JPH01152229A - Fiber reinforced heat-resistant al alloy powder sintered material - Google Patents
Fiber reinforced heat-resistant al alloy powder sintered materialInfo
- Publication number
- JPH01152229A JPH01152229A JP31096387A JP31096387A JPH01152229A JP H01152229 A JPH01152229 A JP H01152229A JP 31096387 A JP31096387 A JP 31096387A JP 31096387 A JP31096387 A JP 31096387A JP H01152229 A JPH01152229 A JP H01152229A
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- sintered material
- alloy
- fiber
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 40
- 239000000843 powder Substances 0.000 title claims abstract description 33
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 25
- 239000000835 fiber Substances 0.000 title claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract 2
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 239000000956 alloy Substances 0.000 claims description 27
- 238000005275 alloying Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 229910000765 intermetallic Inorganic materials 0.000 claims description 8
- 238000000034 method Methods 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 12
- 238000007792 addition Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
L1上二且工公1
本発明は、内燃顆間の連接棒または弁の如く高温に加熱
されるM4造周部材に好適に使用される繊維強化された
耐熱AtJ合金粉末焼結材に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced heat-resistant AtJ alloy that is suitably used for M4 circumferential members that are heated to high temperatures, such as connecting rods between internal combustion condyles or valves. This relates to powder sintered materials.
およびその、1 。And 1.
耐熱性の優れた。1合金として、SLを18〜25重母
%も含むビス]ヘン用合金(通称、アルシル)が知られ
ている。この高SL含有A、l+合金は鋳造用合金であ
って、鋳造法によれば、粗大な初晶SLが晶出して必要
な強度が19られないため、改良処理(例、溶湯中にN
aを添加する)を行なって初品S2の微細化を計ってい
る。しかしながら、その微細化効果には限界があり、ま
た溶解法によりて得たAfJ合金は温度150℃以上で
急速に軟化するという欠点があるところから、高SL含
有過共晶Al合金粉末をアトマイジング法で製造するこ
とにより初晶S=の粒径を数μmff1度に抑え、その
圧粉成形体を熱間押出し加工して高強度のAl合金焼結
材を得る方法が提案されている。同様な方法によって(
qたAtJ−8Fe系合金焼結材は耐熱性良好であり、
温度300℃で約30kof/mm2に達する引張り強
度を有している。Excellent heat resistance. As one alloy, an alloy for bis]hen (commonly known as arsil) containing 18 to 25 percent SL is known. This high SL content A, l+ alloy is a casting alloy, and according to the casting method, coarse primary SL crystals crystallize and the necessary strength cannot be achieved.
(adding a) to make the initial product S2 finer. However, there is a limit to its refinement effect, and the AfJ alloy obtained by the melting method has the disadvantage of rapidly softening at temperatures above 150°C, so hypereutectic Al alloy powder with high SL content is atomized. A method has been proposed in which the particle size of the primary crystal S= is suppressed to several μmff1 degree by manufacturing by a method, and the compacted product is hot extruded to obtain a high-strength Al alloy sintered material. By a similar method (
The AtJ-8Fe based alloy sintered material has good heat resistance,
It has a tensile strength of about 30 kof/mm2 at a temperature of 300°C.
このAl−8Fe系合金焼結材の強度を更に向上さける
には、原r1粉末中に強化繊維を配合すると良い。とこ
ろが、ウィスカーまたは短繊維で強化した材料は、長繊
維強化材に比して高温での強度低下が著しく、高温強度
がマトリックス金属に依存するという特徴があり、また
製品の切削性を考慮するとき繊維体積率(Vf)を25
%以下に抑えるべきであるが故に、!I維強化による強
度向上ωは、マトリックス金属単体強度の1.5倍が限
界であることから、ウィスカーまたは短繊維で強化した
材料の高温強度向上を計るにはマトリックス金属の高温
強度を向上させなければならない。In order to further improve the strength of this Al-8Fe alloy sintered material, reinforcing fibers may be added to the raw r1 powder. However, materials reinforced with whiskers or short fibers exhibit a significant decrease in strength at high temperatures compared to long fiber reinforced materials, and their high-temperature strength depends on the matrix metal. Fiber volume fraction (Vf) 25
Because it should be kept below %! The strength improvement ω due to I-fiber reinforcement is limited to 1.5 times the strength of the matrix metal alone, so in order to improve the high-temperature strength of materials reinforced with whiskers or short fibers, the high-temperature strength of the matrix metal must be improved. Must be.
