JPH01149936A - Heat-resistant al alloy for powder metallurgy - Google Patents

Heat-resistant al alloy for powder metallurgy

Info

Publication number
JPH01149936A
JPH01149936A JP30590487A JP30590487A JPH01149936A JP H01149936 A JPH01149936 A JP H01149936A JP 30590487 A JP30590487 A JP 30590487A JP 30590487 A JP30590487 A JP 30590487A JP H01149936 A JPH01149936 A JP H01149936A
Authority
JP
Japan
Prior art keywords
alloy
weight
heat
less
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30590487A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
松本 規明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP30590487A priority Critical patent/JPH01149936A/en
Priority to CA000584522A priority patent/CA1330400C/en
Priority to US07/278,581 priority patent/US5022918A/en
Priority to DE3888308T priority patent/DE3888308T2/en
Priority to EP88311390A priority patent/EP0319295B1/en
Publication of JPH01149936A publication Critical patent/JPH01149936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a heat-resisting Al alloy for powder metallurgy excellent in strength at high temp. and hot workability by incorporating specific amounts of Cr or further Zr and/or Mn to Al and also adding and incorporating specific alloying elements. CONSTITUTION:A molten Al alloy having a composition containing, by weight, 3-20% Cr and <=10% of one or >=2 elements selected from the group consisting of Fe, Ti, Co, Ni, V, Ce, Mo, La, Nb, Y and Hf or further containing either or both of Zr and Mn by <=7% is cooled rapidly at 10<2>-10<6> deg.C/sec cooling rate, by which an Al alloy powder formed of the above composition and having a structure in which reapective grain sizes of the crystallized grain and the precipitated grain of in intermetallic compound are regulated to <=10mum is prepared. This Al alloy powder is subjected to hot extrusion in a nonoxidizing atmosphere at >=450 deg.C, by which the heat-resisting Al alloy for powder metallurgy used for connecting rod for internal combustion engine, etc., and excellent in high temp. strength and hot workability can be obtained.

Description

【発明の詳細な説明】 IL上立旦皿±1 本発明は、高温で強度低下が少なく、熱間加工性の良好
なる粉末冶金用耐熱Al合金に係り、特に内燃機関の連
接棒の如く高温に加熱される構造用部材に好適に使用さ
れる耐熱A9合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant Al alloy for powder metallurgy, which exhibits little strength loss at high temperatures and has good hot workability, particularly when used in high-temperature applications such as connecting rods of internal combustion engines. The present invention relates to a heat-resistant A9 alloy that is suitably used for structural members that are heated.

−のp 耐熱性の優れたAl合金として、Sλを18〜25重量
%も含むピストン用合金(通称、アルシル)が知られて
いる。この高8=含有Al1合金は鋳造用合金であって
、鋳造法によれば、粗大な初晶SLが晶出して必要な強
度が得られないため、改良処理〈例、溶場中にNaを添
加する)を行なって初晶Sλ粉粒子微細化を計っている
。しかしながら、その微細化効果には限界があり、また
溶解法により得たA9合金は温度150℃以上で急速に
軟化するという弱点があるところから、高SL含有過共
晶AfJ合金粉末をアトマイジング法で製造することに
より初晶SLの粒径を数μm程度に抑え、その圧粉成形
体を熱間押出し加工して高強度のAl合金焼結材を得る
方法が提案されている。
- p As an Al alloy with excellent heat resistance, a piston alloy (commonly known as Alsil) containing 18 to 25% by weight of Sλ is known. This high 8 = Al1 alloy is a casting alloy, and according to the casting method, coarse primary crystals SL crystallize and the necessary strength cannot be obtained. (addition)) to refine the primary crystal Sλ powder particles. However, there are limits to its refinement effect, and the A9 alloy obtained by the melting method has the disadvantage of rapidly softening at temperatures above 150°C. A method has been proposed in which the particle size of the primary crystal SL is suppressed to about several μm by manufacturing, and the compacted product is hot extruded to obtain a high-strength Al alloy sintered material.

例えば、この方法によって得た1l−8Fe系合金焼結
材は耐熱性良好であり、温度200℃で30kgf/m
m2に達する引張り強度を有している。
For example, the 1l-8Fe based alloy sintered material obtained by this method has good heat resistance, and is 30 kgf/m at a temperature of 200°C.
It has a tensile strength of up to m2.

