化合物(金属間化合物粒子)の平均サイズの測定は、5000〜15000倍のTEM(透過型電子顕微鏡)によりEDXを併用して行なった。即ち、TEMの視野内の観察組織像から、金属間化合物をトレースし、画像解析のソフトウエアとして、MEDIACYBERNETICS社製のImage-ProPlus を用いて、各金属間化合物の重心直径を求め、平均化して求めた。測定対象視野数は10とし、各視野の平均サイズを更に平均化して、金属間化合物の平均サイズとした。
(Measurement of average intermetallic compound size)
The average size of the intermetallic compound (intermetallic compound particles) was measured using EDX with a TEM (transmission electron microscope) of 5000 to 15000 times. That is, the intermetallic compound is traced from the observed tissue image in the TEM field of view, and the center-of-gravity diameter of each intermetallic compound is obtained and averaged using Image-ProPlus made by MEDIACYBERNETICS as image analysis software. Asked. The number of visual fields to be measured was 10, and the average size of each visual field was further averaged to obtain the average size of the intermetallic compound.

(Al−Zr系金属間化合物相)
本発明では、急冷凝固法により製造した場合に、Al基合金の金属組織中に、L12型Al3 Zr などの安定なAl−Zr系の金属間化合物相を形成する。このAl−Zr系の金属間化合物は、具体的に、例えば、L12型(fcc 構造)のAl3 Zr 、D023 型(tetragonal構造)のAl3 Zr 、Al2 Zr 、Al3 Zr2、AlZr 、Al4 Zr5、Al2 Zr3、AlZr2、AlZr3などの金属間化合物を形成する。本発明では、これらAl−Zr系の金属間化合物を、後述する分析方法によって、金属間化合物の構成元素(分析元素)の内、Alを除いて、Zrの含有量が最も高い値を示す金属間化合物をAl−Zr系金属間化合物と規定する。
(Al-Zr intermetallic phase)
In the present invention, when manufactured by a rapid solidification method, a stable Al—Zr-based intermetallic compound phase such as L 12 type Al 3 Zr is formed in the metal structure of the Al-based alloy. Specifically, the Al—Zr-based intermetallic compounds include, for example, L 12 type (fcc structure) Al 3 Zr, D 0 23 type (tetragonal structure) Al 3 Zr, Al 2 Zr, Al 3 Zr 2 , AlZr, to form an Al 4 Zr 5, Al 2 Zr 3, AlZr 2, AlZr 3 intermetallic compound such. In the present invention, these Al—Zr-based intermetallic compounds are analyzed by the analysis method described later, and the metal having the highest Zr content except for Al among constituent elements (analytical elements) of the intermetallic compounds. The intermetallic compound is defined as an Al—Zr intermetallic compound.

このようなAl−Zr系金属間化合物を主相とすることにより、Al基合金の耐熱性、耐摩耗性を向上させる。   By using such an Al—Zr intermetallic compound as the main phase, the heat resistance and wear resistance of the Al-based alloy are improved.

(Al−Zr系金属間化合物相への固溶)
そして、本発明では、このAl−Zr系金属間化合物相に、合金元素としてのFe、Cr、Mn、Ti、Ni、Si、V、の1種以上が固溶しており、これら固溶した元素の総和が7質量%以上であることとする。
(Solubility in Al-Zr intermetallic phase)
In the present invention, one or more of Fe, Cr, Mn, Ti, Ni, Si, V as alloy elements are dissolved in the Al-Zr intermetallic compound phase, and these are dissolved. The total sum of elements is 7% by mass or more.

Al−Zr系金属間化合物相に、合金元素としてのFe、Cr、Mn、Ti、Ni、Si、V、の1種以上が固溶した場合、金属間化合物相にこれら元素が固溶しない場合に比して、Al−Zr系金属間化合物およびAl基合金の強度、靭性、硬さ(耐熱強度、耐摩耗性)を著しく向上させることができる。   When one or more of Fe, Cr, Mn, Ti, Ni, Si, V as alloy elements are dissolved in the Al-Zr intermetallic compound phase, and these elements are not dissolved in the intermetallic compound phase As compared with the above, the strength, toughness, and hardness (heat resistance strength, wear resistance) of the Al—Zr-based intermetallic compound and the Al-based alloy can be remarkably improved.

この効果を発揮するためには、Al−Zr系の金属間化合物相における、固溶したFe、Cr、Mn、Ti、Ni、Si、V、の固溶量の総和が7質量%以上、好ましくは10質量%以上であることが必要である。固溶したこれら合金元素の総和が下限7質量%未満では、Al基合金の強度、靭性、硬さ(耐熱強度、耐摩耗性)の向上効果が十分ではない。なお、固溶量の上限はこれら合金元素の固溶限界から定まり、特に規定しない。   In order to exert this effect, the total amount of solid solution of Fe, Cr, Mn, Ti, Ni, Si, V in the Al—Zr-based intermetallic compound phase is 7% by mass or more, preferably Must be 10% by mass or more. If the total sum of these alloy elements in solid solution is less than 7% by mass, the effect of improving the strength, toughness, and hardness (heat resistance strength, wear resistance) of the Al-based alloy is not sufficient. The upper limit of the solid solution amount is determined from the solid solution limit of these alloy elements, and is not particularly specified.

Al基合金が、Fe、Cr、Mn、Ti、Ni、Si、V、の他に、更に、Cu、Mgの1種または2種を含む場合には、各合金元素の固溶量の総和とは、これらCu、Mgを加えた、Fe、Cr、Mn、Ti、Ni、Si、Vの合金元素の固溶量の総和となる。この場合、固溶したこれら合金元素の総和は9質量%以上とする。   In the case where the Al-based alloy further includes one or two of Cu and Mg in addition to Fe, Cr, Mn, Ti, Ni, Si, and V, the total amount of solid solution of each alloy element Is the sum of the solid solution amounts of the alloy elements of Fe, Cr, Mn, Ti, Ni, Si, and V to which these Cu and Mg are added. In this case, the total sum of these alloy elements dissolved is 9% by mass or more.

また、Al基合金が、Fe、Cr、Mn、Ti、Ni、Si、V、の他に、更に、Nd、Sc、Agの1種または2種以上を含む場合には、これらNd、Sc、Agを加えた、Fe、Cr、Mn、Ti、Ni、Si、Vの合金元素の固溶量の総和、または、Fe、Cr、Mn、Ti、Ni、Si、V、Cu、Mgの合金元素の固溶量の総和となる。この場合、固溶したこれら合金元素の総和は10質量%以上とする。   In addition, in addition to Fe, Cr, Mn, Ti, Ni, Si, V, the Al-based alloy further includes one or more of Nd, Sc, and Ag, these Nd, Sc, Sum of solid solution amounts of alloy elements of Fe, Cr, Mn, Ti, Ni, Si, V with addition of Ag, or alloy elements of Fe, Cr, Mn, Ti, Ni, Si, V, Cu, Mg The total amount of solid solution. In this case, the total sum of these alloy elements dissolved is 10% by mass or more.