Or を 1 るための および一
本発明は斯かる技術向背…の下に創案されたものであり
、その目的はAl−8Fe系合金よりも優れた常温およ
び高温強度を有する繊維強化された耐熱Al合金粉末焼
結材を提供することである。The present invention was devised with this technical background in mind, and its purpose is to develop a fiber-reinforced heat-resistant Al having superior room temperature and high temperature strength than Al-8Fe alloys. An object of the present invention is to provide an alloy powder sintered material.
この目的は、Cr3〜20重母%と、co、NL。The purpose is to contain 3 to 20% Cr, co, NL.
Mn、Zr、V、Ce、Fe、TL、MO,1a。Mn, Zr, V, Ce, Fe, TL, MO, 1a.
Nb、Y、Hfからなる群より選ばれた一種の合金元素
10重重重未満または二種以上の合金元素計10重量%
未満と、不可避不純物を含む残部A、flとから成るA
tJ合金粉末に無機質ウィスカーまたは無1M質短繊維
を混合して焼結してなる繊維強化された耐熱Δg合金粉
末焼結材を提供することによって達成される。Less than 10% by weight of an alloying element selected from the group consisting of Nb, Y, and Hf, or 10% by weight of two or more alloying elements
and the remainder A and fl containing unavoidable impurities.
This is achieved by providing a fiber-reinforced heat-resistant Δg alloy powder sintered material made by mixing tJ alloy powder with inorganic whiskers or non-1M short fibers and sintering the mixture.
粉末冶金法において、AfJ中に固溶限界を越えてCr
、Go、NL1Mn等の合金元素を添加し、Δn−cr
系、Δg−2r系等の金属間化合物を微細に分散品出1
分散析出させると、マトリックス中へのCr、Go等の
固溶による強化および金属間化合物粒子の晶出、析出に
よる強化を計ることが可能である。しかるに、析出した
金属間化合物粒子は常温で安定であるものの、温度TR
どともにマトリックス中に固溶し、金属間化合物粒子の
析出による硬化効果は次第に失われる。その際、マトリ
ックス中への金属間化合物粒子の固溶速度は主として合
金元素のΔρ中での拡散係数(cm’/秒)に依存する
。すなわち、AfJ合金焼結材の耐熱性を向上させるた
めには、拡散係数が小ざく、かつ固溶限界の小さな金属
間化合物形成元素を添加する必要がある。拡散係数の小
さい合金元素の代表例はCr(AJ)中での拡散係数=
10−” 〜10−”cm27秒)であり、Crの添
加によってΔ1合金の耐熱性が向上する。この他、Aρ
中での拡散係数、固溶限界が小さい元素として、Go、
NL。In powder metallurgy, Cr exceeds the solid solubility limit during AfJ.
, Go, NL1Mn and other alloying elements, Δn-cr
Finely dispersed intermetallic compounds such as Δg-2r series and Δg-2r series 1
When dispersed and precipitated, it is possible to strengthen by solid solution of Cr, Go, etc. in the matrix and by crystallization and precipitation of intermetallic compound particles. However, although the precipitated intermetallic compound particles are stable at room temperature,
Both are dissolved in the matrix, and the hardening effect due to precipitation of intermetallic compound particles is gradually lost. In this case, the rate of solid solution of the intermetallic compound particles into the matrix mainly depends on the diffusion coefficient (cm'/sec) of the alloying element in Δρ. That is, in order to improve the heat resistance of the AfJ alloy sintered material, it is necessary to add an intermetallic compound-forming element that has a small diffusion coefficient and a small solid solubility limit. A typical example of an alloy element with a small diffusion coefficient is the diffusion coefficient in Cr (AJ) =
10-'' to 10-''cm27 seconds), and the addition of Cr improves the heat resistance of the Δ1 alloy. In addition, Aρ
Go is an element with a small diffusion coefficient and solid solubility limit in
N.L.