を ° るための   よび 本発明は斯かる技術的背景の下に創案されたものであり
、その目的は粉末冶金法によりへ1−8Fe系合金より
も更に優れた耐熱性を有するAJI合金を提供すること
である。
The present invention was devised against this technical background, and its purpose is to provide an AJI alloy that has even better heat resistance than 1-8Fe alloys by powder metallurgy. It is to be.

この目的は、■Crを3〜20重間%、 Fe。This purpose is: ■ 3 to 20% by weight of Cr and Fe.

T、t、Go、NL、v、Ce、Mo、La、Nb。T, t, Go, NL, v, Ce, Mo, La, Nb.

Y、Hfからなる群より選ばれた一種の合金元素を10
重量%未満または二種以上の合金元素を計10重量%未
満含有し、残部が不可避不純物と11であることを特徴
とする粉末冶金用耐熱AfJ合金、および■Crを3〜
20重世%、 Zr、 Mnのうち一方の合金元素を7
1四%未満または両合金元素を7重量%未満、Fe、T
=、Co、Ni、V。
10 types of alloying elements selected from the group consisting of Y and Hf
A heat-resistant AfJ alloy for powder metallurgy, characterized in that it contains less than 10% by weight or less than 10% by weight of two or more alloying elements, with the balance being unavoidable impurities and 11%, and
20%, one of the alloying elements of Zr and Mn is 7%
Less than 14% or less than 7% by weight of both alloying elements, Fe, T
=, Co, Ni, V.

Ce、Mo、La、Nb、Y、Hfからなる群より選ば
れた一種の合金元素を10重0%未満または二種以上の
合金元素を計10重伍%未満含有し、残部が不可避不純
物とAlであることを特徴とする粉末冶金用耐熱Al合
金を提供することによって達成される。
Contains less than 10% by weight of one alloying element selected from the group consisting of Ce, Mo, La, Nb, Y, and Hf, or less than 10% by weight in total of two or more alloying elements, with the remainder being unavoidable impurities. This is achieved by providing a heat-resistant Al alloy for powder metallurgy, which is characterized by being made of Al.

粉末冶金法において、A、lI中に固溶限界を越えてC
r、Fe、Tt等の合金元素を添加し、該合金元素とA
lとの金属間化合物を微細に分散品出。
In powder metallurgy, C exceeds the solid solubility limit in A and I.
By adding alloying elements such as r, Fe, and Tt, the alloying elements and A
A product with finely dispersed intermetallic compounds.

分散析出させると、マトリックス中へのOr。When dispersed and precipitated, Or into the matrix.

Fe、Tt等の固溶による強化および金属間化合物粒子
の晶出、析出による強化を計ることが可能である。しか
るに、析出した金属間化合物粒子は常温で安定であるも
のの、温度上昇とともにマトリックス中に固溶し、金属
間化合物粒子の析出による硬化効果は次第に失われる。
It is possible to strengthen by solid solution of Fe, Tt, etc. and by crystallization or precipitation of intermetallic compound particles. However, although the precipitated intermetallic compound particles are stable at room temperature, as the temperature rises, they become solid dissolved in the matrix, and the hardening effect due to the precipitation of the intermetallic compound particles is gradually lost.

その際、マトリックス中への金属間化合物粒子の固溶速
度は主として合金元素のAl中での拡散係数(CII1
27秒)に依存する。すなわち、Al合金焼結材の耐熱
性を向上させるためには、拡散係数が小さく、かつ固溶
限界の小さな金属間化合物形成元素を添加する必要があ
る。拡散係数の小さい合金元素の代表例4;tcr(A
j中テノ拡散係数= 10−” 〜10−”C112/
秒)であり、Crの添加によってA9合金の耐熱性が向
上する。この他、Aj中での拡散係数。
At that time, the solid solution rate of intermetallic compound particles in the matrix is mainly determined by the diffusion coefficient of alloying elements in Al (CII1
27 seconds). That is, in order to improve the heat resistance of the sintered Al alloy material, it is necessary to add an intermetallic compound-forming element that has a small diffusion coefficient and a small solid solubility limit. Representative example 4 of alloying elements with small diffusion coefficient; tcr(A
j medium teno diffusion coefficient = 10-” ~10-”C112/
sec), and the addition of Cr improves the heat resistance of the A9 alloy. In addition, the diffusion coefficient in Aj.