(Al−Zr系金属間化合物相への固溶量測定方法)
Al−Zr系金属間化合物相への合金元素の固溶量測定は、5000〜15000倍のTEM(透過型電子顕微鏡)および、このTEMに付随の45000倍のEDX(Kevex社製、Sigmaエネルギー分散型X線検出器:energy dispersive X- ray spectrometer)を用いる。即ち、これらの分析機器によって、前記TEM視野内の、Zrを含む金属間化合物の内、Alを除いて、Zrの含有量が最も高い値を示す金属間化合物をAl−Zr系金属間化合物と特定する。そして、これら特定されたAl−Zr系金属間化合物を例えば各々10点任意に選択し、これらAl−Zr系金属間化合物中の、前記した元素の固溶量の総和を各々測定して、それを平均化する。
(Method for measuring the amount of solid solution in the Al-Zr intermetallic compound phase)
Measurement of the solid solution amount of the alloy element in the Al—Zr-based intermetallic compound phase is 5,000 to 15,000 times TEM (transmission electron microscope) and 45,000 times EDX (manufactured by Kevex, Sigma energy dispersion) accompanying this TEM. A type X-ray detector (energy dispersive X-ray spectrometer) is used. That is, with these analytical instruments, among the intermetallic compounds containing Zr in the TEM field of view, the intermetallic compound showing the highest value of the Zr content is excluded from the Al-Zr intermetallic compound, except for Al. Identify. Then, for example, 10 points of each of the identified Al—Zr-based intermetallic compounds are arbitrarily selected, and the total amount of the solid solution of the above-described elements in each of the Al—Zr-based intermetallic compounds is measured. Is averaged.

(金属Al中への各元素の固溶)
上記したAl−Zr系金属間化合物相への固溶に加えて、金属Alマトリックス中にも、各固溶合金元素の総和で0.5〜15質量%固溶することによって、金属Alマトリックスの強度が上昇し、耐熱機械部品に使用された場合でも、金属Alマトリックスが硬い金属間化合物相を表面に保持でき、Al基合金の耐摩耗性を向上させることができる。
(Solution of each element in metallic Al)
In addition to the solid solution in the Al-Zr-based intermetallic compound phase described above, the total amount of each solid solution alloy element is also dissolved in the metal Al matrix by 0.5 to 15% by mass, so that the metal Al matrix can be dissolved. Even when the strength is increased and the metal Al matrix is used for a heat-resistant machine component, a hard intermetallic compound phase can be held on the surface, and the wear resistance of the Al-based alloy can be improved.

各固溶合金元素の固溶量の総和が0.5%質量未満では、金属Alマトリックスの強度が、耐熱機械部品に使用された場合に、硬い金属間化合物相を表面に保持できる程度に上昇しない。一方、各合金添加元素の固溶量の総和が15質量%を超えた場合、却って、金属Alマトリックスが脆くなって、靱性が低下し、耐熱機械部品として使用できなくなる。   When the total solid solution amount of each solid solution alloy element is less than 0.5% by mass, the strength of the metal Al matrix increases to the extent that a hard intermetallic compound phase can be held on the surface when used in heat-resistant machine parts. do not do. On the other hand, when the total amount of the solid solution of each alloy additive element exceeds 15% by mass, the metal Al matrix becomes brittle, the toughness is lowered, and cannot be used as a heat-resistant machine part.

Al基合金が、Fe、Cr、Mn、Ti、Ni、Si、V、の他に、更に、Cu、Mgの1種または2種を含む場合には、各合金元素の固溶量の総和とは、これらCu、Mgを加えた、Fe、Cr、Mn、Ti、Ni、Si、Vの合金元素の固溶量の総和となる。この場合、固溶したこれら合金元素の総和は0.5〜20質量%とする。   In the case where the Al-based alloy further includes one or two of Cu and Mg in addition to Fe, Cr, Mn, Ti, Ni, Si, and V, the total amount of solid solution of each alloy element Is the sum of the solid solution amounts of the alloy elements of Fe, Cr, Mn, Ti, Ni, Si, and V to which these Cu and Mg are added. In this case, the total sum of these alloy elements dissolved is 0.5 to 20% by mass.

また、Al基合金が、Fe、Cr、Mn、Ti、Ni、Si、V、の他に、更に、Nd、Sc、Agの1種または2種以上を含む場合には、これらNd、Sc、Agを加えた、Fe、Cr、Mn、Ti、Ni、Si、Vの合金元素の固溶量の総和、または、Cu、Mg、Fe、Cr、Mn、Ti、Ni、Si、Vの合金元素の固溶量の総和となる。この場合、固溶したこれら合金元素の総和は0.5〜22質量%以上とする。   In addition, in addition to Fe, Cr, Mn, Ti, Ni, Si, V, the Al-based alloy further includes one or more of Nd, Sc, and Ag, these Nd, Sc, Sum of solid solution amounts of alloy elements of Fe, Cr, Mn, Ti, Ni, Si, V with addition of Ag, or alloy elements of Cu, Mg, Fe, Cr, Mn, Ti, Ni, Si, V The total amount of solid solution. In this case, the total sum of these alloy elements dissolved is 0.5 to 22% by mass or more.

(Al母相への固溶量の評価方法)
金属Alマトリックスへの合金添加元素の固溶量測定は、前記Al−Zr系金属間化合物相への合金添加元素の固溶量測定と同じく、5000〜15000倍のTEM(透過型電子顕微鏡)および、このTEMに付随の45000倍のEDX(Kevex社製、Sigmaエネルギー分散型X線検出器:energy
dispersive X- ray spectrometer)を用いる。そして、これらの機器により、前記TEM視野内の金属Alマトリックスを例えば各々10点任意に選択して、前記した元素の固溶量の総和を各々測定し、平均化する。
(Evaluation method of solid solution amount in Al matrix)
The measurement of the solid solution amount of the alloy-added element in the metal Al matrix is the same as the measurement of the solid solution amount of the alloy-added element in the Al-Zr intermetallic compound phase. 45,000 times EDX attached to this TEM (manufactured by Kevex, Sigma energy dispersive X-ray detector: energy
dispersive X-ray spectrometer) is used. Then, with these instruments, for example, 10 points of metal Al matrix in the TEM visual field are arbitrarily selected, and the total amount of the solid solution of the elements is measured and averaged.

(製造方法)
以下に、本発明Al基合金の製造方法を説明する。
(Production method)
Below, the manufacturing method of this invention Al group alloy is demonstrated.

本発明Al基合金は、合金元素量が多く、金属間化合物相を多く析出させるために、通常の溶解鋳造方法 (インゴットメイキング) では制作が困難である。このため、本発明Al基合金は急冷凝固法により得る。急冷凝固法としては、急冷粉末冶金法、スプレイフォーミング法、双ロール法などの公知の方法が適宜選択される。   The Al-based alloy of the present invention has a large amount of alloying elements and precipitates a large amount of intermetallic compound phases, so that it is difficult to produce by an ordinary melt casting method (ingot making). For this reason, the Al-based alloy of the present invention is obtained by a rapid solidification method. As the rapid solidification method, a known method such as a rapid powder metallurgy method, a spray forming method, or a twin roll method is appropriately selected.