Mn、Zr、V、Ce、Fe、TL、Mo、La。Mn, Zr, V, Ce, Fe, TL, Mo, La.
Nb、Y、Hf等を挙げることができ、これ等はいずれ
もAN合金の耐熱性を向上させる。Examples include Nb, Y, Hf, etc., all of which improve the heat resistance of the AN alloy.
なお、留意すべきは、前記金属間化合物が粗大化すると
AIJ合金焼結材の機械的性質(強度、伸び特性)が1
0ねれるため、溶融状態からの冷却速度を十分大きくし
て粉末を製造すべき点である。It should be noted that when the intermetallic compound becomes coarse, the mechanical properties (strength, elongation properties) of the AIJ alloy sintered material decrease to 1.
Therefore, the cooling rate from the molten state should be sufficiently increased to produce the powder.
要求される冷却条件は冷却速度102〜bであり、この
冷却速度によって晶出または析出する金属間化合物の大
きさを10μm以下に抑えることができる。The required cooling condition is a cooling rate of 102-b, and this cooling rate allows the size of the intermetallic compound to be crystallized or precipitated to be suppressed to 10 μm or less.
一方、Al合金粉末に配合するウィスカーとしテハ、S
=C,SLs N4 、に20 ・6T、LCh 。On the other hand, as a whisker to be mixed with Al alloy powder, Teha, S
=C, SLs N4, 20 ・6T, LCh.
Al20s等の各ウィスカーを挙げることができ、短繊
維(長繊維を切断したものを含む)としては、SλC,
AN 20s等の各繊維を挙げることができる。ウィス
カー、短繊維はAl合金粉末に均一に混合され、圧粉成
形とその後の熱間押出し加工によって焼結材になされる
。なお、ウィスカー。Various whiskers such as Al20s can be mentioned, and examples of short fibers (including those cut from long fibers) include SλC,
Various fibers such as AN 20s can be mentioned. The whiskers and short fibers are uniformly mixed with Al alloy powder and made into a sintered material by compaction and subsequent hot extrusion. In addition, whiskers.
短繊維をAl1合金粉末中に均一に混合(分散)させる
ためにはlI維径に対する粉末粒子径の比(粉末粒子径
/繊維径)を1500未満にするのが好ましい。ただし
、前記径比が1/200未満になると粉末が微細過ぎて
その取扱いが烈しい。In order to uniformly mix (disperse) the short fibers in the Al1 alloy powder, it is preferable that the ratio of the powder particle diameter to the lI fiber diameter (powder particle diameter/fiber diameter) be less than 1,500. However, if the diameter ratio is less than 1/200, the powder is too fine and requires heavy handling.
次に、Al合金粉末につき、AfJ中に添加する合金元
素の添加理由を説明する。Next, the reason for adding alloying elements to AfJ with respect to Al alloy powder will be explained.
■Cr (3〜20ffi ffi%)・・・Crは必
須添加成分であり、常温強度および高温強度の向上、ク
リープ特性の改善を計るために添加される。ただし、3
fnfn%未満では常温および200℃での強度が低く
(引張り強度<30kgf/mm2) 、20tfn%
を越えると著しく脆化し、熱間加工が難しくなるだけで
なく、比重が増大して比耐熱強度が小さくなる不利があ
る。■Cr (3 to 20 ffi ffi%)...Cr is an essential additive component, and is added to improve the room temperature strength and high temperature strength, and improve the creep property. However, 3
If it is less than fnfn%, the strength at room temperature and 200°C is low (tensile strength <30 kgf/mm2), and 20tfn%.
Exceeding this value not only makes it extremely brittle and makes hot working difficult, but also increases the specific gravity and lowers the specific heat resistance, which is disadvantageous.