固溶限界が小さい元素として、Zr、 Mn、 Fe。Zr, Mn, and Fe are elements with small solid solubility limits.

T、t、Go、NL、V、Ce、Mo、La、Nb。T, t, Go, NL, V, Ce, Mo, La, Nb.

Y、Hf等を挙げることができ、これ等はいずれもAl
合金の耐熱性を向上させる。
Examples include Y, Hf, etc., which are all Al
Improves the heat resistance of the alloy.

なお、留意すべきは、前記金属間化合物が粗大化すると
Al1合金焼結材の機械的性質が損われるため、溶融状
態からの冷却速度を十分大ぎくして粉末を製造すべき点
である。要求される冷却条件は冷却速度102〜b 度によって晶出または析出される金属間化合物の大きさ
を10μm以下に抑えることができる。
It should be noted that if the intermetallic compound becomes coarse, the mechanical properties of the Al1 alloy sintered material will be impaired, so the cooling rate from the molten state should be sufficiently increased to produce the powder. The required cooling conditions are such that the cooling rate is 102 to 100°C, so that the size of intermetallic compounds that are crystallized or precipitated can be suppressed to 10 μm or less.

Ajl中に添加する合金元素の添加理由は以下の通りで
ある。
The reason for adding the alloying elements to Ajl is as follows.

■Cr (3〜20重量%)・・・Crは必須添加成分
であり、常温強度および高温強度の向上、クリープ特性
の改善を計るために添加される。ただし、3重D%未満
では常温および200℃での強度が低く(引張り強度<
30kgf/mn+2) 、20重量%を越えると展延
性が低下し、熱間加工が難しくなる。
(2) Cr (3 to 20% by weight) Cr is an essential additive component, and is added to improve the room temperature strength and high temperature strength, as well as the creep properties. However, if it is less than 3x D%, the strength at room temperature and 200°C is low (tensile strength <
30kgf/mn+2), exceeding 20% by weight, the malleability decreases and hot working becomes difficult.

■Fe、Tz、 co等−F e 、 T L、 G 
O。
■Fe, Tz, co, etc. - Fe, T L, G
O.

Ni、V、Ce、Mo、La、Nb、Y、Hfは常温強
度、高温強度の向上に寄与する。ただし、過剰添加は展
延性を阻害し、熱間加工を困難にする。前記合金元素の
うちの一種または二種以上の総添加mは10重0%未満
にすべきであり、この範囲を越えると展延性が損われる
Ni, V, Ce, Mo, La, Nb, Y, and Hf contribute to improving room temperature strength and high temperature strength. However, excessive addition inhibits malleability and makes hot working difficult. The total addition m of one or more of the alloying elements should be less than 10% by weight, and if this range is exceeded, malleability will be impaired.

■Mn、Zr・Zr、Mn、Fe、T=、Go。■Mn, Zr・Zr, Mn, Fe, T=, Go.

NL、v、Ce、MO,La、Nb、Y、Hfのうち、
その二種以上を添加した場合に添加元素同志で金属間化
合物を形成するものとしてMn。
Among NL, v, Ce, MO, La, Nb, Y, Hf,
Mn forms an intermetallic compound with the added elements when two or more of them are added.

Zr、Fe、 NL、Go等を揚げ得るが、Mn。Zr, Fe, NL, Go, etc. can be fried, but Mn.

Zrは、本発明合金における必須添加成分であるCrと
も金属間化合物を形成するため、他の合金元素に比して
少量(7重量%未満)にて析出強化を計り得る反面、過
剰のMn、Zrは著しく伸び率を低下させる。故に、M
n、Zrの一方または両方の上限添加量を7重量%未満
とする。
Since Zr forms an intermetallic compound with Cr, which is an essential additive component in the alloy of the present invention, precipitation strengthening can be achieved with a small amount (less than 7% by weight) compared to other alloying elements, but excessive Mn, Zr significantly reduces the elongation rate. Therefore, M
The upper limit addition amount of one or both of n and Zr is less than 7% by weight.