急冷粉末冶金法では、急冷凝固により得られたAl合金粉末を、CIPやHIP処理にて、緻密化した後、鍛造、押出、圧延などの熱間加工(塑性加工)して得られる。スプレイフォーミング法では、急冷凝固により得られたプリフォーム体を、そのまま、あるいは、一旦CIPやHIP処理にて緻密化した後、鍛造、押出、圧延などの熱間加工して得られる。双ロール法では、急冷凝固により得られた板状鋳塊を、そのまま、あるいは、更に、冷間圧延などの加工をして得られる。   In the rapid powder metallurgy method, the Al alloy powder obtained by rapid solidification is densified by CIP or HIP treatment, and then hot-worked (plastic working) such as forging, extrusion, or rolling. In the spray forming method, a preform obtained by rapid solidification is obtained as it is or after being densified by CIP or HIP treatment, and then subjected to hot working such as forging, extrusion, and rolling. In the twin roll method, the plate-shaped ingot obtained by rapid solidification can be obtained as it is or by further processing such as cold rolling.

これら急冷凝固法によれば、通常の溶解鋳造法よりも、格段に速い冷却・凝固速度を有する。このため、これら急冷凝固法によって、Al基合金組織を、合金元素が固溶した微細なAl−Zr系金属間化合物相や、合金元素が固溶した金属Alマトリックスとすることができる。   According to these rapid solidification methods, the cooling / solidification rate is much faster than that of the ordinary melting and casting method. For this reason, by these rapid solidification methods, the Al-based alloy structure can be made into a fine Al—Zr-based intermetallic compound phase in which alloy elements are dissolved or a metal Al matrix in which alloy elements are dissolved.

いずれの急冷凝固法においても、溶解条件、冷却・凝固速度の最適化は必要である。好ましい形態は、上記本発明成分組成のAl合金を、溶解温度1250〜1600℃で溶製した後、この溶湯を、スプレイあるいは双ロール間への供給などの急冷凝固開始温度まで、200℃/h以上の冷却速度で冷却し、その後、900〜1200℃で、この溶湯をスプレイあるいは双ロール間への供給などの急冷凝固を開始して、急冷粉末(急冷粉末冶金法)または、プリフォーム体(スプレイフォーミング法)、薄板状鋳塊(双ロール法)を作製する。   In any rapid solidification method, it is necessary to optimize the dissolution conditions and the cooling / solidification rate. In a preferred embodiment, the Al alloy having the composition of the present invention is melted at a melting temperature of 1250 to 1600 ° C., and then the molten metal is heated to a rapid solidification start temperature such as supply between sprays or twin rolls at 200 ° C./h. Cooling is performed at the above cooling rate, and then, at 900 to 1200 ° C., rapid solidification such as spraying or supplying between the two rolls is started, and then quenched powder (quenched powder metallurgy method) or preform body ( A spray forming method) and a thin plate ingot (a twin roll method) are produced.

(溶解温度)
前記溶解温度を1250℃以上としたのは、上記本発明成分組成のAl合金において、各金属間化合物相を一旦完全に溶解させるためである。また、各合金元素の含有量が多いほど、各金属間化合物相を完全に溶解させるためには、溶解温度を1250℃℃以上のより高い温度とすることが好ましいが、1600℃を超える温度とする必要は無い。
(Melting temperature)
The reason why the melting temperature is set to 1250 ° C. or higher is to once completely dissolve each intermetallic compound phase in the Al alloy having the composition of the present invention. In addition, as the content of each alloy element is larger, in order to completely dissolve each intermetallic compound phase, the melting temperature is preferably higher than 1250 ° C., but the temperature exceeding 1600 ° C. There is no need to do.

(急冷凝固開始温度)
溶湯の急冷凝固を開始する際、好ましくは、前記溶湯を、急冷凝固開始温度まで200℃/h以上の冷却速度で冷却し、その後900〜1200℃でこの溶湯の急冷凝固を開始する。前記高温で溶解するのは、金属間化合物相を完全に溶解させるためであるが、ここで一旦溶湯を冷却してから急冷凝固を開始するのは、金属間化合物をある程度晶出させることや、晶出した金属間化合物を核として、急冷凝固中に、他の金属間化合物を微細に晶出させる効果があるためである。また、低温から急冷凝固を開始すると、急冷凝固の冷却速度を上げ、晶出する金属間化合物が更に微細化される効果がある。
(Rapid solidification start temperature)
When starting the rapid solidification of the molten metal, preferably, the molten metal is cooled to a rapid solidification start temperature at a cooling rate of 200 ° C./h or more, and then the rapid solidification of the molten metal is started at 900 to 1200 ° C. The melting at the high temperature is to completely dissolve the intermetallic compound phase, but here the cooling solid is once cooled and then the rapid solidification is started to crystallize the intermetallic compound to some extent, This is because there is an effect of finely crystallizing other intermetallic compounds during rapid solidification using the crystallized intermetallic compounds as nuclei. Moreover, when the rapid solidification is started from a low temperature, there is an effect that the cooling rate of the rapid solidification is increased and the intermetallic compound to be crystallized is further refined.

より具体的には、上記溶湯を急冷凝固開始温度まで200℃/h以上の冷却速度で冷却するパターン制御によって、先ず、急冷凝固開始までに、金属間化合物の微細化に効果のあるAl−Cr、Al−Fe金属間化合物をある程度晶出させ、これを核として、急冷凝固中に、Al−Zr系の金属間化合物を微細に晶出させる。このパターン制御を行なわないと、晶出する金属間化合物を微細化できない可能性がある。   More specifically, by pattern control for cooling the molten metal to a rapid solidification start temperature at a cooling rate of 200 ° C./h or more, first, Al—Cr that is effective for refinement of intermetallic compounds by the start of rapid solidification. The Al—Fe intermetallic compound is crystallized to some extent, and this is used as a nucleus to finely crystallize the Al—Zr intermetallic compound during rapid solidification. If this pattern control is not performed, the crystallized intermetallic compound may not be refined.

また、溶湯の急冷凝固開始温度までの前記冷却速度が200℃/h未満では、上記した、金属間化合物を微細に晶出させることができず、晶出する金属間化合物を微細化できない可能性が高い。   In addition, when the cooling rate to the rapid solidification start temperature of the molten metal is less than 200 ° C./h, the above-described intermetallic compound cannot be finely crystallized, and the intermetallic compound to be crystallized may not be miniaturized. Is expensive.

溶湯の急冷凝固開始温度は、急冷凝固過程における、冷却・晶出速度に影響する。即ち、溶湯の急冷凝固開始温度は、低温の方が冷却速度を速くしやすい。しかし、急冷凝固開始温度が900℃未満では、急冷凝固過程前に、溶湯中に金属間化合物が晶出してしまい、ノズルなどの溶湯供給手段が閉塞しやすくなる。一方、急冷凝固開始温度が1200℃を超えると、急冷凝固過程中での冷却速度が遅くなり、金属間化合物が粗大化しやすい。   The rapid solidification start temperature of the molten metal affects the cooling and crystallization speed in the rapid solidification process. In other words, the rapid solidification start temperature of the molten metal tends to increase the cooling rate when the temperature is low. However, when the rapid solidification start temperature is less than 900 ° C., an intermetallic compound crystallizes in the molten metal before the rapid solidification process, and the molten metal supply means such as a nozzle is likely to be blocked. On the other hand, when the rapid solidification start temperature exceeds 1200 ° C., the cooling rate during the rapid solidification process becomes slow, and the intermetallic compound tends to become coarse.