■Co、NL、Mn等−Co、Nx、Mn。■Co, NL, Mn, etc. - Co, Nx, Mn.
Zr、V、Ce、Fe、TJ、、Mo、La、Nb。Zr, V, Ce, Fe, TJ, Mo, La, Nb.
Y、l(fは常温強度、高温強度の向上に寄与する。Y, l(f contributes to improvement of room temperature strength and high temperature strength.
ただし、過剰添加は展延性を阻害し、熱間加工を困難に
する。前記合金元素のうちの一種または二種以上の総添
加母は10重但%未満にずべぎであり、この範囲を越え
ると展延性が損われる。However, excessive addition inhibits malleability and makes hot working difficult. The total amount of one or more of the alloying elements added is less than 10% by weight, and if this range is exceeded, malleability is impaired.
次に、本発明組成のAl合金粉末を用いた焼結材の製造
方法例について説明する。Next, an example of a method for manufacturing a sintered material using Al alloy powder having the composition of the present invention will be described.
■粉末の製造・・・本発明組成のAtJ合金粉末(粒径
105μm未満)を、Heガスを用いたアトマイズ法、
遠心噴霧法等により冷却速度102〜b/秒なる条件を
満たすように製造する。■ Powder production: AtJ alloy powder having the composition of the present invention (particle size less than 105 μm) is atomized using He gas,
It is manufactured using a centrifugal spraying method or the like so as to satisfy the condition of a cooling rate of 10 2 -b/sec.
■圧粉成形・・・1rIられた粉末に所定繊組体積率(
V+ )のウィスカーまたは短繊維を均一に混合し、こ
れを冷部静水圧プレス成形法(CIP法)により圧力4
,000kgr/cm 2として成形した後、脱ガスを
行い、更に熱間静水圧プレス成形法(IIIP法)にて
押出し加工用素材を得る。■Powder compacting...1rI powder is given a predetermined fiber volume ratio (
V+) whiskers or short fibers are mixed uniformly, and this is heated to a pressure of 4 by cold isostatic press molding (CIP method).
,000 kgr/cm 2 , degassed, and further subjected to hot isostatic press molding (IIIP method) to obtain a material for extrusion processing.
■熱間押出し加工(焼結)・・・押出し加工用素材を炉
内温度450℃の均熱炉内に設置し、1時間保持した後
、温度450℃、押出し比14なる条件で熱間押出し加
工を行う。なお、成形品の酸化防止を考慮するならば、
アルゴンガス、窒素ガス等の非酸化性雰囲気中で加工を
行うのが好ましい。■Hot extrusion processing (sintering): The material for extrusion processing is placed in a soaking furnace with an internal temperature of 450°C, held for 1 hour, and then hot extruded at a temperature of 450°C and an extrusion ratio of 14. Perform processing. In addition, if we consider the prevention of oxidation of molded products,
It is preferable to perform the processing in a non-oxidizing atmosphere such as argon gas or nitrogen gas.
墓鼠■ユ
本発明の焼結材を1!7るために用いられる規定組成の
A41合金粉末のみ(強化lIN不使用)で形成した焼
結材(A、B、C,D、E、F、G、I−1゜1)(表
1)および比較例としての焼結材(a。Sintered materials (A, B, C, D, E, F , G, I-1°1) (Table 1) and a sintered material as a comparative example (a.
b、c、d、e、f、Q、h)(表1)について引張り
試験を行い、表2の試験結果を得た。表中、評価欄の“
O゛°は温度200℃における引張り強度が30kgf
/mm2以上であり、伸び率が1%を越えて熱間加工性
が良好であるものを示し、前記引張り強度条件を満たさ
ないが他の条件を満たすものを゛△゛、前記全ての条件
を満たさないものをX11とした。なお、便宜上焼結材
(A−1’)を本発明例と称する。また、焼結材の製造
は前記繊維強化された焼結材の製造方法に準じてこれを
行なった。b, c, d, e, f, Q, h) (Table 1) were subjected to a tensile test, and the test results in Table 2 were obtained. In the table, “
O゛° has a tensile strength of 30kgf at a temperature of 200℃
/mm2 or more, the elongation rate is more than 1%, and the hot workability is good. ゛△゛ means that the above tensile strength condition is not satisfied but the other conditions are satisfied. Those that do not meet the criteria were designated as X11. Incidentally, for convenience, the sintered material (A-1') is referred to as an example of the present invention. The sintered material was manufactured in accordance with the method for manufacturing the fiber-reinforced sintered material.