次に、本発明組成のAg合金粉末を用いた焼結材の製造
方法例について説明する。
Next, an example of a method for producing a sintered material using the Ag alloy powder having the composition of the present invention will be described.

■粉末の製造・・・本発明組成のAl合金粉末(粒径1
05μm未i>を、Heガスを用いたアトマイズ法、遠
心噴霧法等により冷却速度102〜b/秒なる条件を満
たすように製造する。
■Production of powder...Al alloy powder of the composition of the present invention (particle size 1
05 μm <i> is manufactured by an atomization method using He gas, a centrifugal spray method, etc. so as to satisfy the condition of a cooling rate of 10 2 -b/sec.

■圧粉成形・・・得られた粉末を、冷間静水圧プレス成
形法(CIP法)により圧力4.OOOkgf/cm 
2として、寸法50mIIlφx 100mrnの押出
し加工用素材を得る。
■Powder compacting: The obtained powder is subjected to cold isostatic press molding (CIP method) at a pressure of 4. OOOkgf/cm
As No. 2, a material for extrusion processing with dimensions of 50 mIIlφx 100 mrn was obtained.

■熱間押出し加工(焼結)・・・圧粉体である押出し加
工用素材を炉内温度450℃の均熱炉内に設置し、1時
間保持して脱ガスを行い、次いで温度450℃、押出し
比14なる条件で熱間押出し加工を行う。なお、成形品
の酸化防止を考慮するならば、アルゴンガス、窒素ガス
等の非酸化性雰囲気中で加工を行うのが好ましい。
■Hot extrusion processing (sintering)...The extrusion processing material, which is a green compact, is placed in a soaking furnace with an internal temperature of 450°C, held for 1 hour to degas, and then heated to 450°C. , hot extrusion processing is carried out under the conditions of extrusion ratio 14. Note that in consideration of preventing oxidation of the molded product, it is preferable to perform the processing in a non-oxidizing atmosphere such as argon gas or nitrogen gas.

隨1拠ユ 前記製造方法に則って得た本発明例としての焼結材(A
:特許請求の範囲第1項の発明に対応)(表1)、(B
、C,D、E、F:特許請求の範囲第2項の発明に対応
)(表1)および同様な方法で得た比較例としての焼結
材(a、b、c、d。
Sintered material (A) as an example of the present invention obtained according to the above manufacturing method
: Corresponds to the invention in claim 1) (Table 1), (B
, C, D, E, F: corresponding to the invention of claim 2) (Table 1) and sintered materials as comparative examples obtained by the same method (a, b, c, d).

e)(表1)について引張り試験を行い、表2の試験結
果を得た。表中、評価欄の“OI+は温度200℃にお
ける引張り強度が30kgf/mm”以上であり、伸び
率が1%を越えて熱間加工性が良好であるものを示し、
前記引張り強度条件を満たさないが他の条件を満たすも
のを△”、前記全ての条件を満たさないものを×″とし
た。
e) A tensile test was conducted on (Table 1), and the test results in Table 2 were obtained. In the table, "OI+" in the evaluation column indicates that the tensile strength at 200 ° C. is 30 kgf/mm or more, the elongation rate is more than 1%, and the hot workability is good.
Those that did not meet the above tensile strength conditions but satisfied other conditions were rated △", and those that did not meet all of the above conditions were rated x".

(以下、余白) 表1 表2 く試験結果の評価〉 ■本発明例(A、8.C,D、E、F、G、ト1゜りと
比較例(a、b、c、d、e、f、g、h。
(The following are blank spaces) Table 1 Table 2 Evaluation of test results> ■ Inventive examples (A, 8. e, f, g, h.

i)との対比から、本発明組成範囲の合金は晶出物、析
出物の粒径が小さく、常l、  200℃における強度
が十分大きいことが判る。温度300℃においては、本
発明例(B)を除く他の全ての本発明組成範囲の合金が
30kgf/am2以上の引張り強度を有している。ま
た、本発明例は伸び率が1%を越えており、熱間加工性
も良好であった。
From comparison with i), it can be seen that the alloys within the composition range of the present invention have small grain sizes of crystallized substances and precipitates, and have sufficiently high strength at 200°C. At a temperature of 300° C., all alloys in the composition range of the present invention except for Inventive Example (B) have a tensile strength of 30 kgf/am 2 or more. Moreover, the elongation rate of the present invention example exceeded 1%, and the hot workability was also good.