急冷凝固過程では、冷却速度を十分に速くすることが重要となる。冷却速度を十分に速くすると、金属間化合物の晶出核生成頻度が多くなるために金属間化合物粒子の粗大化を防止でき、金属間化合物相を微細化できる。また、金属間化合物粒子が微細かされるために、隣接粒と接触する頻度も小さくなり、金属間化合物相の外郭寸法も小さくできる。   In the rapid solidification process, it is important to sufficiently increase the cooling rate. When the cooling rate is sufficiently high, the frequency of crystallization nucleation of the intermetallic compound increases, so that coarsening of the intermetallic compound particles can be prevented and the intermetallic compound phase can be refined. Further, since the intermetallic compound particles are made fine, the frequency of contact with adjacent grains is reduced, and the outer dimensions of the intermetallic compound phase can be reduced.

(双ロールの冷却条件)
前記双ロール法により、薄板状鋳塊を得る場合では、回転する一対のロール鋳型からなる双ロールの冷却能が重要となる。このため、鋼製やステンレス製などの水冷ロール鋳型よりも、熱伝達率の大きな銅製の水冷ロール鋳型などを用いるなどして、双ロールによる鋳造際の冷却速度50℃/s以上を確保することが好ましい。
(Cooling conditions for twin rolls)
In the case of obtaining a thin plate-shaped ingot by the twin roll method, the cooling ability of the twin roll composed of a pair of rotating roll molds is important. For this reason, use a copper water-cooled roll mold having a higher heat transfer coefficient than a water-cooled roll mold made of steel or stainless steel to ensure a cooling rate of 50 ° C./s or more when casting with a twin roll. Is preferred.

(ガスによる冷却条件)
急冷粉末冶金法のアトマイズまたはスプレイフォーミング法におけるスプレイによる、急冷凝固過程の冷却速度は、例えば、ガス(気体)による急冷の場合、ガス/メタル比(G/M比:単位質量あたりの溶湯に吹き付けるガスの量)によって制御できる。このG/M比が高いほど、冷却速度を速くでき、本発明で規定するような微細な金属間化合物相が得られ、金属Alマトリックス中に、各元素を所定量固溶させることができる。また、金属間化合物相に、前記した金属間化合物を構成する以外の元素を強制固溶させることができる。
(Cooling conditions with gas)
The cooling rate in the rapid solidification process by atomization in the rapid powder metallurgy method or spraying in the spray forming method is, for example, in the case of rapid cooling with gas (gas), the gas / metal ratio (G / M ratio: sprayed on the molten metal per unit mass) Gas amount). The higher the G / M ratio, the faster the cooling rate, the fine intermetallic compound phase as defined in the present invention can be obtained, and a predetermined amount of each element can be dissolved in the metal Al matrix. In addition, elements other than those constituting the above-described intermetallic compound can be forcibly dissolved in the intermetallic compound phase.

G/M比が低過ぎると、冷却速度が不足し、金属Alマトリックス中に、各元素を所定量固溶させることができなくなる。また、金属間化合物相に、前記した金属間化合物を構成する以外の元素を強制固溶させられなくなる。また、金属間化合物相も粗大となる。但し、G/M比が高過ぎると歩留まりが低下する。これらの条件を満足するG/M比の下限は6Nm 3/kg以上、G/M比の上限は20Nm3 /kg以下とすることが推奨される。 If the G / M ratio is too low, the cooling rate will be insufficient, and a predetermined amount of each element cannot be dissolved in the metal Al matrix. In addition, elements other than those constituting the above-described intermetallic compound cannot be forcibly dissolved in the intermetallic compound phase. Also, the intermetallic compound phase becomes coarse. However, if the G / M ratio is too high, the yield decreases. It is recommended that the lower limit of the G / M ratio satisfying these conditions is 6 Nm 3 / kg or more, and the upper limit of the G / M ratio is 20 Nm 3 / kg or less.

急冷粉末冶金法によって、本発明Al基合金を製造する場合、上記本発明成分組成のAl合金のアトマイズ粉末の内、平均粒径が20μm以下、好ましくは10μm以下の微粒粉を分級して使用することが好ましい。平均粒径が20μmを越えるアトマイズ粉末は、冷却速度が遅いため、金属間化合物相が粗大化する。このため、平均粒径が20μmを越えるアトマイズ粉末を使用した場合、本発明Al基合金を製造できない可能性が高い。このため、平均粒径が20μm以下の微粒粉のみを、CIP処理あるいはHIP処理、更にはCIP後HIP処理などにて、固化成型することで、前記Al合金プリフォーム体が得られる。   When producing the Al-based alloy of the present invention by the quenching powder metallurgy method, among the atomized powders of the Al alloy having the composition of the present invention, fine particles having an average particle size of 20 μm or less, preferably 10 μm or less are classified and used. It is preferable. Atomized powder having an average particle size exceeding 20 μm has a slow cooling rate, so that the intermetallic compound phase becomes coarse. For this reason, when an atomized powder having an average particle size exceeding 20 μm is used, there is a high possibility that the Al-based alloy of the present invention cannot be produced. For this reason, only the fine powder having an average particle diameter of 20 μm or less is solidified and molded by CIP processing or HIP processing, and further HIP processing after CIP, thereby obtaining the Al alloy preform.

(熱間加工)
このように制作された急冷粉末のAl合金プリフォーム体、またはスプレイフォーミングされたAl合金プリフォーム体は、更なる緻密化や製品形状にされるためにも、鍛造、押出、圧延などの熱間加工されることが好ましい。
(Hot processing)
In order to make the Al alloy preform body of the rapidly cooled powder or the spray-formed Al alloy preform body produced in this way to be further densified and shaped into products, it is hot forging, extrusion, rolling, etc. Preferably it is processed.

これらの熱間加工(塑性加工)によって、Al基合金組織における、金属間化合物相がより微細均一に分散されるとともに、金属Alマトリックスへの各元素の固溶量がより確保される。これらの鍛造、押出、圧延の熱間加工における加工温度は、500〜620℃の範囲とする。但し、金属Alマトリックスへの固溶量確保のためには、比較的低くすることが好ましい。このような加工温度範囲において熱間加工すると、金属間化合物相がより微細化されるとともに、より均一に分散される。また、Alマトリックス中の固溶量がより確保される。   By these hot working (plastic working), the intermetallic compound phase in the Al-based alloy structure is more finely and uniformly dispersed, and the solid solution amount of each element in the metal Al matrix is further ensured. The processing temperature in the hot processing of forging, extrusion, and rolling is set to a range of 500 to 620 ° C. However, in order to ensure the solid solution amount in the metal Al matrix, it is preferable to make it relatively low. When hot working in such a working temperature range, the intermetallic compound phase is further refined and more uniformly dispersed. Moreover, the solid solution amount in the Al matrix is further secured.

熱間加工における加工温度が620℃を超えて高くなると、金属間化合物相が析出して、Alマトリックス中の固溶量が確保できなくなるとともに、金属間化合物相が粗大化する可能性が高い。一方、加工温度が500℃未満では、熱間加工による上記金属間化合物微細化効果が達成できない。   When the processing temperature in the hot processing exceeds 620 ° C., the intermetallic compound phase is precipitated, and it becomes impossible to secure the solid solution amount in the Al matrix, and the intermetallic compound phase is likely to be coarsened. On the other hand, when the processing temperature is less than 500 ° C., the above-described intermetallic compound refinement effect by hot working cannot be achieved.