(以下、余白) 表1 表2 〈試験結果の評価〉 ■本発明例(A、B、C,D、E、F、G、H。(Hereafter, margin) Table 1 Table 2 <Evaluation of test results> ■Examples of the present invention (A, B, C, D, E, F, G, H.
■)と比較例(a、b、c、d、e、f、g、h)との
対比から、本発明用規定組成範囲の合金は晶出物、析出
物の粒径が小さく、常温、200℃における強度が十分
大ぎいことが判る。温度300”Cにおいては、本発明
例(A)を除く他の全ての本発明用規定組成範囲の合金
が30kgf/mm2以上の引張り強度を有している。From the comparison between (2) and comparative examples (a, b, c, d, e, f, g, h), the alloys in the specified composition range for the present invention have small particle sizes of crystallized substances and precipitates, and It can be seen that the strength at 200°C is sufficiently large. At a temperature of 300''C, all the alloys in the specified composition range for the present invention except the present invention example (A) have a tensile strength of 30 kgf/mm2 or more.
また、本発明例は伸び率が1%を越えてJ3す、熱間加
工性も良好であった。In addition, the examples of the present invention had an elongation rate exceeding 1% and was J3, and had good hot workability.
■本発明例(A)と比較例(a)との対比がら、Mn、
Zr、 TLの添加が、常m、 200℃、 30
0℃における引張り強度を大幅に向上させるとともに伸
び率も大幅に向上させることが判る。■Comparing the present invention example (A) and the comparative example (a), Mn,
The addition of Zr and TL was carried out at 200°C, 30°C.
It can be seen that the tensile strength at 0°C is significantly improved and the elongation rate is also significantly improved.
■本発明例(八)と比較例(b)との対比から、TLの
添加が常温、200℃、300℃における引張り強度を
若干向上させ、伸び率を向上させることが判る。(2) A comparison between Inventive Example (8) and Comparative Example (b) shows that the addition of TL slightly improves the tensile strength at room temperature, 200°C, and 300°C, and improves the elongation rate.
■比較例(a、 b)から、Zr、Mnの添加は常温。■From Comparative Examples (a, b), Zr and Mn were added at room temperature.
200℃、300℃における引張り強度を向上させるこ
とが判る。It can be seen that the tensile strength at 200°C and 300°C is improved.
■本発明例(A、 B)から、Crff1が増すと許容
範囲内で伸び率が低下するものの、常温から高温に到る
温度範囲で引張り強度が大幅に向上することが判る。(2) From the examples (A, B) of the present invention, it can be seen that as Crff1 increases, although the elongation rate decreases within the allowable range, the tensile strength significantly improves in the temperature range from room temperature to high temperature.
■本発明例(B)と比較例(C)との対比から、添加元
素出が同一であっても晶出物、析出物の粒径が過大(溶
解材における晶出物、析出物の粒径と同程度)であると
著しく脆化することが判る。■A comparison between the present invention example (B) and the comparative example (C) shows that even if the additive element content is the same, the particle size of the crystallized substances and precipitates is excessive (grains of crystallized substances and precipitates in the melted material). It can be seen that if the diameter is about the same as the diameter), it becomes extremely brittle.
■比較例(a、 b)から、Cr以外の合金元素を添加
しなければ伸び率は大きいものの、常温から高温く30
0℃)に到る温度範囲での必要な引張り強度が得られな
いことが判る。■Comparative examples (a, b) show that although the elongation rate is high unless alloying elements other than Cr are added,
It can be seen that the necessary tensile strength cannot be obtained in the temperature range down to 0°C.