■本発明例(A)と比較例(a)との対比から、規定範
囲のCrを含み、Mn、 Zrを含まないものにおいて
、Fe、TLの添加が常温、200℃。
(2) Comparing Inventive Example (A) and Comparative Example (a), it was found that Fe and TL were added at room temperature and 200°C in those containing Cr in the specified range but not Mn and Zr.

300℃における十分大きな引張り強度を与えることが
判る。
It can be seen that a sufficiently large tensile strength at 300°C is provided.

■比較例(a、 b)から、Zr、 Mnの添加が常温
■From comparative examples (a and b), Zr and Mn were added at room temperature.

200℃、300℃における引張り強度の向上に有効で
あることが判る。
It can be seen that this is effective in improving the tensile strength at 200°C and 300°C.

■本発明例(H,I)と比較例(1)との対比からZr
、Mnを過剰添加(7重量%以上)すると著しく脆化す
ることが判る。
■ From the comparison between the invention examples (H, I) and comparative example (1), Zr
, it can be seen that excessive addition of Mn (7% by weight or more) causes significant embrittlement.

■本発明例(B、 C、G)から、Crff1が増すと
許容範囲内で伸び率が低下するものの、常温から高温に
到る温度範囲で引張り強度が大幅に向上することが判る
(2) From the inventive examples (B, C, and G), it can be seen that as Crff1 increases, the elongation rate decreases within the allowable range, but the tensile strength significantly improves in the temperature range from room temperature to high temperature.

■本発明例(B)と比較例(b)との対比から、規定範
囲のCrを含み、Mn、 zrを含むものにおいて、T
Lの添加により常温から高温に到る温度範囲で引張り強
度が若干向上し、伸び率が向上することが判る。
■From the comparison between the present invention example (B) and the comparative example (b), it is found that in those containing Cr in the specified range and Mn and zr, T
It can be seen that the addition of L slightly improves the tensile strength and the elongation rate in the temperature range from room temperature to high temperature.

■本発明例(C)と比較例(C)との対比から、添加元
素量が同一であっても晶出物、析出物の粒径が過大(溶
解材における晶出物、析出物の粒径と同程度)であると
著しく脆化することが判る。
■A comparison between the inventive example (C) and the comparative example (C) shows that even if the amount of added elements is the same, the particle size of crystallized substances and precipitates is excessive (grains of crystallized substances and precipitates in the melted material). It can be seen that if the diameter is about the same as the diameter), it becomes extremely brittle.

■比較例(f)から、Mn、zrを含んでもCr量が3
重量%未満では伸び率が極めて大きいものの、常温から
高温(300℃)に到る温度範囲での必要な引張り強度
が得られないことが判る。
■From comparative example (f), even if Mn and zr are included, the Cr content is 3.
It can be seen that if the elongation is less than % by weight, the elongation rate is extremely high, but the necessary tensile strength in the temperature range from room temperature to high temperature (300° C.) cannot be obtained.

■比較例(a、 b)から、Cr以外の合金元素を添加
しなければ伸び率は大きいものの、常温から高温(30
0℃)に到る温度範囲での必要な引張り強度が得られな
いことが判る。
■Comparative examples (a, b) show that if alloying elements other than Cr are not added, the elongation rate is high, but at room temperature to high temperature (30
It can be seen that the necessary tensile strength cannot be obtained in the temperature range down to 0°C.

■比較例(d、 e)から、Or添加量が過剰であると
著しく脆化することが判る。
■Comparative Examples (d, e) show that excessive addition of Or causes significant embrittlement.

■比較例(a、 h)から、Mn、Zrの有無にかかわ
らずCr以外の合金元素(Fe、T=等)の総添加量が
10重量%以上になると著しく脆化することが判る。
② Comparative Examples (a, h) show that irrespective of the presence or absence of Mn and Zr, when the total amount of alloying elements other than Cr (Fe, T=, etc.) added exceeds 10% by weight, significant embrittlement occurs.