同様の主旨で、これらの熱間加工における歪み速度は10-4〜10-1 (1/s) と比較的低くすることが好ましい。歪み速度がこれより大き過ぎると、熱間加工による上記効果が達成できない。また、歪み速度がこれより小さ過ぎると、金属間化合物相が析出して、Alマトリックス中に固溶する前記添加元素の固溶量が確保できなくなるとともに、金属間化合物相が粗大化する可能性が高い。 For the same purpose, it is preferable that the strain rate in the hot working is relatively low, 10 −4 to 10 −1 (1 / s). If the strain rate is too large, the above-mentioned effect by hot working cannot be achieved. Also, if the strain rate is too low, the intermetallic compound phase precipitates, and it becomes impossible to secure the solid solution amount of the additive element dissolved in the Al matrix, and the intermetallic compound phase may become coarse. Is expensive.

このように熱間加工されたAl基合金は、そのまま、あるいは、機械加工など適宜の処理が施されて、製品Al基合金とされる。   The Al-based alloy thus hot-worked is used as it is or after appropriate processing such as machining to obtain a product Al-based alloy.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す各成分組成のAl合金の溶湯を、共通して、1300〜1600℃の各溶解温度で溶解し、この溶湯をガスアトマイズ開始温度まで100℃/h以上の冷却速度で冷却し、その後900〜1400℃でこの溶湯のN2 ガスアトマイズを開始して、各G/M比2〜15でAl合金粉末を作製した。発明例、比較例の各例における、これらガスアトマイズ条件(溶解温度、アトマイズ開始温度、平均G/M比:単位はNm 3/kg)も表2に示す。 The molten alloys of the Al alloys having the respective component compositions shown in Table 1 below are commonly melted at respective melting temperatures of 1300 to 1600 ° C., and the molten metal is cooled to a gas atomization start temperature at a cooling rate of 100 ° C./h or more. Thereafter, N 2 gas atomization of this molten metal was started at 900 to 1400 ° C., and Al alloy powders were produced at respective G / M ratios of 2 to 15. Table 2 also shows these gas atomization conditions (dissolution temperature, atomization start temperature, average G / M ratio: unit is Nm 3 / kg) in each of the inventive examples and comparative examples.

これら得られた各Al合金粉末の内、平均粒径が20μm以下の微粒粉を分級して、SUS製の缶に装填し、13KPa(100Torr)以下に減圧した状態で、温度400℃で2時間保持して脱気し、缶を密封してカプセルを形成した。得られたカプセルをCIP処理[温度:常温、圧力:100MPa(1000気圧)、保持時間:2時間]して、プリフォーム体を得た。これらのプリフォーム体を、表2に示す各条件で、熱間鍛造して、丸棒状のAl基合金(試験材)を得た。   Among the obtained Al alloy powders, fine particles having an average particle size of 20 μm or less are classified, loaded into a SUS can, and reduced in pressure to 13 KPa (100 Torr) or less at a temperature of 400 ° C. for 2 hours. Holding and degassing, the can was sealed to form a capsule. The obtained capsule was CIP-treated [temperature: normal temperature, pressure: 100 MPa (1000 atm), holding time: 2 hours] to obtain a preform. These preforms were hot forged under the conditions shown in Table 2 to obtain a round bar-shaped Al-based alloy (test material).

これらAl基合金(試験材)の組織と特性を、以下のようにして測定評価した。これらの結果を各々表3に示す。   The structure and characteristics of these Al-based alloys (test materials) were measured and evaluated as follows. These results are shown in Table 3, respectively.

(金属間化合物相の体積分率)
Al基合金組織の金属間化合物相の体積分率は、2000倍のSEMにより、約60μm×約40μmの大きさの各10視野のAl基合金を組織観察した。そして、反射電子像により、写真撮影なり画像処理した視野内の組織の、金属Al相と金属間化合物相との区別をEDXによって行った上で、各視野内の金属間化合物相の体積分率を測定し、10視野で平均化した。
(Volume fraction of intermetallic compound phase)
As for the volume fraction of the intermetallic compound phase of the Al-based alloy structure, the structure of the Al-based alloy with 10 fields of view having a size of about 60 μm × about 40 μm was observed with an SEM of 2000 times. Then, by using EDX to distinguish between the metallic Al phase and the intermetallic compound phase of the tissue in the field of view that has been photographed or processed by the reflected electron image, the volume fraction of the intermetallic compound phase in each field of view. Were measured and averaged over 10 fields of view.

(金属間化合物の平均サイズ)
金属間化合物(金属間化合物粒子)の平均サイズの測定は、5000〜15000倍のTEM(透過型電子顕微鏡)によりEDXを併用して行なった。即ち、TEMの視野内の観察組織像から、金属間化合物をトレースし、画像解析のソフトウエアとして、MEDIACYBERNETICS社製のImage-ProPlus を用いて、各金属間化合物の重心直径を求め、平均化して求めた。測定対象視野数は10とし、各視野の平均サイズを更に平均化して、金属間化合物の平均サイズとした。
(Average size of intermetallic compounds)
The average size of the intermetallic compound (intermetallic compound particles) was measured using EDX with a TEM (transmission electron microscope) of 5000 to 15000 times. That is, the intermetallic compound is traced from the observed tissue image in the TEM field of view, and the center-of-gravity diameter of each intermetallic compound is obtained and averaged using Image-ProPlus made by MEDIACYBERNETICS as image analysis software. Asked. The number of visual fields to be measured was 10, and the average size of each visual field was further averaged to obtain the average size of the intermetallic compound.

(Al−Zr系金属間化合物相への元素固溶量)
前記視野内の各金属間化合物相を、X線回折およびTEMの電子線回折パターンから、金属間化合物相内の金属間化合物の結晶構造を解析し、その内、Zrの含有量がAlを除き他元素に比較して最も高いAl−Zr系金属間化合物相を特定し、他の金属間化合物と識別した。
(Element solid solution amount in the Al-Zr intermetallic phase)
Each intermetallic compound phase in the visual field is analyzed from the electron diffraction pattern of X-ray diffraction and TEM, and the crystal structure of the intermetallic compound in the intermetallic compound phase is analyzed, and the content of Zr excludes Al. The highest Al—Zr intermetallic phase compared with other elements was identified and distinguished from other intermetallic compounds.

その上で、15000倍の組織のFE−TEM(日立製作所製、HF−2000電界放射型透過電子顕微鏡)および、このTEMに付随の、45000倍のEDX(Kevex社製、Sigmaエネルギー分散型X線検出器:energy dispersive X- ray spectrometer)により、前記視野内のAl−Zr系金属間化合物相を各々10点測定した。そして、Fe、Cr、Mn、Ti、Ni、Si、V、Cu、Mg、Nd、Sc、Ag、の金属間化合物相への固溶量の総和を求め、平均化した。なお、各例とも、これらの元素の内で各規定範囲で含有している元素は全てAl−Zr系金属間化合物相へ固溶していた。   On top of that, FE-TEM (HF-2000 field emission transmission electron microscope, manufactured by Hitachi, Ltd.) and 45,000 times EDX (manufactured by Kevex, Sigma energy dispersive X-ray) attached to this TEM. A detector: energy dispersive X-ray spectrometer) was used to measure 10 Al-Zr intermetallic phases in the field of view. And the sum total of the solid solution amount to the intermetallic compound phase of Fe, Cr, Mn, Ti, Ni, Si, V, Cu, Mg, Nd, Sc, and Ag was obtained and averaged. In each example, all of these elements contained in each specified range were dissolved in the Al—Zr intermetallic compound phase.

