JPH01147037A - Heat-resistant al alloy for powder metallurgy - Google Patents

Heat-resistant al alloy for powder metallurgy

Info

Publication number
JPH01147037A
JPH01147037A JP30153987A JP30153987A JPH01147037A JP H01147037 A JPH01147037 A JP H01147037A JP 30153987 A JP30153987 A JP 30153987A JP 30153987 A JP30153987 A JP 30153987A JP H01147037 A JPH01147037 A JP H01147037A
Authority
JP
Japan
Prior art keywords
alloy
weight
resistant
heat
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30153987A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
松本 規明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP30153987A priority Critical patent/JPH01147037A/en
Priority to CA000584522A priority patent/CA1330400C/en
Priority to EP88311390A priority patent/EP0319295B1/en
Priority to DE3888308T priority patent/DE3888308T2/en
Priority to US07/278,581 priority patent/US5022918A/en
Publication of JPH01147037A publication Critical patent/JPH01147037A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title Al alloy having small lowering of strength at a high temp. and having good hot-workability by incorporating specific ratios of Cr, Fe and Zr to Al. CONSTITUTION:The Al alloy powder (having <105mu grain size) contg., by weight, 5-12% Cr, 1-5% Fe, 0.5-3% Zr and the balance Al with inevitable impurities is manufactured by atomizing method, etc., in the use of an He gas at about 10<2>-10<3> deg.C/sec. By this method, the heat-resistant Al alloy for powder metallurgy having sufficient tensile strength at the ordinary temp., having high tensile strength of about >=30kgf/mm<2> even at about 300 deg.C and having good extensibility and hot workability is obtd.

Description

【発明の詳細な説明】 先1上夏且ユ±1 本発明は、高温で強度低下が少なく、熱間加二[性の良
好なる粉末冶金用耐熱△j合金に係り、特に内燃機関の
連接棒およびバルブ(弁)の如く高温に加熱される構造
用部材に好適に使用される耐熱AJ金合金関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant △j alloy for powder metallurgy, which has little strength loss at high temperatures and has good hot workability. The present invention relates to a heat-resistant AJ gold alloy that is suitably used for structural members that are heated to high temperatures, such as rods and valves.

′1−およびその、1′ 耐熱性の優れたA」合金として、Sλを18〜25重量
%も含むピストン用合金(通称、アルシル)が知られて
いる。この高SL含有、1合金は鋳造用合金であって、
溶解法によれば、■大な初晶Sλが晶出して必要な強度
が得られないため、改良処理(例、溶湯中にNaを添加
する)を11なって初品Sλの微細化を訓っている。し
かしながら、その微細化効果には限界があるところから
、高SL含有過共晶Aj合金粉末をアトマイジング法で
製造することにより初晶Sλの粒仔を数μm程度に押え
、その汁粉成形体を熱間押出し加工して高強度の焼結/
1合金製部材を1qる方法が12案されている。この粉
末冶金用AJ)合金では高温強度。
'1- and its 1' Piston alloys (commonly known as Arcil) containing 18 to 25% by weight of Sλ are known as A' alloys with excellent heat resistance. This high SL content, 1 alloy is a casting alloy,
According to the melting method, large primary crystals Sλ crystallize and the necessary strength cannot be obtained, so improvement treatment (for example, adding Na to the molten metal) is conducted to refine the initial crystal Sλ. ing. However, there is a limit to its refining effect, so by manufacturing hypereutectic Aj alloy powder with high SL content using the atomizing method, the particle size of primary S High strength sintering by hot extrusion processing/
Twelve methods have been proposed for making one alloy member. This AJ) alloy for powder metallurgy has high temperature strength.

ヤング率を向上させるために2重量%以上のFeを添加
しているが、AA中にFe、S=が共存すると針状のA
js Fe、Aj12Fe3 S、z等の金題がある。
Although 2% by weight or more of Fe is added to improve Young's modulus, if Fe and S= coexist in AA, acicular A
There are gold medals such as js Fe, Aj12Fe3 S, z, etc.

また、近年AJ−Fe系合金を中心にΔ1−Fe−Ce
、Al1−Fe−Mo等の粉末冶金用三元合金が研究さ
れているが、熱間加Z[性が低いという問題が残ってい
る。
In addition, in recent years, Δ1-Fe-Ce has been developed mainly in AJ-Fe alloys.
, Al1-Fe-Mo, and other ternary alloys for powder metallurgy have been studied, but the problem of low hot workability remains.