1簾■ユ 前述の製造方法に則って得た本発明例としての焼結材(
特許請求の範囲第1項に記載された発明に対応するもの
・・・B、D、!、特許請求の範囲第3項に記載された
発明に対応するもの・・・A、C。
1 Sintered material as an example of the present invention obtained according to the above-mentioned manufacturing method (
What corresponds to the invention stated in claim 1...B, D,! , those corresponding to the invention described in claim 3...A, C.

E、F、G、H,J)および同様な方法で得た比較例と
しての焼結材(a)につき、未熱処理材と熱処理材(温
度300℃で100時間保持したもの)との硬度(Hm
V)を調べ、これを表3に示した。
E, F, G, H, J) and the sintered material (a) as a comparative example obtained by the same method, the hardness ( Hm
V) was investigated and shown in Table 3.

(以下、余白) 表3 く試験結果の評価〉 本発明例(A−J)と比較例(a)との対比から、Cr
以外の合金元素の添加によって非熱処理材および熱処理
材の硬度が向上しており、該合金元素の添加により析出
硬化効果を期待でき、高温加熱によってもその効果が然
程失われないことが判る。加熱による析出硬化効果の低
下率が特に小さい試験材(好ましいもの)はA、H,J
である。
(Hereinafter, blank space) Table 3 Evaluation of test results> From the comparison between the inventive example (A-J) and the comparative example (a), it was found that Cr
The hardness of the non-heat-treated material and the heat-treated material is improved by the addition of other alloying elements, and it can be seen that the precipitation hardening effect can be expected by adding the alloying element, and that this effect is not significantly lost even by high-temperature heating. The test materials (preferred materials) that have a particularly small rate of decrease in precipitation hardening effect due to heating are A, H, and J.
It is.

1旦五l」 以上の説明から明らかなように、Crを3〜20重量%
、Fe、Ti、Co、Ni、V、Ce。
As is clear from the above explanation, 3 to 20% by weight of Cr
, Fe, Ti, Co, Ni, V, Ce.

MO,L a、 N b、 Y、 Hf カラナルIJ
にす3!Hfれた一種の合金元素を10重量%未満また
は二種以上の合金元素をH110重橙%未満含有し、残
部が不可避不純物とΔgであることを特徴とする粉末冶
金用耐熱へ1白金、および■Crを3〜20重量%。
MO, La, N b, Y, Hf Karanal IJ
Nisu 3! 1 Platinum for heat-resistant powder metallurgy characterized by containing less than 10% by weight of one type of alloying element or less than 110% by weight of two or more alloying elements, with the balance being unavoidable impurities and Δg, and ■3 to 20% by weight of Cr.

Zr、Mnのうち一方の合金元素を7重量%未満または
両合金元素を7重間%未満、Fe、TL。
One of the alloying elements of Zr and Mn is less than 7% by weight, or both alloying elements are less than 7% by weight, Fe, TL.

Co、NL、V、Ce、Mo、La、Nb、Y。Co, NL, V, Ce, Mo, La, Nb, Y.

Hfからなる群より選ばれた一種の合金元素を10重量
%未満または二種以上の合金元素を計10重口%未満含
有し、残部が不可避不純物とAIであることを特徴とす
る粉が提案された。
A powder is proposed that contains less than 10% by weight of one alloying element selected from the group consisting of Hf or less than 10% by weight of two or more alloying elements, with the balance being unavoidable impurities and AI. It was done.

この組成範囲の合金は、常温から温度200℃に到る温
度範囲で十分な強度を有し、特に特許請求の範囲第3項
に記載された合金は温度300℃においても30kgf
/mm”以上の大きな引張り強度を有しており、また特
許請求請求の範囲第1項、第3項に記載されたいずれの
合金も展延性良好である。
The alloy in this composition range has sufficient strength in the temperature range from room temperature to 200°C, and in particular, the alloy described in claim 3 has a strength of 30 kgf even at a temperature of 300°C.
/mm'' or more, and both of the alloys described in Claims 1 and 3 have good malleability.