(Al母相中への元素固溶量)
前記したTEM−EDXによる固溶量測定方法により、各例とも、金属Al中へのZr、Fe、Cr、Mn、Ti、Ni、Si、V、Cu、Mg、Nd、Sc、Ag、の固溶量の総和を求めた。なお、各例とも、これらの元素の内で各規定範囲で含有している元素は全てAl母相中へ固溶していた。
(Element solid solution amount in Al matrix)
In each of the examples, the solid solution amount measurement method by TEM-EDX described above was used for the solid solution of Zr, Fe, Cr, Mn, Ti, Ni, Si, V, Cu, Mg, Nd, Sc, and Ag in metal Al. The total amount of solution was determined. In each example, all of these elements contained in each specified range were dissolved in the Al matrix.

(強度)
Al基合金の耐熱性を評価するため、室温と高温の強度を測定した。平行部Φ4×15mmLとした各Al基合金の試験片を、室温(15℃)で、高温強度は300℃および400℃に加熱して15分この温度に保持後、試験片を前記各温度で引張試験を行なった。引張速度は0.5mm/minとし、歪み速度5×10-4(1/s)とした。高温引張強度は、300℃で280MPa以上、400℃で200MPa以上、のものを高温強度乃至耐熱性が合格として評価した。
(Strength)
In order to evaluate the heat resistance of the Al-based alloy, the strength at room temperature and high temperature was measured. Each Al-based alloy test piece having a parallel part Φ4 × 15 mmL was heated at room temperature (15 ° C.) and the high-temperature strength was 300 ° C. and 400 ° C. and held at this temperature for 15 minutes. A tensile test was performed. The tensile speed was 0.5 mm / min, and the strain speed was 5 × 10 −4 (1 / s). The high-temperature tensile strength was evaluated as having passed high-temperature strength or heat resistance when the tensile strength was 280 MPa or higher at 300 ° C. and 200 MPa or higher at 400 ° C.

(強靱性)
材料の強靱性は、一般にビッカース硬さと相関があるため、ビッカース硬さによって材料の室温強度および高温強度を評価した。すなわち、室温と、温度300℃および400℃の高温におけるビッカース硬さを、荷重5kgf(室温の場合)および荷重1kgf(高温の場合)の条件で測定した。ビッカース硬さは、温度300℃におけるビッカース硬さが180HV以上、温度400℃におけるビッカース硬さが100HV以上、のものを耐熱性ありとして評価した。
(Toughness)
Since the toughness of the material is generally correlated with the Vickers hardness, the room temperature strength and the high temperature strength of the material were evaluated by the Vickers hardness. That is, the Vickers hardness at room temperature and high temperatures of 300 ° C. and 400 ° C. were measured under conditions of a load of 5 kgf (in the case of room temperature) and a load of 1 kgf (in the case of high temperature). The Vickers hardness was evaluated as having heat resistance when the Vickers hardness at a temperature of 300 ° C. was 180 HV or higher and the Vickers hardness at a temperature of 400 ° C. was 100 HV or higher.

更に、400℃におけるビッカース硬さを測定した材料の、永久くぼみ(圧痕)をSEM観察(倍率:500倍)し、硬さを測定した圧痕(打痕)周囲の割れ発生の有無を調べ、材料の強靱性(耐熱性)を評価した。即ち、割れ発生がないものを強靱性(耐熱性)ありとして○と評価した。一方、割れ発生が有るものを強靱性(耐熱性)無しとして×と評価した。   Furthermore, the permanent indentation (indentation) of the material whose Vickers hardness was measured at 400 ° C. was observed by SEM (magnification: 500 times), and the presence of cracks around the indentation (indentation) where the hardness was measured was examined. The toughness (heat resistance) of was evaluated. That is, the case where no crack was generated was evaluated as “good” as having toughness (heat resistance). On the other hand, those having cracks were evaluated as x with no toughness (heat resistance).

(耐磨耗性)
Al基合金の高温での耐磨耗性試験は、ピンオンディスク磨耗試験で行なった。ピン材(Φ7mm×15mm長さ、約1g)に各試験材をセットし、磨耗相手側である試験ディスク材はFC200(鋳鉄)とした。試験温度は200℃とし、荷重10kgf、ピンの回転半径0.02mで、回転する前記試験ディスク材に、試験材を、潤滑無しで10分間接触させた。この際の各試験材の摩耗による質量減少率、(試験前質量−試験後質量)/試験材の試験前質量で評価した。この質量の摩耗減少率が0.2g以下のものを高温での耐磨耗性が合格として、○と評価し、摩耗減少率が0.2gを越えるものを高温での耐磨耗性が不合格として×と評価した。
(Abrasion resistance)
The high temperature wear resistance test of the Al-based alloy was conducted by a pin-on-disk wear test. Each test material was set on a pin material (Φ7 mm × 15 mm length, about 1 g), and the test disk material on the wear partner side was FC200 (cast iron). The test temperature was 200 ° C., the load was 10 kgf, the rotation radius of the pin was 0.02 m, and the test material was brought into contact with the rotating test disk material for 10 minutes without lubrication. The mass reduction rate due to wear of each test material at this time, (mass before test−mass after test) / mass before test of the test material was evaluated. When the wear reduction rate of this mass is 0.2 g or less, the wear resistance at high temperature is evaluated as “good”, and when the wear reduction rate exceeds 0.2 g, the wear resistance at high temperature is poor. It evaluated as x as a pass.

表1〜3から明らかなように、発明例1〜12は、本発明で規定する各合金元素量範囲と、これら各合金元素量の総和の範囲をともに満足する。また、組織的にも、Al−Zr系の金属間化合物相を有し、金属間化合物相の体積分率規定を満足する。更に、このAl−Zr系の金属間化合物相に、Fe、Cr、Mn、Ti、Ni、Si、V、Cu、Mg、Nd、Sc、Agの1種以上が固溶しており、これら固溶した元素の総和が7%以上である。   As is apparent from Tables 1 to 3, Invention Examples 1 to 12 satisfy both the alloy element amount ranges defined in the present invention and the total range of these alloy element amounts. Also, structurally, it has an Al—Zr-based intermetallic compound phase and satisfies the volume fraction regulation of the intermetallic compound phase. Furthermore, one or more of Fe, Cr, Mn, Ti, Ni, Si, V, Cu, Mg, Nd, Sc, and Ag are dissolved in the Al—Zr-based intermetallic compound phase. The total of dissolved elements is 7% or more.