■比較例(d、 e)から、Cr添加伍が過剰であると
著しく脆化することおよびFe、TLの添加が常温、2
00℃、300℃における引張り強度を向上させること
が判る。■Comparative examples (d, e) show that excessive Cr addition causes significant embrittlement and that Fe and TL additions occur at room temperature, 2
It can be seen that the tensile strength at 00°C and 300°C is improved.
■比較例(a、 h)から、Cr以外の添加元素旧が過
剰であると著しく脆化することが判る。②Comparative Examples (a, h) show that excessive amounts of additive elements other than Cr cause significant embrittlement.
慕鼓■λ
前記製造方゛法に則って得た本発明例としての繊維強化
された焼結材(J、に、し)(表3)および同様な方法
で(りた比較例としての繊維強化された焼結材(i、
j)について引張り試験を行い、表4の試験結果を得た
。Fiber-reinforced sintered material (J, Ni, Shi) as an example of the present invention obtained according to the above-mentioned manufacturing method (Table 3) and a fiber-reinforced sintered material as a comparative example obtained by the same method (Table 3) Reinforced sintered material (i,
A tensile test was conducted on sample j), and the test results shown in Table 4 were obtained.
表3
(以下、余白)
表4
く試験結果の評価〉
■本発明例(J、に、L)と比較例(i、j>との対比
から、SλCウィスカーで強化した焼結材では、71−
リックス△1合金の組成が相違しても常温引張り強度に
蒸捏の差異はないが、温度の上昇とともに差異が現れ、
高4 (300℃)において比較例のものが著しく強度
低下するのに対し、本発明例のものは蒸捏強度低下しな
いことが判る。Table 3 (Hereinafter, blank space) Table 4 Evaluation of test results> ■From the comparison between the inventive examples (J, ni, L) and the comparative examples (i, j>), the sintered material strengthened with SλC whiskers has 71 −
Even if the composition of Rix△1 alloy is different, there is no difference in tensile strength at room temperature after steaming, but as the temperature rises, a difference appears,
It can be seen that at high temperature 4 (300° C.), the strength of the comparative examples decreases significantly, whereas the strength of the examples of the present invention does not decrease after steaming.
また、試験例1における本発明例(Δ)と本発明例(J
)との対比から繊維強化焼結材の引張り強度が温度上界
とともにマトリックスAl合金単体焼結材のそれに近付
くことが判る。この事は、繊維強化Δ1合金焼結材の高
温強度を向上させるには、マトリックスAl合金の高温
強度を向上さけるべきであることを意味している。In addition, the present invention example (Δ) and the present invention example (J
), it can be seen that the tensile strength of the fiber-reinforced sintered material approaches that of the matrix Al alloy simple sintered material with increasing temperature. This means that in order to improve the high-temperature strength of the fiber-reinforced Δ1 alloy sintered material, the high-temperature strength of the matrix Al alloy should be avoided.
■本発明例LJ、に、L)の温度による伸び率変化を見
ると、温度上界とともに伸び率が増大しており、高温で
の伸び特性がマトリックスAl合金に依存すること、お
よびマトリックスAl合金の熱間加工性が良好であるこ
とが判る。それに対して、比較例(i、j>では、温度
上昇ととbに伸び率が低下しており、そのマトリックス
A9合金が加熱によって脆化する傾向があることが判る
。■Looking at the change in elongation rate due to temperature in Invention Examples LJ, L), the elongation rate increases with the upper temperature limit, indicating that the elongation characteristics at high temperatures depend on the matrix Al alloy, and the matrix Al alloy It can be seen that the hot workability is good. On the other hand, in the comparative example (i, j>), the elongation rate decreases as the temperature increases, indicating that the matrix A9 alloy tends to become brittle due to heating.
1且見ヱ」
以上の説明から明らかなように、Cr3〜20重量%と
、・co、 Ni、 Mn、Zr、V、Ce。As is clear from the above description, 3 to 20% by weight of Cr, .co, Ni, Mn, Zr, V, and Ce.
Fc、TL、Mo、S=、La、Nb、Y、1−1fか
らなる群より選ばれた一種の合金元素10重■%未満ま
たは二種以上の合金元素計10重量%未満と、不可避不
純物を含む残部AfJとから成るAl合金粉末に無機質
ウィスカーまたは無機質短繊維を混合して焼結してなる
繊維強化された耐熱Al合金粉末焼結材が提案された。Less than 10% by weight of an alloying element selected from the group consisting of Fc, TL, Mo, S=, La, Nb, Y, 1-1f, or less than 10% by weight of two or more alloying elements, and unavoidable impurities. A fiber-reinforced, heat-resistant Al alloy powder sintered material has been proposed, which is made by mixing and sintering an Al alloy powder consisting of .
この繊維強化された焼結材におCプるマトリックスAf
J合金は常温から高温に到る温度範囲で十分大きな引張
り強度と伸び率を有しており、そのため該焼結材は常温
で繊維強化材としての大ぎな引張り強度を有し、高温で
耐熱性良好なるマトリックスAfJ合金の高温強度に依
存して十分大きな高温引張り強度を有するとともに、熱
間加工性も良好である。Matrix Af applied to this fiber-reinforced sintered material
J alloy has sufficiently high tensile strength and elongation in the temperature range from room temperature to high temperature, so the sintered material has large tensile strength as a fiber reinforcement material at room temperature and is heat resistant at high temperatures. Depending on the high temperature strength of the matrix AfJ alloy, it has a sufficiently large high temperature tensile strength and also has good hot workability.
Claims (4)
、V、Ce、Fe、Ti、Mo、La、Nb、Y、Hf
からなる群より選ばれた一種の合金元素10重量%未満
または二種以上の合金元素計10重量%未満と、不可避
不純物を含む残部Alとから成るAl合金粉末に無機質
ウィスカーまたは無機質短繊維を混合して焼結してなる
繊維強化された耐熱Al合金粉末焼結材。(1) 3 to 20% by weight of Cr, Co, Ni, Mn, Zr
, V, Ce, Fe, Ti, Mo, La, Nb, Y, Hf
Mixing inorganic whiskers or inorganic short fibers with Al alloy powder consisting of less than 10% by weight of one alloying element selected from the group consisting of or less than 10% by weight in total of two or more alloying elements, and the balance Al containing inevitable impurities. Fiber-reinforced heat-resistant Al alloy powder sintered material made by sintering.
属間化合物の粒径が10μm以下であることを特徴とす
る特許請求の範囲第1項記載の繊維強化された耐熱Al
合金粉末焼結材。(2) The fiber-reinforced heat-resistant Al according to claim 1, wherein the grain size of the intermetallic compound crystallized or precipitated in the Al alloy matrix is 10 μm or less.
Alloy powder sintered material.
が2〜30%であることを特徴とする特許請求の範囲第
1項記載の繊維強化された耐熱Al合金粉末焼結材。(3) Volume fraction of the whiskers or short fibers (V_f)
The fiber-reinforced heat-resistant Al alloy powder sintered material according to claim 1, wherein the fiber-reinforced heat-resistant Al alloy powder sintered material is 2 to 30%.
ることを特徴とする特許請求の範囲第1項記載の繊維強
化された耐熱Al合金粉末焼結材。(4) The fiber-reinforced heat-resistant Al alloy powder sintered material according to claim 1, wherein the particle size of the Al alloy powder is less than 105 μm.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31096387A JPH01152229A (en) | 1987-12-10 | 1987-12-10 | Fiber reinforced heat-resistant al alloy powder sintered material |
CA000584522A CA1330400C (en) | 1987-12-01 | 1988-11-30 | Heat-resistant aluminum alloy sinter and process for production of the same |
DE3888308T DE3888308T2 (en) | 1987-12-01 | 1988-12-01 | Heat-resistant, sintered aluminum alloy and process for its production. |
US07/278,581 US5022918A (en) | 1987-12-01 | 1988-12-01 | Heat-resistant aluminum alloy sinter and process for production of the same |
EP88311390A EP0319295B1 (en) | 1987-12-01 | 1988-12-01 | Heat-resistant aluminum alloy sinter and process for production of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31096387A JPH01152229A (en) | 1987-12-10 | 1987-12-10 | Fiber reinforced heat-resistant al alloy powder sintered material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01152229A true JPH01152229A (en) | 1989-06-14 |
Family
ID=18011513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31096387A Pending JPH01152229A (en) | 1987-12-01 | 1987-12-10 | Fiber reinforced heat-resistant al alloy powder sintered material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01152229A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230739A (en) * | 1988-03-09 | 1989-09-14 | Toyota Motor Corp | Aluminum alloy cast containing composite material component |
JPH01230738A (en) * | 1988-03-09 | 1989-09-14 | Toyota Motor Corp | Aluminum alloy composite material |
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
JPH02247342A (en) * | 1989-03-22 | 1990-10-03 | Ishikawajima Harima Heavy Ind Co Ltd | High performance metallic composite material |
JPH05502057A (en) * | 1989-08-07 | 1993-04-15 | アルキャン・インターナショナル・リミテッド | Cast composite material with matrix containing stable oxide-forming elements |
-
1987
- 1987-12-10 JP JP31096387A patent/JPH01152229A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230739A (en) * | 1988-03-09 | 1989-09-14 | Toyota Motor Corp | Aluminum alloy cast containing composite material component |
JPH01230738A (en) * | 1988-03-09 | 1989-09-14 | Toyota Motor Corp | Aluminum alloy composite material |
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
JPH02247342A (en) * | 1989-03-22 | 1990-10-03 | Ishikawajima Harima Heavy Ind Co Ltd | High performance metallic composite material |
JPH05502057A (en) * | 1989-08-07 | 1993-04-15 | アルキャン・インターナショナル・リミテッド | Cast composite material with matrix containing stable oxide-forming elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5693156A (en) | Oxidation resistant molybdenum alloy | |
US2823988A (en) | Composite matter | |
US4789412A (en) | Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle | |
US3194656A (en) | Method of making composite articles | |
US11214854B2 (en) | Copper-based alloy for the production of bulk metallic glasses | |
CN114829643A (en) | Heat-resistant aluminum powder material | |
US5296055A (en) | Titanium aluminides and precision cast articles made therefrom | |
US5498393A (en) | Powder forging method of aluminum alloy powder having high proof stress and toughness | |
US5022918A (en) | Heat-resistant aluminum alloy sinter and process for production of the same | |
JPH01149936A (en) | Heat-resistant al alloy for powder metallurgy | |
JPH01152229A (en) | Fiber reinforced heat-resistant al alloy powder sintered material | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
US4226644A (en) | High gamma prime superalloys by powder metallurgy | |
US5833772A (en) | Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon | |
JPS62109934A (en) | Aluminized tri-nickel composition and treatment for increasing strength thereof | |
JPH08502554A (en) | "Method for producing silicon alloy, silicon alloy and method for producing consolidated product from silicon alloy" | |
JPH05125473A (en) | Composite solidified material of aluminum-based alloy and production thereof | |
US20010013383A1 (en) | Trinickel aluminide-base heat-resistant alloy | |
JPH01147038A (en) | Heat-resistant al alloy for powder metallurgy | |
JPH01147037A (en) | Heat-resistant al alloy for powder metallurgy | |
JPH01205041A (en) | Fiber reinforced aluminum alloy composite material | |
JPS6250434A (en) | Cobalt base dispersion strengthened alloy and its manufacture | |
KR100353156B1 (en) | Aluminum-based single quasicrystalline alloys | |
JPS59150051A (en) | Wear-resistant aluminum alloy with high strength and its manufacture | |
JPH05302138A (en) | Aluminum base alloy laminated and compacted material and its manufacture |