Claims (4)

【特許請求の範囲】[Claims] (1)Crを3〜20重量%、Fe、Ti、Co、Ni
、V、Ce、Mo、La、Nb、Y、Hfからなる群よ
り選ばれた一種の合金元素を10重量%未満または二種
以上の合金元素を計10重量%未満含有し、残部が不可
避不純物とAlであることを特徴とする粉末冶金用耐熱
Al合金。
(1) 3 to 20% by weight of Cr, Fe, Ti, Co, Ni
, V, Ce, Mo, La, Nb, Y, Hf, or less than 10% by weight of two or more alloying elements, with the remainder being unavoidable impurities. A heat-resistant Al alloy for powder metallurgy, characterized by comprising: and Al.
(2)そのマトリックス中に存在する金属間化合物の晶
出粒子および析出粒子が粒径10μm以下であることを
特徴とする特許請求の範囲第1項に記載された粉末冶金
用耐熱Al合金。
(2) The heat-resistant Al alloy for powder metallurgy according to claim 1, wherein the crystallized particles and precipitated particles of the intermetallic compound present in the matrix have a particle size of 10 μm or less.
(3)Crを3〜20重量%、Zr、Mnのうち一方の
合金元素を7重量%未満または両合金元素を7重量%未
満、Fe、Ti、Co、Ni、V、Ce、Mo、La、
Nb、Y、Hfからなる群より選ばれた一種の合金元素
を10重量%未満または二種以上の合金元素を計10重
量%未満含有し、残部が不可避不純物とAlであること
を特徴とする粉末冶金用耐熱Al合金。
(3) 3 to 20% by weight of Cr, less than 7% by weight of one of Zr and Mn or less than 7% of both alloying elements, Fe, Ti, Co, Ni, V, Ce, Mo, La ,
It is characterized by containing less than 10% by weight of one type of alloying element selected from the group consisting of Nb, Y, and Hf, or less than 10% by weight in total of two or more types of alloying elements, with the balance being unavoidable impurities and Al. Heat-resistant Al alloy for powder metallurgy.
(4)そのマトリックス中に存在する金属間化合物の晶
出粒子および析出粒子が粒径10μm以下であることを
特徴とする特許請求の範囲第3項に記載された粉末冶金
用耐熱Al合金。
(4) The heat-resistant Al alloy for powder metallurgy according to claim 3, wherein the crystallized particles and precipitated particles of the intermetallic compound present in the matrix have a particle size of 10 μm or less.
JP30590487A 1987-12-01 1987-12-04 Heat-resistant al alloy for powder metallurgy Pending JPH01149936A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30590487A JPH01149936A (en) 1987-12-04 1987-12-04 Heat-resistant al alloy for powder metallurgy
CA000584522A CA1330400C (en) 1987-12-01 1988-11-30 Heat-resistant aluminum alloy sinter and process for production of the same
US07/278,581 US5022918A (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same
DE3888308T DE3888308T2 (en) 1987-12-01 1988-12-01 Heat-resistant, sintered aluminum alloy and process for its production.
EP88311390A EP0319295B1 (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30590487A JPH01149936A (en) 1987-12-04 1987-12-04 Heat-resistant al alloy for powder metallurgy

Publications (1)

Publication Number Publication Date
JPH01149936A true JPH01149936A (en) 1989-06-13