また、発明例3を除いて、Al母相中へのZr、Fe、Cr、Mn、Ti、Ni、Si、V、Cu、Mg、Nd、Sc、Agの元素固溶量の総和が0.5〜15%の範囲である。更に、発明例2を除いて、金属間化合物の平均サイズが好ましい上限7μm 以内である。   In addition, except for Invention Example 3, the total amount of element solid solutions of Zr, Fe, Cr, Mn, Ti, Ni, Si, V, Cu, Mg, Nd, Sc, and Ag in the Al matrix is 0.00. It is 5 to 15% of range. Furthermore, except for Invention Example 2, the average size of the intermetallic compound is preferably within the upper limit of 7 μm.

このため、発明例1〜12は、発明例2、3を除いて、表3から明らかなように、高温強度、高温耐摩耗性に優れている。   For this reason, Invention Examples 1 to 12 are excellent in high temperature strength and high temperature wear resistance, as apparent from Table 3, except for Invention Examples 2 and 3.

発明例2は、金属間化合物の平均サイズが好ましい上限を超えて粗大化している。この結果、発明例2は、他の発明例に比して、高温強度、高温耐摩耗性が比較的低い。   In Invention Example 2, the average size of the intermetallic compound is coarsened exceeding the preferred upper limit. As a result, Invention Example 2 has relatively low high-temperature strength and high-temperature wear resistance as compared with other Invention Examples.

発明例3は、Al母相中への合金元素固溶量の総和が好ましい下限5%未満である。この結果、発明例3は、他の発明例に比して、高温強度、高温耐摩耗性が比較的低い。   In Invention Example 3, the total amount of alloying elements dissolved in the Al matrix is less than the preferred lower limit of 5%. As a result, Invention Example 3 has relatively low high-temperature strength and high-temperature wear resistance as compared with other Invention Examples.

一方、比較例13〜24は、本発明で規定する各合金元素量範囲、これら各合金元素量の総和の範囲、金属間化合物相の体積分率規定、このAl−Zr系の金属間化合物相への合金元素固溶量総和のいずれかが外れている。   On the other hand, Comparative Examples 13-24 are each alloy element amount range prescribed | regulated by this invention, the range of the sum total of these each alloy element amount, volume fraction regulation of an intermetallic compound phase, this Al-Zr type intermetallic compound phase One of the total amount of alloying elements dissolved in is off.

このため、比較例13〜24は、発明例に比して、高温強度、高温耐摩耗性が低い。   For this reason, Comparative Examples 13 to 24 have lower high-temperature strength and high-temperature wear resistance than the inventive examples.

比較例16〜24は、好ましい製造条件で製造されているものの、本発明で規定する合金元素量範囲から外れている。
比較例16は、表1の合金例IのZr含有量が下限を下回る。
比較例17は、表1の合金例JのZr含有量が上限を上回る。
比較例18は、表1の合金例Kが必須のFeを含んでいない(Feレス)。
比較例19は、表1の合金例Lが必須のCrを含んでいない(Crレス)。
比較例20は、表1の合金例Mが必須のMnを含んでいない(Mnレス)。
比較例21は、表1の合金例Nが必須のTiを含んでいない(Tiレス)。
比較例22は、表1の合金例Oが必須のNiを含んでいない(Niレス)。
比較例23は、表1の合金例Pが必須のSiを含んでいない(Siレス)。
比較例24は、表1の合金例Qが必須のVを含んでいない(Vレス)。
Although Comparative Examples 16 to 24 are manufactured under preferable manufacturing conditions, they are out of the alloy element amount range defined in the present invention.
In Comparative Example 16, the Zr content of Alloy Example I in Table 1 is below the lower limit.
In Comparative Example 17, the Zr content of Alloy Example J in Table 1 exceeds the upper limit.
In Comparative Example 18, Alloy Example K in Table 1 does not contain essential Fe (Fe-less).
In Comparative Example 19, Alloy Example L in Table 1 does not contain essential Cr (Cr-less).
In Comparative Example 20, the alloy example M in Table 1 does not contain essential Mn (Mn-less).
In Comparative Example 21, Alloy Example N in Table 1 does not contain essential Ti (Ti-less).
In Comparative Example 22, the alloy example O in Table 1 does not contain essential Ni (Ni-less).
In Comparative Example 23, Alloy Example P in Table 1 does not contain essential Si (Si-less).
In Comparative Example 24, Alloy Example Q in Table 1 does not contain essential V (V-less).

以上の結果から、高温強度、高温耐摩耗性を向上させるための、本発明の各要件、好ましい要件の臨界的な意義が裏付けられる。   From the above results, the critical significance of each requirement and preferred requirement of the present invention for improving the high temperature strength and the high temperature wear resistance is supported.

Figure 2007039748
Figure 2007039748

Figure 2007039748
Figure 2007039748

Figure 2007039748
Figure 2007039748

以上説明したように、本発明は、軽量であり、300〜400℃付近における耐熱強度、耐磨耗性が高い耐熱性Al基合金を提供できる。したがって、自動車や航空機などのエンジン部品(ピストン、コンロッド)などの耐熱特性が求められる種々の部品に適用することができる。   As described above, the present invention can provide a heat-resistant Al-based alloy that is lightweight and has high heat resistance and high wear resistance in the vicinity of 300 to 400 ° C. Therefore, the present invention can be applied to various parts that require heat resistance such as engine parts (piston, connecting rod) such as automobiles and airplanes.

本発明Al基合金の組織を示す、図面代用写真である。It is a drawing substitute photograph which shows the structure | tissue of this invention Al base alloy.

Claims (9)