L+   を l−るための  および本発明は斯かる
技術的前原の下に創案されたものであり、SLを含まな
いがα固溶体に対して溶解限度を越える8の合金元素を
含有する粉末冶金用耐熱Al合金を12供することをそ
の目的とする。
The present invention has been devised under such technical forerunners, and is intended for use in powder metallurgy, which does not contain SL but contains eight alloying elements whose solubility limit exceeds the solubility limit in α solid solution. The purpose is to provide 12 heat-resistant Al alloys.

この目的は、5≦Cr≦12重量%、1≦Fe≦5重量
%、0.5≦Zr≦3重量%なる組成範囲のCr、Fe
、Zrと、不可避不純物を含む残部Alとから成る耐熱
AfJ合金を提供することによって達成される。
This purpose is to use Cr, Fe in the composition range of 5≦Cr≦12% by weight, 1≦Fe≦5% by weight, and 0.5≦Zr≦3% by weight.
, Zr, and the remainder Al containing unavoidable impurities.

粉末冶金法において、AJ中に固溶限界を越えてCrお
よびZrを添加し、A、Q−Cr系、AJ!−Zr系、
Cr−Zr系の金属間化合物を微細に分散晶出1分散析
出させると、マトリックス中へのQr、 Zrの固溶に
よる強化および、金属間化合物の晶出、析出による強化
を削ることが可能である。
In the powder metallurgy method, Cr and Zr are added in AJ beyond the solid solubility limit to form A, Q-Cr system, AJ! -Zr series,
Finely dispersed crystallization of Cr-Zr intermetallic compounds 1 Disperse precipitation of Cr-Zr intermetallic compounds makes it possible to reduce the strengthening due to solid solution of Qr and Zr in the matrix and the strengthening due to crystallization and precipitation of intermetallic compounds. be.

ここで留意すべきは、前記金属間化合物が粗大化すると
焼結晶の機械的性質が損われるため、溶融状態からの冷
却速度を十分大きくして粉末を製造する必要がある点で
ある。要求される冷却条件は冷却速度102〜b 度によって晶出または析出する金属間化合物の大きさを
10μm以)に抑えることができる。
It should be noted here that if the intermetallic compound becomes coarse, the mechanical properties of the sintered crystal will be impaired, so it is necessary to manufacture the powder at a sufficiently high cooling rate from the molten state. The required cooling conditions are such that the size of the intermetallic compound that crystallizes or precipitates can be suppressed to 10 .mu.m or less by cooling at a cooling rate of 10.degree. to 10.degree.

AJ中に添加する合金元素の添加理由は以下の通りであ
る。
The reason for adding the alloying elements to AJ is as follows.

■Cr (5〜12重邑%)・・・Crは常温強I!!
および高温強度の向上、クリープ特性の改善を8するた
めに添加される。ただし、5重間%未満では温度300
〜400℃における強度が低く、12重量%を越えると
熱間加工性が低下し、伸び率が過小になる。
■Cr (5-12%)...Cr is strong at room temperature! !
It is added to improve high temperature strength and creep properties. However, if the temperature is less than 5%,
The strength at ~400°C is low, and if it exceeds 12% by weight, hot workability decreases and the elongation rate becomes too small.

■「e(1〜5重量%) ・F eは常温強+i、n温
強度、ヤング率の向上に寄与する。ただし、1重量%未
満では添加効果が小さく、5手量%を越えると切欠き感
受性が高くなり、伸び率が過小になる。
■"e (1 to 5% by weight) ・Fe contributes to improving room temperature strength + i, n temperature strength, and Young's modulus. However, if it is less than 1% by weight, the effect of addition is small, and if it exceeds 5% by weight, it will be cut off. Sensitivity to chipping increases and elongation rate becomes too low.

■zr (0,5〜3ffi1%>−z rは、展延性
■zr (0.5~3ffi1%>-z r is malleability.

クリープ特性を改善するために添加される。ただし、0
.5手量%未満では改善効果が少なく、3手量%を越え
ると展延性が低下する。
Added to improve creep properties. However, 0
.. If the amount is less than 5% by weight, the improvement effect will be small, and if it exceeds 3% by weight, the spreadability will decrease.

次に、本発明組成のA」合金粉末を用いた焼結晶の製造
方法例について説明する。
Next, an example of a method for producing sintered crystals using alloy powder A having the composition of the present invention will be described.

■粉末のWlJ造・・・5≦Cr≦12重蛋%、1≦F
e≦5重量%、0.5≦Zr≦3重量%なる組成範囲の
Cr、Fe、Zrを含むAl合金粉末(粒径105μm
未満)を、Heガスを用いたアトマイズ法、遠心噴霧法
等により冷却速度702〜b秒なる条件を満たすように
製造する。
■ Powder WlJ construction...5≦Cr≦12 heavy protein%, 1≦F
Al alloy powder containing Cr, Fe, and Zr with a composition range of e≦5% by weight and 0.5≦Zr≦3% by weight (particle size 105 μm)
) is manufactured by an atomization method using He gas, a centrifugal spraying method, etc. so as to satisfy the condition of a cooling rate of 702 to b seconds.

■汁粉成形・・・得られた粉末を、冷間静水圧プレス成
形法(CIP法)により圧力4 、00ONy foc
iとして、寸法50mφX 100mの押出し加工用素
材を得る。
■Soup powder molding: The obtained powder is subjected to cold isostatic press molding (CIP method) under a pressure of 4,000 ONy foc.
As i, a material for extrusion processing with dimensions of 50 mφ x 100 m is obtained.

■熱間押出し加:[(焼結)・・・圧粉体である押出し
加工用石材を、温度450℃、押出し比12なる条件で
熱間押出し加工する。なお、成形品の酸化防止を考慮す
るならば、アルゴンガス、窒素ガス等の非酸化性雰囲気
中で加工を行うのが好ましい。
■Hot extrusion: [(Sintering)... Stone for extrusion, which is a green compact, is hot extruded at a temperature of 450°C and an extrusion ratio of 12. Note that in consideration of preventing oxidation of the molded product, it is preferable to perform the processing in a non-oxidizing atmosphere such as argon gas or nitrogen gas.

人−翌−1 前記製造方法に則って得た本発明例としての焼結晶(A
、B)および同様な方法で得た比較例としての焼結晶(
a、b、C,d、e、f)にライて引張り試験を行い、
取去の試験結果を得た。表中熱間加工性について、試験
材である焼結晶を押出し加工によって製造する際の割れ
の有無で判断した。
Person - Next day - 1 Sintered crystal (A
, B) and a sintered crystal as a comparative example obtained by the same method (
a, b, C, d, e, f) and conducted a tensile test,
Removal test results were obtained. The hot workability in the table was judged by the presence or absence of cracks when the test material, sintered crystal, was manufactured by extrusion processing.

く試験結果の評価〉 ■比較例a、b、cの対比から、Cr吊が増すと、常温
および300℃における引張り強度が向上し、伸び率が
低下することが判る。特に、Crflが12重間%を越
えた15重量%では著しく伸び率が低下しており、熱間
加工性が不良である。
Evaluation of Test Results> ■ A comparison of Comparative Examples a, b, and c shows that as the Cr suspension increases, the tensile strength at room temperature and 300° C. improves, and the elongation rate decreases. In particular, when the Crfl content exceeds 12% by weight (15% by weight), the elongation rate decreases significantly and the hot workability is poor.

■比較例a、b、c、d、eの対比から、常温および高
温での引張り強度を向上さゼるためにFeの添加が有効
であり、その効果はcrの添加による効果に比して大き
いことが判る。ただし、Feの添加は伸び率を低下させ
、特にFeff1が5重量%を越える6重ω%では著し
く伸び率が低下し、熱間加工性が不良である。
■From the comparison of Comparative Examples a, b, c, d, and e, the addition of Fe is effective in improving the tensile strength at room temperature and high temperature, and its effect is compared to the effect of adding Cr. It turns out it's big. However, the addition of Fe lowers the elongation rate, and especially when Feff1 exceeds 5% by weight, the elongation rate decreases significantly and the hot workability is poor.

■比較例d、f、本発明例A、Bの対比から、Feの添
加により低下する伸び特性および熱間加工性をZrの添
加によって補償し得ることが判る。
(2) A comparison of Comparative Examples d and f and Invention Examples A and B shows that the elongation properties and hot workability deteriorated by the addition of Fe can be compensated for by the addition of Zr.

ただし、Zr添加量が3重量%を越える5重間%では、
伸び特性、熱間加工性に及ぼすzrの補償効果はなくな
る。また、Zrを添加すると、常温および高温における
引張り強度が向上することが判る。ただし、Zr添加量
が3重量%を越える5重量%では引張り強度が若干低下
する。
However, when the amount of Zr added exceeds 3% by weight,
The compensatory effect of Zr on elongation properties and hot workability disappears. It is also found that adding Zr improves the tensile strength at room temperature and high temperature. However, when the amount of Zr added exceeds 3% by weight and is 5% by weight, the tensile strength slightly decreases.

■全試験材の対比から、規定量のCr、 Fe。■From the comparison of all test materials, the specified amount of Cr and Fe.

Zrを添加した本発明例では、常温および高温(300
℃)における引張り強度が十分大きく、適度の伸び率と
、良好な熱間加工性を確保し得ることが判る。
In the example of the present invention in which Zr is added, the temperature at room temperature and high temperature (300
It can be seen that the tensile strength at temperature (°C) is sufficiently high, and a suitable elongation rate and good hot workability can be ensured.

1団夏盈」 以上の説明から明らかなように、5≦Cr≦12重量%
、1≦Fe≦5重i%、0.5≦Zr≦3重量%なる組
成範囲のCr、Fe、Zrと、不可避不純物を含む残部
Alとから成る粉末冶金用耐熱AN合金が提案された。
As is clear from the above explanation, 5≦Cr≦12% by weight
, 1≦Fe≦5 i% by weight, 0.5≦Zr≦3% by weight, and a heat-resistant AN alloy for powder metallurgy consisting of Cr, Fe, and Zr in the composition range, and the balance containing inevitable impurities has been proposed.

この組成範囲の合金は、常温における引張り強度が十分
大きく、温度300℃においても約30Kyf/M2以
上の大きな引張り強度を有し、しかも展延性、熱間加工
性共に良好である。
An alloy in this composition range has a sufficiently high tensile strength at room temperature, a high tensile strength of about 30 Kyf/M2 or more even at a temperature of 300° C., and has good malleability and hot workability.

Claims (1)

【特許請求の範囲】[Claims] 5≦Cr≦12重量%,1≦Fe≦5重量%,0.5≦
Zr≦3重量%なる組成範囲のCr,Fe,Zrと、不
可避不純物を含む残部Alとから成る粉末冶金用耐熱A
l合金。
5≦Cr≦12% by weight, 1≦Fe≦5% by weight, 0.5≦
Heat-resistant A for powder metallurgy consisting of Cr, Fe, and Zr in a composition range of Zr≦3% by weight, and the remainder Al containing unavoidable impurities
l alloy.
JP30153987A 1987-12-01 1987-12-01 Heat-resistant al alloy for powder metallurgy Pending JPH01147037A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30153987A JPH01147037A (en) 1987-12-01 1987-12-01 Heat-resistant al alloy for powder metallurgy
CA000584522A CA1330400C (en) 1987-12-01 1988-11-30 Heat-resistant aluminum alloy sinter and process for production of the same
EP88311390A EP0319295B1 (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same
DE3888308T DE3888308T2 (en) 1987-12-01 1988-12-01 Heat-resistant, sintered aluminum alloy and process for its production.
US07/278,581 US5022918A (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30153987A JPH01147037A (en) 1987-12-01 1987-12-01 Heat-resistant al alloy for powder metallurgy

Publications (1)

Publication Number Publication Date
JPH01147037A true JPH01147037A (en) 1989-06-08

Family

ID=17898154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30153987A Pending JPH01147037A (en) 1987-12-01 1987-12-01 Heat-resistant al alloy for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH01147037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147038A (en) * 1987-12-02 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH02194142A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al-base alloy powder for sintering
CN106086719A (en) * 2016-07-28 2016-11-09 吴国庆 A kind of high heat-resisting nickel-copper alloy material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147038A (en) * 1987-12-02 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH01149936A (en) * 1987-12-04 1989-06-13 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH02194142A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al-base alloy powder for sintering
CN106086719A (en) * 2016-07-28 2016-11-09 吴国庆 A kind of high heat-resisting nickel-copper alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
US4772342A (en) Wrought Al/Cu/Mg-type aluminum alloy of high strength in the temperature range between 0 and 250 degrees C.
JPS63157831A (en) Heat-resisting aluminum alloy
US5578144A (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
US5582659A (en) Aluminum alloy for forging, process for casting the same and process for heat treating the same
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
US4483719A (en) Process for preparing fine-grained rolled aluminum products
US5498393A (en) Powder forging method of aluminum alloy powder having high proof stress and toughness
US5608174A (en) Chromium-based alloy
US5730931A (en) Heat-resistant platinum material
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH01149936A (en) Heat-resistant al alloy for powder metallurgy
JPH0641623B2 (en) Controlled expansion alloy
JPH01147037A (en) Heat-resistant al alloy for powder metallurgy
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
JPH01147039A (en) Wear-resistant aluminum alloy and its manufacture
JP3387548B2 (en) Manufacturing method of magnesium alloy molded product
JPH01147038A (en) Heat-resistant al alloy for powder metallurgy
JPH09316586A (en) Magnesium alloy with heat resistance and wear resistance
JPH08134614A (en) Production of superplastic magnesium alloy material
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPH01152229A (en) Fiber reinforced heat-resistant al alloy powder sintered material
JPH0379738A (en) High strength al alloy material
JPS62142739A (en) Aluminum alloy for die casting
JPH01242749A (en) Heat-resistant aluminum alloy