Family

ID=17950699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30590487A Pending JPH01149936A (en) 1987-12-01 1987-12-04 Heat-resistant al alloy for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH01149936A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234740A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH0234738A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH02194142A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al-base alloy powder for sintering
JPH0525575A (en) * 1990-11-19 1993-02-02 Inco Alloys Internatl Inc High temperature aluminum alloy
JPH05239583A (en) * 1992-02-28 1993-09-17 Yoshida Kogyo Kk <Ykk> High strength heat resistant aluminum alloy, its compacted and caked material and its production
JP2006104563A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN ABRASION RESISTANCE AND WORKABILITY
JP2006104562A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY
WO2006040938A1 (en) * 2004-10-08 2006-04-20 Kabushiki Kaisha Kobe Seiko Sho HEAT RESISTANT Al BASE ALLOY EXCELLING IN HIGH-TEMPERATURE FATIGUE PROPERTY, DUMPING PROPERTY, ABRASION RESISTANCE AND WORKABILITY
JP2006104564A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY AND VIBRATION-DAMPING PROPERTY
JP2006104561A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116352A (en) * 1982-09-03 1984-07-05 アルカン・インタ−ナシヨナル・リミテイド Structural aluminum base alloy
JPS60215730A (en) * 1983-11-29 1985-10-29 セジユデユ−ル・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミニウム・ペシネ Aluminum base alloy high in heat stability
JPS624851A (en) * 1985-06-26 1987-01-10 ビ−ビ−シ− アクチエンゲゼルシヤフトブラウン ボヴエリ ウント コムパニ− Aluminum alloy suitable for cooling from melt containing oversaturated alloy component
JPS62250145A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250146A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62270704A (en) * 1986-05-19 1987-11-25 Kobe Steel Ltd Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPH01147037A (en) * 1987-12-01 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116352A (en) * 1982-09-03 1984-07-05 アルカン・インタ−ナシヨナル・リミテイド Structural aluminum base alloy
JPS60215730A (en) * 1983-11-29 1985-10-29 セジユデユ−ル・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミニウム・ペシネ Aluminum base alloy high in heat stability
JPS624851A (en) * 1985-06-26 1987-01-10 ビ−ビ−シ− アクチエンゲゼルシヤフトブラウン ボヴエリ ウント コムパニ− Aluminum alloy suitable for cooling from melt containing oversaturated alloy component
JPS62250145A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250146A (en) * 1986-04-23 1987-10-31 Toyo Alum Kk Heat-resisting aluminum powder metallurgical alloy and its production
JPS62270704A (en) * 1986-05-19 1987-11-25 Kobe Steel Ltd Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPH01147037A (en) * 1987-12-01 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234740A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH0234738A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
JPH02194142A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al-base alloy powder for sintering
JPH0525575A (en) * 1990-11-19 1993-02-02 Inco Alloys Internatl Inc High temperature aluminum alloy
JPH05239583A (en) * 1992-02-28 1993-09-17 Yoshida Kogyo Kk <Ykk> High strength heat resistant aluminum alloy, its compacted and caked material and its production
JP2006104562A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY
JP2006104563A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN ABRASION RESISTANCE AND WORKABILITY
WO2006040938A1 (en) * 2004-10-08 2006-04-20 Kabushiki Kaisha Kobe Seiko Sho HEAT RESISTANT Al BASE ALLOY EXCELLING IN HIGH-TEMPERATURE FATIGUE PROPERTY, DUMPING PROPERTY, ABRASION RESISTANCE AND WORKABILITY
JP2006104564A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY AND VIBRATION-DAMPING PROPERTY
JP2006104561A (en) * 2004-10-08 2006-04-20 Kobe Steel Ltd HEAT-RESISTANT Al-BASED ALLOY SUPERIOR IN HIGH-TEMPERATURE FATIGUE PROPERTY
JP4704722B2 (en) * 2004-10-08 2011-06-22 株式会社神戸製鋼所 Heat-resistant Al-based alloy with excellent wear resistance and workability
JP4704720B2 (en) * 2004-10-08 2011-06-22 株式会社神戸製鋼所 Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
EP0361524B1 (en) Ni-base superalloy and method for producing the same
JPS63157831A (en) Heat-resisting aluminum alloy
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JP2008520826A (en) Alloy based on titanium aluminum
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
US4386976A (en) Dispersion-strengthened nickel-base alloy
JPH01149936A (en) Heat-resistant al alloy for powder metallurgy
US5608174A (en) Chromium-based alloy
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JP3894987B2 (en) Heat-resistant platinum material
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JPH03219037A (en) Ni base shape memory alloy and its manufacture
JPH04501440A (en) Improved nickel aluminide alloy for high temperature structural materials
JPH01147038A (en) Heat-resistant al alloy for powder metallurgy
JP2991557B2 (en) Fe-cr-al powder alloy
JPH0762199B2 (en) A1-based alloy
JPH01152229A (en) Fiber reinforced heat-resistant al alloy powder sintered material
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JP2711296B2 (en) Heat resistant aluminum alloy
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
JPH01147037A (en) Heat-resistant al alloy for powder metallurgy
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JPS62151533A (en) Production of age hardening type copper strip