質量%にて、Zr :5〜15%、Fe:1〜8%、Cr:1〜8%、Mn:1〜8%、Ti:0.5〜5%、Ni:0.5〜5%、Si:0.5〜5%、V:0.5〜5%を各々含み、かつ、これらの元素の含有量の総和が15〜35%であり、残部がAlおよび不可避的不純物からなるAl基合金であって、このAl基合金組織が体積分率で35〜80%の金属間化合物相と残部が金属Alマトリックスとで構成され、前記金属間化合物相組織中に、Al−Zr系の金属間化合物相を有するとともに、このAl−Zr系の金属間化合物相に前記Fe、Cr、Mn、Ti、Ni、Si、V、の1種以上が固溶しており、これら固溶した元素の総和が7質量%以上であることを特徴とする耐熱性Al基合金。   In mass%, Zr: 5 to 15%, Fe: 1 to 8%, Cr: 1 to 8%, Mn: 1 to 8%, Ti: 0.5 to 5%, Ni: 0.5 to 5% , Si: 0.5 to 5%, V: 0.5 to 5%, respectively, and the total content of these elements is 15 to 35%, the balance being Al and inevitable impurities Al The Al-based alloy structure is composed of an intermetallic compound phase with a volume fraction of 35 to 80% and a balance of a metal Al matrix, and the intermetallic compound phase structure contains an Al-Zr-based structure. While having an intermetallic compound phase, one or more of Fe, Cr, Mn, Ti, Ni, Si, and V are in solid solution in the Al-Zr intermetallic compound phase, and these dissolved elements Is a heat-resistant Al-based alloy, characterized in that the total amount of 前記金属Alマトリックス中に、前記Zr 、Fe、Cr、Mn、Ti、Ni、Si、V、の元素の内の1種以上が、これらの総和で0.5〜15質量%固溶している請求項1に記載の耐熱性Al基合金。   In the metal Al matrix, at least one of the elements Zr, Fe, Cr, Mn, Ti, Ni, Si, and V is dissolved in a total amount of 0.5 to 15% by mass. The heat-resistant Al-based alloy according to claim 1. 前記Al基合金組織中に存在する金属間化合物の平均サイズが7μm以下である請求項1または2に記載の耐熱性Al基合金。   3. The heat-resistant Al-based alloy according to claim 1, wherein an average size of intermetallic compounds existing in the Al-based alloy structure is 7 μm or less. 前記Al基合金が、更に、Cu:0.5〜5%、Mg:0.5〜3%の1種または2種を含む、請求項1乃至3のいずれか1項に記載の耐熱性Al基合金。   The heat-resistant Al according to any one of claims 1 to 3, wherein the Al-based alloy further contains one or two of Cu: 0.5 to 5% and Mg: 0.5 to 3%. Base alloy. 前記Al−Zr系の金属間化合物相に、Cu、Mgの1種または2種が更に固溶しており、これらCu、Mgを加えた前記固溶した元素の総和が9質量%以上である請求項4に記載の耐熱性Al基合金。   One or two kinds of Cu and Mg are further solid-dissolved in the Al-Zr intermetallic compound phase, and the total of the solid-solved elements including Cu and Mg is 9% by mass or more. The heat resistant Al-based alloy according to claim 4. 前記金属Alマトリックス中に、更に、Cu、Mgの1種または2 種が、これらCu、Mgを加えた前記固溶した元素の総和で0.5〜20質量%固溶している請求項4または5に記載の耐熱性Al基合金。   5. The metal Al matrix further comprises one or two of Cu and Mg in a solid solution of 0.5 to 20% by mass as a total of the solid solution elements to which Cu and Mg are added. Or the heat-resistant Al-based alloy according to 5; 前記Al基合金が、更に、Nd:0.2〜2%、Sc:0.1〜2%、Ag:0.1〜2%の1種または2種以上を含む請求項1乃至6のいずれか1項に記載の耐熱性Al基合金。   The Al-based alloy further includes one or more of Nd: 0.2 to 2%, Sc: 0.1 to 2%, and Ag: 0.1 to 2%. 2. A heat-resistant Al-based alloy according to item 1. 前記Al−Zr系の金属間化合物相に、Nd、Sc、Agが更に固溶しており、これらNd、Sc、Agを加えた前記固溶した元素の総和が10質量%以上である請求項7に記載の耐熱性Al基合金。   Nd, Sc, and Ag are further dissolved in the Al-Zr-based intermetallic compound phase, and the total of the dissolved elements including Nd, Sc, and Ag is 10% by mass or more. 8. A heat-resistant Al-based alloy according to 7. 前記金属Alマトリックス中に、更に、Nd、Sc、Agの1種または2種以上が、これらNd、Sc、Agを加えた前記固溶した元素の総和で0.5〜22質量%固溶している請求項7または8に記載の耐熱性Al基合金。     In the metal Al matrix, one or more of Nd, Sc, and Ag are solid-dissolved in a total amount of 0.5 to 22% by mass as a total of the solid-solved elements to which these Nd, Sc, and Ag are added. The heat-resistant Al-based alloy according to claim 7 or 8.
JP2005225758A 2005-08-03 2005-08-03 Heat-resistant Al-based alloy Expired - Fee Related JP4764094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225758A JP4764094B2 (en) 2005-08-03 2005-08-03 Heat-resistant Al-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225758A JP4764094B2 (en) 2005-08-03 2005-08-03 Heat-resistant Al-based alloy

Publications (2)

Publication Number Publication Date
JP2007039748A true JP2007039748A (en) 2007-02-15
JP4764094B2 JP4764094B2 (en) 2011-08-31

Family

ID=37798013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225758A Expired - Fee Related JP4764094B2 (en) 2005-08-03 2005-08-03 Heat-resistant Al-based alloy

Country Status (1)

Country Link
JP (1) JP4764094B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016890A1 (en) * 2007-07-31 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho High-fatigue-strength al alloy and process for producing the same
US8444777B2 (en) 2007-02-28 2013-05-21 Kobe Steel, Ltd. High-strength and high-ductility Al alloy and process for production of the same
JP2017214870A (en) * 2016-05-31 2017-12-07 アート金属工業株式会社 Piston for internal combustion engine and method of manufacturing the same
FR3082764A1 (en) * 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) * 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
CN112805106A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805105A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794418A (en) * 2017-10-30 2018-03-13 安徽博古特机电科技有限公司 A kind of compressor connecting bar
CN110669969A (en) * 2019-09-23 2020-01-10 山东南山铝业股份有限公司 Low-rare earth high-strength aluminum alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH0234740A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH07188823A (en) * 1993-11-17 1995-07-25 Toyota Motor Corp Aluminum-based alloy
JP2000225412A (en) * 1999-02-05 2000-08-15 Sumitomo Light Metal Ind Ltd Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH0234740A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH07188823A (en) * 1993-11-17 1995-07-25 Toyota Motor Corp Aluminum-based alloy
JP2000225412A (en) * 1999-02-05 2000-08-15 Sumitomo Light Metal Ind Ltd Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444777B2 (en) 2007-02-28 2013-05-21 Kobe Steel, Ltd. High-strength and high-ductility Al alloy and process for production of the same
WO2009016890A1 (en) * 2007-07-31 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho High-fatigue-strength al alloy and process for producing the same
JP2009035766A (en) * 2007-07-31 2009-02-19 Kobe Steel Ltd HIGH-FATIGUE-STRENGTH Al ALLOY AND PRODUCTION METHOD THEREFOR
JP2017214870A (en) * 2016-05-31 2017-12-07 アート金属工業株式会社 Piston for internal combustion engine and method of manufacturing the same
FR3082764A1 (en) * 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) * 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
CN112805106A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805105A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805105B (en) * 2018-10-05 2023-12-01 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805106B (en) * 2018-10-05 2023-12-29 肯联铝业技术中心 Method for manufacturing aluminum alloy parts

Also Published As

Publication number Publication date
JP4764094B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4764094B2 (en) Heat-resistant Al-based alloy
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
JP5326114B2 (en) High strength copper alloy
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
WO2008016169A1 (en) Process for production of aluminum alloy formings, aluminum alloy formings and production system
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
EP0821072B1 (en) Highly wear-resistant aluminium-based composite alloy and wear-resistant parts
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
WO2006103885A1 (en) Al BASE ALLOY EXCELLENT IN HEAT RESISTANCE, WORKABILITY AND RIGIDITY
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH0457738B2 (en)
JPH05287427A (en) Wear resistant aluminum alloy for cold forging and its manufacture
JP4699786B2 (en) Al-based alloy with excellent workability and heat resistance
JP7118705B2 (en) Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same
JP4704722B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and workability
JP3485961B2 (en) High strength aluminum base alloy
JP4704721B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
WO2020170589A1 (en) Aluminum alloy material
JP2004269937A (en) ABRASION RESISTANT Al-Si ALLOY SUPERIOR IN MACHINABILITY, AND CASTING METHOD THEREFOR
JP4704723B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties and vibration damping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4764094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees